
#once-basedcounter mode : divide IV into two pieces
: IV = noncell counter

↑
value that

does not repeat
common choices : 64-bit nonce,

64-bit counter Sonly nonce needs to be sent !

96-bit nonce
,

32-bit counter (slightly smaller ciphertexts)

Only requirement for security is that IV does not repeat :

-tion 1 : Choose randomly(either IV or nonce)
-

Option2 : If sender + recipient have shared state le.g, packet counter)
,

can just use a counter
,

in

which case ,
IV/ nonce does not have to be sent

(CTR)
Counter mode is parallelizable, simple-to-implement , just requires PRF-preferred mode of using block ciphers

Other block cipher modes of operation :

Cipherblock chaining (CBC) : common mode in the past (e.g.,
TLS 1 .

0
, still widely used today)

·rObserve: need
-

to compute F
+

Encryption not just PRF)

#heorem: Let F : /XX - Y be a secure PRF and let Tlac denote the CBC encryption scheme for I-block

messages (M = X*1)
.

Then
,

for all efficient CPA adversaries A
,

there exists an efficient PRE adversary
B such that

CPAAdvIA
,TIBc]> + 2 . PREAdvEB

,
F]

↑
Q : number of encryption queries
&: number of blocks in message

Intuition : similar to analysis of randomized counter mode :

1 . Ciphertext is indistinguishable from random string if PRP is evaluated on distinct inputs
2. When encrypting ,

PRP is invoked on I random blocks
,

so after Q queries ,
we have Q1 random blocks.

=> Collision probability IC this is larger than collision prob for randomized counter mode by a

factor of a Toverlap of Q random intervals vs. Ql random points)
3. Factor of 2 arises for same reason as before

#Interpretation .

(BC mode provides weaker security compared to counter mode:
Concretely : for same parameters as before //MB messages,

2-32 distinguishing advantage) :

Q =LJb(v billion messagee

↳ 27. 3
~180 x smaller than using counter mode

#adding in CBC mode : each ciphertext block is computed by feeding a message block into the PRP

=>
message must be an even multiple of the block size

=>
when used in practice,

need to pad messages

Can we pad with zeroes
? Cannot decrypt ! What if original message ended with a bunch of zeroes ?

&quirement : padding must be invertible

CBC pudding in TLS 1 . 0 : if k bytes of pudding is needed
,

then append I bytes to the end
,

with each byte set to k-

(for AES-CBC) if O bytes of padding is needed
,

then append a block of 16 bytes ,
with each byte equal to 15

↳ dummy block needed to ensure pad is invertible I injective functions most expand : I- called PKCS#5/PKCS#7 (public-key cryptography standards) 190 , 13
* 2561 > 140 , 13233/

Need to pad in CBC encryption can be exploited in "padding oracle" attacks

Padding in CBC can be avoided
using idea called "ciphertext stealing" (as long as messages are more than 1 block)

interesting traffic analysis attack :

each keystroke is sent in separate
packet , so#packets leaks into on length

Comparing CTR mode to CBC mode : &user's password !Imagine
I byte messages

&

&BC mode

Rmodting needed (shorter ciphertexts) 1. padding
needed a (e.g., encrypted key strokes)

over SSH

2 . parallelizable 2. Sequential 1 block + 1 byte with CTR

2 blocks with CBC
3.

only requires PRF (no need to invert) 3 . requires PRP7
4. Lighter security

4. less tight security requires more structured primitive,
5. IVs have to be non-repeating Jeasy to implement : (re-key more often more code to implement forward

and backward evaluation
land spaced far apart) IV = noncell counter 5

. requires unpredictable IVs

only needs to be

non-repeating (can be predictable)
&
TLS10usedpredictableIs it
SSH v1 used a O IV

leven worse !(

Btom-line : use randomized or nonce-based counter mode whenever possible : simpler ,
easier

,
and better than CBC !

A tempting and bad way
to use a block cipher : ECB mode (electronic codebook

Scheme is deterministic ! Cannot be CPA secure !

· & (mo
, mo) vs

.
(mo

,
m ,) where met mo

Not even semantically secure !

y ↑
ciphertext blocks output

ciphertext blocks
are different

output are same

Encryption : simply apply block cipher to each block

of the message

#ecryption : simply invert each block of the ciphertext

NEVER USE ECB MODE FOR ENCRYPTION O

Messageintegrity : Confidentiality alone not sufficient
,

also needmessage integrity. Otherwise adversary can tamper with the message

le.g.,
"Send $100 to Bob " -> "Send $100 to Eve")

In some cases (e.g.,
software patches) , integrity more important than confidentiality

Idea : Append a "tag" (also called a "signature") to the message to prove integrity (property we want is tags should be hard to forge
his tolerates aingle error

Observation: The tag should be computed using a keyed-function (better error-correcting codes can do much+ better)
↳ Example of keyless integrity check : CRC (cyclic redundancy check) Isimple example is to set tag to be the parity]

-> this was used in SSH vI (1995) for data integrity ! Fixed in SSH v2 (1996)

↳ also used in WEP (802. 11b) protocol for integrity
- also broken!

Eblem : If there is no key, are can compute
it ! Adversary can tamper with message

and compute the new tag
.

#efinition
.

A message authentication code (MAC) with key-space K
, message space M and tag space T is a tuple of

algorithms TIMAC = (Sign , Verify) :

Sign : KxM + T & Must be efficiently-computable
Verify : k + M x + + 50 , 1)

Correctness:KEK
,

UmEM :
-

Pr[Verify (k ,
m

, Sign (k,m)) = 1) = 1

↑
Sign can be a randomized algorithm

#einingsecurity
: Intuitively, adversary should not be able to compute a tag on any message without knowledge of the key

↳ Moreover
,

since adversary might be able to see tags on existing messages (e.g., signed software

updates) ,
it should not help towards creating a new MAC

adversary gets to choose

messages to be signed
-

&efinition . AMALTTMAc= (Sign, Verify) satisfies existential unforgeability against chosen message attacks (EUF-CMA) if for all efficient

adversaries A
,

MACAdvIA, TMAc] = Pr[W =1) = negKx) ,
where W is the output of the following security game

:

adversary challenger As usual
, I denotes the length of the MAC secret key

Je.g., log (k) = poly(x))#nlmof the Note : the key can also be sampled by a special KeyGen

algorithm (for simplicity , we just define it to be

(m*, t*) uniformly random)

Let m,
, .

. ., MQ be the signing queries the adversary submits to the challenger, and let ti Sign (k
,
mil be the challenger's

responses.

Then
,

W = 1 if and only if :

Verify (k , m*, +
*) = 1 and (m*, +

*) ((m
, +)

.
. . .

,
(Ma

,
tal]

MAC security notion says that adversary cannot produce a new tag on any message even if it gets to obtain tags on messages of its

choosing
.

First
,

we show that we can directly construct a MAC from any PRE.

