
Signature-based challenge -

response
-

Server stores a verification key vK for digital signature scheme

-

Client holds signing key sk

client (sk) dommessag ne
a

check that Verify (vk,
m

,
o) = 1

Server asks client to sign a random message
↳ Client's signature indicates proof of possession of sk associated with vK

-> Active adversary that interacts with the client before interacting with the prover cannot forge signatures
Provides active security but signatures are long (v384 bits)

Signature-based challenge response : client "demonstrates knowledge" of signing key
--

we will generalize this to "proving" abitrary statements

Identification protocols such as Schnoor's protocol can be readily compiled into a digital signature scheme

↳ This will give us a signature scheme from the discrete log assumption

Keyidea : Replace the verifier's challenge with a hash function H : 50 . 13
*

-> Xp [outputs must be random-looking)
Namely ,

instead of sampling (EXp ,
we sample (tH(g,

h
,

u) .

=

prover can now compute this quantity on its own!

The signature is then the protocol transcript (U,
C

, 2) which
anyone can check

Issue : Where does the message go
? In the hash function !

Signatures from discrete log in random orcele model (Schnoor
-

Setup : x
* *

P
as we will see

,
this is

vk : (g ,
h = g*) Sk : Y - in fact a "zero-knowledge"

-

Sign (sk , m) : r = *
4 & signature is a proof of knowledge proof

u =grc = H(g ,
h

,
u

, m) z r + CX
of discrete log of h (with challenge

o = (u, z)
derived from the message m)

C

-

Verify (vk ,
m . 0) : write w = (n

,
z) , compute c = H(g,

b
,
n

,
m) and accept if g = U.

vk = h



Security essentially follows from security of Schnoor's identification protocol (together with Fiat-Shamir
↳ forged signature on a new message m is

a
roof of knowledge of the discrete log I can be extracted from adversary)

Length of Schnoor's signature : vK : (g,
h=

g
*) w :

(gHhgu
verification checks that gE =gh

Sk : X

other components, so =>Iot = 2 . 161 (512 bits if 161 = 223]
do not need to include

But
,

can do betterr... observe that challenge< only needs to be 128-bits (the knowledge error of Schnoor is Y11 where C

is the set of possible challenges), so we can sample a 128-bit challenge rather than 256-bit challenge. Thus
,

instead of sending
(gt ,

z)
, instead send (c

,
z) and compute gr = g*/ and that c = Algih , g ,

m). Then resulting signatures arebits

128 bit challenge[

256 bit group element

#m
portantnote:Schnosignatures areandomized ,andsecurityrelieson

havingo randsis

Then
, we have

8
= (g , [H(g , hig,

m)
,

z
,
= +x)] z

,
- zu = (- G)x = x = (-() (z ,

- z)

Oz = (g" , < = Hig , higY mz) ,
zu= r + (x)

This is precisely the set of relations the knowledge extractor uses to

recover the discrete log X (i.e
.,

the signing key) !

EtterministicSchnorr: We want to replace the random value r & Up with one that is deterministic
,

but which does not compromise security
-> Derive randomness from message using a PRE

.

In particular, signing key includes a secret PRE key K
,

and

signing algorithm computes rF(k, m) and o Sign 1sk. m ; r).

↳ Avoids randomness reuse/misuse vulnerabilities
.

digital signature algorithm/elliptic -curve DSA
↓TLS protocol -

In practice,
we use a variant of Schnoor's signature scheme called DSA/ECDSA

but we use it because Schnor
-> larger signatures (2 group

elements - 512 bits) and proof only in "generic group" model I
was patented...

until 2008 J

ECDSA signatures (over a group
D of prime order p) :

-

Setup : X * I
P

vk : (g,
h = gY) sk : X

deterministic function specifically· flu)
parses u = (Y

,) &Fg2 where Eg is

↓ specified by ECDSA the base field over which the elliptic curve is defined
,

-

Sign (sk,
m) :

G r = f(u) = [p I and outputs Y (modp) ,
where is viewed as a I

s = (H(m) + r =x)/a =4 value in [0, g)
o = (r

,
s

- Verify (vk
,

m
,
c) : write o = (r, s)

, compute U = gH(m)/sm/s , accept it v = f (u)

vk = h

- H(m)/sMs
[H(m) + rX]/[H(m)+x)/Hm+x]Correctness : U =

g and r = f(g))

Securityanalysisnontrivial:requireseither strongassumptionsormodelingsandgo,- P-256 or Curve 25519)



Schnoor's protocol is actually an example of more general concept called zero-knowledge proofs :

Interactiveproof systems [Goldwasser - Micali-Rackoff) :

↓
efficient and

randomized
prover (x) verifier (*)

-

->

TL
- ↳ be 50, 13

Interactive proof should satisfy completeness + soundness (as defined earlier)

Consider following example: Suppose prover
wants to convince verifier that N =

pq where p,g are prime land secret).

prover
(N

, p , g) Verifier (N)

-(p-8)
accept if N = pg

and reject otherwise

Proof is certainly complete and sound
,

but now verifier alo learned the factorization of N
... (may not be desirable if

prover was trying
to

convince verifierthatisproperRSA moduHocryptographicschemeing factorization inthe pos
a

seeing
the proof]

Zknowledge : ensure that verifier does not learn anything lother than the fact that the statement is true)

#Howdo we define "zero-knowledge" ? We will introduce a notion of a "untor
.

"

for a language 2

Refinition.
An interactive proof system <P

, V) " is zero-knowledge if for all efficient (and possibly malicious) verifiers V *, there

exists an efficient simulator S such that for all XEL :

View v* ((P,
v)(x)) = S(X)
-

random variable denoting the set of messages
sent and received by V* When interacting with the prover P on input X


