
Computationalproblems : in the following, let O be a finite cyclic group generated by g
with ordera

-

Discretelog problem : sample X Ig

given h= gX, compute X
-

CreputationalDiffie-Hellman (CDH) : sample X,y
= Eg

given gY , gy , compute gXY
-DecisionalDiffie-Hellman (DDH) : sample X

,y ,
r
Eg

distinguish between (g , gY , gy , g
*Y) vs . (g , gY, g5 , g)

Each of these problems translates to a corresponding computational assumption :

Definition
.

Let D = (g) be a finite cyclic group of order g (whereIof the security parameter x)
The DDH assumption holds in D if for all efficient adversaries A :

Pr[X
. y
=
Ep : A (g, g+, go , g*) = 1) - PrEX, y , +Exp : Alg , gY, go , g) = 1)) = neg1(x)

The CDH assumption holds in D if for all efficient adversaries A:

Pr[X
, y
= <g : Alg , gY, gy) = g

*b) = ney((x)
The discrete log assumption holds in G if for all efficient adversaries A :

PrEx=
g
: Alg , gY) = x] = neg)(x)

&stainly : if DDH holds in D => CDH holds in 6 discrete log holds in I

T --
there are groups where CDH Major open problem : does this hold?

believed to be hard
, but DDH is

Can we find a group
where discrete log is hard

but CDH is easy ?

easy

-

Instantiations :

DiscreteloginWhenDisbitsprovidesapproximately 1bitofsecurityga time

Much better than brute force - glogp &cube root in exponent not ideal !

↳ Need to choose p carefully if we want to double security,
- Le.g., avoid cases where p-l is suchhaving

small prime factors

need to increase modulus by 8x !

for DDH applications , we usually set p
= 2g + 1 where

group operations
all
-

Le.g, 16384-bit
modulus for 256 bits

g is also a prime (p is a "safe prime") and work in the scale linearly low worse) in of security)
subgroup of order g inP (E has order p-1 = 2g) bitlength of the modulus

Elliptic curve groups
: only require 256-bit modulus for 128 bits of security

↳ Best attack is generic attack and runs in time 29p/ [g-algorithm - can discuss
atendofa

-> Much faster than using [: several standards

- NIST P256
,
P384

,
P312 can discuss more at end of semester

-

Dan Bernstein's curves : Curve 25519
3 for in advanced crypto class)

↳

Widely used for key-exchange + signatures on the wel

When describing cryptographic constructions
,
we will work with an abstract group

(easier to work with, less details to worry about

Diffie-Hellman key exchange
-

Let O be a group of prime order p (and generator g) - choice of group , generator,
and order fixed by standard

Alice Bob

x4 y =p

compute gYY = (g2)X compute gXY = (gY)]
↳ I

shared secret : gxy

But usually , we want a random distring as the key , no random
group element

-> Element g
*Y has log p bits of entropy , so should be able to obtain a random bitstring with l < logp bits

-> Solution is to use a "randomness extractor"

good practice to↳ Information- theoretic constructions based on universal hashing/pairwise-independent hum hash all components
Closes some bits of entropy)

↳ Use a "random orace" or an "ideal hash function" [teristic : SHA-256 (g , gY, g8 , gxy)) (binds
the key topthe entire

transcript
Ivery efficient in practice)
4
Arguingsecurity

: 1 . Rely on HashDHAssumption(gggt,Hggggg,
2. Model H as ideal hash function H : D

*
- 50 , 13" (i .e

.,
random oracle) and

rely on CDH in D [inability to evaluate H on gy => output is random string]

#blityencryption:Encryption schemewhereencryptionisdoestrequire shard e
a

-

Encrypt (pk, m) +> c

-

Decrypt (sk, c) - m

Everyone can publish a public key (in a directory)
-> Can encrypt to anyone without exchanging keys (recipient can be ofine)

&rectress : FmE M : Pr[(pk , sk) = Setup(14) : Decrypt (Sk , Encrypt(pk, m))
= m) = 1

Security : semantic security from secret-key setting , but adversary also gets public key
bE 50 ,13

adversary hallengerSetup(1x)
-imk

,
ma

↓
b'E50,13

SSAdvIA
, TakE] = /Pr[A outputs 1/b = 0] - PrTA outputs 11b = 1)/

