
Basic flow of Diffie-Hellman based AKE :

Bank
y7pcanol)" 1

,
1= H(g, g4 , go ,gx)

& ↳ Sign (skBanks (g , g*, g0 , plank)
↓

derive k
,
k' = H(g, gY, gb, g

*3) Session
key k

check O is signature on (g . gY, go , pkBank) 3 intuition: certBank identifies server as Bank (with plank
under pkBank is the public key identified by certank o binds the session parameters (g , g*, gG) to

the public key identified by certank

#nof protocol : Alice knows she is talking to Bank (but not vice versa!)

"one-sided AKE" - most common mode on the web

↳
Basis of TLS 1. 3 handshake ("one-sided" AKE) ALWAYS USE TLS 1 . 3 - Don't invent your own ARE protocol !

client

MentHello : List of supported ciphersuites -
older systems / foreign systems

may prefer different

-Possible TLS extensions older versions of- leg ., AES-GCM-128
,

AES-GCM-256) ciphers

&ver Hello : Chosen ciphersuite TLS vulnerable to

cipher downgrade attacks

Application layer secured using unidirection keys
kA- B and kB + A

In TLS 1
.
3

,
the only long-term secret on the server is a singing key. This is critical for

achieving forward secrecy .

Forward Secrecy : compromise of server in the future anot affect secrecy of sessions in the past
-

In TLS
,

server secret is a signing key-fresh Diffie-Hellman secret used for each session is fresh ("ephemeral")
Compromising signing key allows impersonation of server

,
but does not break secrecy of past sessions

-
As we will see

,
not all AKE protocols provide forward secrecy

Alternative (using PKE) :

suppose server has certificate authenticating a public key for a PKE scheme (CCA-secure) :

/triT/sk &
Yields statically-secure authenticated key agreement

(no forward secrecy)

CrikDecryptSka,a Compromise of skBank compromises past
Sessions

TLS 1 .3 and authenticated key-exchange protocols on the Internet typically provide osided authentication (i.e
.,

client learns id of

the server, but not vice versal

Question : how does the client authenticate to the server (without providing a certificate)
->

e.g.,
how does client login to a web service?

client and server assumed to have Je.g,
client has a password and serve I#pical setting :

some shared state has an HMAC of the password
(sk) (uk)
client Server

->

AKE protocol 3 not replace this with anonymous key exchange
-

client learn.......................................
- becomes vulnerable to a man-in-the-middle attack

-server's identity identification protocol
-

#todAdversary's goa istoauthenticatetoreseauthenticate

Le.g., physical analogy : door lock -

adversary can observe the lock
,

does not see the key sk)

Eavesdroppingattack : adversary gets to observe multiple interactions between honest client and the server

Le.g., physical analogy : wireless car key
- adversary observes communication between car key and car)

#tireattack : adversary can impersonate the server and interact with the honest client

le.g ., physical analogy
:fake ATM in the mall - honest clients interact directly with the adversary

Simple (insecure) password-based protocol :

tenlakipodspood
Server [vk : pwd]

↓

accept if vk = pod

NEVER STORE PASSWORDS IN THE CLEAR !

Eightlybetter solution : hash the passwords before
storing server maintains mappings

Alice H(produtice)
BobH H(prdpob)

whereH is a collision-resistant hash function

Client [sk: pwd] server [vk : H(pwdl]
pud
-

↓
accept if

vk = H(pwa)

If passwords have high entropy ,
then hard to recover prod from H(pwdl [by one-wayness of H]

↳ But not true in practice...

Users often choose weak passwords (e.g.,
123456

, password , 123456789,
...)

↳ With a dictionary of 360 million entries
,

can cover about 25% of user passwords Based on password hashes that have

13% choose 123456) 3 been leaked from compromised
databases

110% choose
among top 25 common passwords)

Simple hashing vulnerable to "offline dictionary attack."

adversary computes table (pwd , H(pwd)) for common passwords -

completely offline

given H(pwd), can now invert with a single lookup if pwd is contained in the database

for LinkedIn breach in 2012, attacker stole password file with ~6 million passwords
Call passwords hasted using single iteration of unsalted SHA-1) -> 90% of passwords recovered in 6 days !

Problem: One-time precomputation (computing the lookup table) can becaused to compromise many passwords
Overall cost of attack : 0 (m + n) where m is the dictionary size and n is the number of passwords to attack

Defense#1 : Salt passwords before hashing : namely when storing password prod , sample salt 50,
13" and store

(salt
, H(salt1) pwd)) on the server ↑

Note : Sult is apublic value (needed for verification) typically ,
n?64

Offline dictionary attack no longer effective since every sult value induces different set of hash values

Overall cost of dictionary attack : 0(mn) - need to re-hash dictionary for
every sult

Defense#2 : Use aow hash function [SHA-1 is
very fast - enables fast brute-force search]

- PBKDF2 (password-based key-derivation function) : iterate a cryptographic hash function
many

times :

(or berypt) honest user only needs to evaluatePBKDF2(pod ,salt)sales - hash function once per authentication;

1,000,000 iterations of SHA-256 adversary evaluates many times

Frawback : custom hardware can evaluate SHA-256 my fast
-

scrypt(morrecent
:

Argondi:slowhashfunctionthat needslotsofmemoryspace)toear
see

Can also use a led hash function (e.g.,
HMAC with key stored in HSM)

↳
ensures adversary who does not know key cannot brute forceall !

Bestpractice : Always salt passwords
Always use a slow hash function (e.g.,

PBKDF2, scrypt) or keyed hash function or both !

raw MD5 hash - not secure! Facebook password onion

&salted,keyedtieemote service) ↓
(circa 2014)

layers gradually added over time to

slow hash function achieve better security

(and probablytowid pasoas

