Signature - based challenge - response

- Server stores a verification key vk for digital signature scheme

- Client holds Signing key sk

client (sk)
$$m \stackrel{\text{random message}}{\underset{m}{\overset{m \in \mathbb{N}}{\overset{m \in \mathbb{N}}}{\overset{m \in \mathbb{N}}{\overset{m \in \mathbb{N}}$$

Server asks client to sign a rundom message

> Client's signature indicates proof at possession of SK associated with vik

L> Active advectory that interacts with the client <u>before</u> interacting with the prover cannot forge signatures Provides active security but signatures are long (~384 bits)

Signature-based challenge response: client "demonstrates knowledge" of signing key is we will generalize this to "proving" <u>arbitrary</u> statements

Identification protocols such as Schnorr's protocol can be readily compiled into a digital signature scheme > This will give us a signature scheme from the discrete log assumption

Key idea: Replace the verifier's challenge with a hash function H: {0,13^{*} → Zp [outputs must be random-backing] Namely, instead of sampling C[®]Zp, we sample C ← H(g,h, u). ← prover can now compute this quantity on its own! The signature is then the protocol transcript (u, c, Z) which anyone can check Issue: Where does the message go? In the bash function!

Signatures from discrete log in rondom ordele model (Schnoer) - Setup: $\chi \stackrel{\circ}{=} \mathbb{Z}_p$ $vk: (g, h = g^{\chi})$ sk: χ - Sign (sk, m): $r \stackrel{\circ}{=} \mathbb{Z}_p$ $u \leftarrow g^{\tau}$ $c \leftarrow H(g, h, u, m)$ $z \leftarrow r + c\chi$ $\sigma = (u, z)$ - Verify (vk, m, σ): write $\sigma = (u, z)$, compute $c \leftarrow H(g, h, u, m)$ and accept if $g^{z} = u \cdot h$ vk = h Security essentially follows from security of Schnore's identification protocol (together with Fict -Shamir)

is a proof of knowledge of the discrete log (can be extracted from adversory)

Length of Schnorr's signature:
$$Vk: (g, h=g^{\chi})$$
 $\sigma: (g^r, c = H(g, h, g^r, m), z = r + c\chi)$ verification checks that $g^z = g^r h^c$
 $sk: \chi$
 $can be computed given$
 $other components; so $\Longrightarrow |\sigma| = 2 \cdot |G|$ [512 bits if $|G| = 2^{256}$]
 $do not need to include$$

But, can de better... Observe that challenge c only needs to be \$28-bits (the knowledge error of Schnorr is /1c1 where C is the set of possible challenges), so we can sample a 128-bit challenge rather than 256-bit challenge. Thus, instead of sending (g^r, z) , instead send (c, z) and compute $g^r = g^2/h^c$ and that $c = H(g, h, g^r, m)$. Then resulting signatures are <u>384 bits</u> 128 bit challenge e^{-1}

Important note: Schnorr signatures are randomized, and security relies on having good randomness

L> What happons if randomness is reused for two different signatures?

This is precisely the set of relations the knowledge extractor uses to recover the discrete log X (i.e., the signing key)!

Deterministic Schnorr: We want to replace the random value Γ & Zp with one that is deterministic, but which does not compromise security Derive randomness from message using a PRF. In particular, signing key includes a secret PRF key ke, and Signing algorithm computes Γ ← F(k,m) and σ ← Sign(sk,m;r). Avoids randomness reuse/misuse valuenbilities.

In practice, we use a variant of Schnorr's signature scheme called DSA/ECDSA L> larger signatures (2 group elements - 512 bits) and proof only in "generic group" model (was patented ... until 2008)

ECDSA signatures (over a group 6 of prime order p):

- Setup:
$$\chi \in \mathbb{Z}_p$$

 $Vk: (g, h = g^{\chi})$ $sk: \chi$
- Sign (sk, m): $\alpha \in \mathbb{Z}_p$
 $u \leftarrow g^{\alpha}$ $r \leftarrow f(u) \in \mathbb{Z}_p$
 $s \leftarrow (H(m) + r \cdot \chi)/\alpha \in \mathbb{Z}_p$
 $\sigma = (r, s)$
- Sign (sk, m): $\chi = (x, y) \in \mathbb{F}_q^2$ where \mathbb{F}_q is
 $s = (H(m) + r \cdot \chi)/\alpha \in \mathbb{Z}_p$
 $\sigma = (r, s)$
- Setup: $\chi \in \mathbb{Z}_p$
 $\sigma = (r, s)$
- Setup: $\chi \in \mathbb{Z}_p$
 $\sigma = (r, s)$
- Setup: $\chi \in \mathbb{Z}_p$
 $\sigma = (r, s)$
- Setup: $\chi \in \mathbb{Z}_p$
 $\sigma = (r, s)$
- Setup: $\chi \in \mathbb{Z}_p$
 $\sigma = (r, s)$
- Setup: $\chi = (x, y) \in \mathbb{Z}_p$
 $\sigma = (r, s)$
- Setup: $\chi \in \mathbb{Z}_p$
 $\chi = (x, y) = (x, y) = (x, y)$
 $\sigma = (r, s)$
- Setup: $\chi = (x, y) = (x, y)$
 $\chi = (x, y) = (x,$

- Verify
$$(vk, m, \sigma)$$
: write $\sigma = (r, s)$, compute $u \leftarrow g^{H(m)/s} h^{r/s}$, accept if $r = f(u)$
 $vk = h$.

$$\frac{\text{Convectness}}{\text{Convectness}}: \mathcal{U} = g^{\text{H(m)/s}} \frac{r/s}{h} = g^{\text{H(m)+r\times1/s}} = g^{\text{H(m)+r\times1/s}} \frac{[H(m)+r\times1]}{[H(m)+r\times1]} \frac{d^{-1}}{d^{-1}} = g^{\text{C}} \quad \text{and} \quad r = f(g^{\text{C}})$$
Security analysis non-trivial: requires either strong assumptions or modeling (G as an "...deal group
Signature size: $\sigma = (r,s) \in \mathbb{Z}_p^2$ — for 128-bit security, $p \sim \partial^{256}$ so $|\sigma| = 512$ bits (can use P-256 or Curve 25519)

Schnorr's protocol is actually an example of more general concept called zero-knowledge proofs:

Interactive proof systems [Goldwasser - Micali - Rockoff]: prover (x) verifier (x) i b & \$0,13

Interactive proof should satisfy completeness + soundness (as defined earlier)

Consider following example: Suppose prover wants to convince verifies that N = pg where p, g are prime (and secret). prover (N, p, g) verifier (N) $\pi = (p, g)$

accept if N=pg and reject otherwise

Proof is certainly complete and sound, but now verifier <u>also</u> learned the factorization of N... (may not be desirable if prover was trying to convince verificer that N is a proper RSA modulus (for a cryptographic scheme) <u>without revealing</u> factorization in the process information to the verifier [i.e., verifier learns something it did not know before seeing the proof]

Zens-knowledge: ensure that verifier does not learn anything (other than the fact that the statement is true)

How do we define "zero-knowledge"? We will introduce a notion of a "simulador".

for a language L

 $\frac{\text{Definition}}{\text{exists an efficient simulator S such that for all <math>x \in L$: Viewy* $(\langle P, V \rangle(x)) \approx S(x)$

random variable denoting the set of messages sent and received by $V^{\rm fr}$ when interacting with the prover P on input χ