
Understanding the definition :

Can we learn the least significant bit of a message given only the ciphertext (assuming a semantically-secure cipher)
No ! Suppose we could .

Then
, adversary can choose two messages mo

,
m

,
that differ in their least significant bit

and distinguish with probability 1
.

This generalizes tomny efficiently - computable property of the two messages.

How does semantic security relate to perfect secrecy
?

#rem . If a cipher satisfies perfect secrecy,
then it is semantically secure

.

Prof. Perfect secrecy means that Vmo
,
m,

EM
,

CeC :

Pr[k = K :

Encrypt (k
, mo) = c) = Pr[kEK :

Encrypt (k , m 1) = <]

Equivalently ,
the distributions

#K:Encrypt(k,mol andK
: Encrypt (K, mis 3

Di

are indentical (DoD.) .

This means that the adversary's output dis identically distributed in the two experiments,
and so

SSAdr[A
,
TIsE] = /Wo-Wil = 0

.

~ encryption key (PRG seed)
seems straightforward,Eorollary. The one-time pad is semantically secure.

( =- G(s) m but takes some care to pure
-m + G(s)0c -
L

#orem. LetO be a secure PRG . Then ,
the resulting stream cipher constructed from G is semantically secure.

Prof. Consider the semantic security experiments :

Experiment O : Adversary chooses mo
,

m
,

and receives Co = G(s) @ Mo
Want to show that adversary's3 output in these two experiments are

Experiment 1 : Adversary chooses mo
,

m
,

and receives < = G (s) # M, indistinguishable
Let Wo = Pr[A outputs 1 in Experiment O]

W
.

= PrIA outputs 1 in Experiment 1]

G : Show that if G is a secure PRG
,

then for all efficient adversaries A
, /Wo -Wil = negl(x).

Idea: If G(s) is uniform random string (i
. e

..
one-time pad) ,

then Wo = Wi
.

But G(s) is like a one-time pad!

Define Experiment 0' : Adversary chooses Mo
,

m , and receives Co = - Mo where to So, 13
"

↳ calledhybrida
Experiment 11 : Adversary chooses Mo

,
m

,
and receives c = t # M

, where & 30 , 13
"

Define Wo
,

wi accordingly.

Now we can write

/Wo - W
, ) = /Wo- Wo + Wo - Wi + Wi - W

, l
-> IWo-Wol + /Wo'-Wil + IWi-Wil by triangle inequality-

Wo' = W ! (for all adversaries A)
since OTP satisfies

perfect secrecy

Suffices to show that for all efficient adversaries
,
/Wo-Wil = negl(X) and /W.Wil = neyl(x).



Typical proof strategy in cryptography:of byIncontrapositive .

Sow. If G is a secure PRG
,

then for all efficient A
,
/Wo-Wil = negl

Common proof technique:

prove thecontrapositive .

-ontrapositive : If A can distinguish Experiments O and O'
,

then G is not a secure PRG.

Suppose there exists efficient A that distinguishes Experiment O from OI

=> We use A to construct efficient adversary B that breaks security of G
.

↳ this step is a reduction

Iwe show how adversary live.
, algorithm) for distinguishing Exp.

0 and 0 > adversary for PRG)

Algorithm B (PRG adversary) : be 50, 13

#RGchallenger

·t m

Running time of B =

running time of A = efficient

Compute PRGAdv[B,
G].

Pr[Boutputs 1 if b = 0] = Wo -if b = 0
,

then A gets G(s)#m which is precisely the behavior in Exp.
O

Pr[B outputs 1 if b = 1) = Wo if b = 1
,

then A gets- Q m which is precisely the behavior in Exp.
O'

=> PRGAdv[B , 6) = /Wo-Wol
,

which is non-negligible by assumption. This proves
the contrapositive.

#mportant note : Security of above schemes shown assuming message space is 10 , 13 (i.e.,
all messages are n-bits long)

Epractice: We have variable- length messages. In this case
, security guarantees indistinguishability from other messages

of the same length,
but length itself is leaked [inevitable if we want short ciphertexts)

-> can be problematic -

see traffic analysis attacks !

So far
,

we have shown that if we have a PRG
,

then we can encrypt messages efficiently (stream cipher)


