
#Is from PREs : Let F : K * M + T be a PRE
.

We construct a MAC TIMAC over (K
,
M

, T) as follows :

Sign (k ,
m) : Output + - F(k

, m)

Verify (k
,
m

,
t) : output 1 if t = F(k

, m) and O otherwise

#theorem. If F is a secure PRF with a sufficiently large range ,
then TTMAC defined above is a secure MAC. Specifically,

for
every

efficient MAC adversary A
, there exists an efficient PRF adversary B such that

MACAdvCA
,
TIMAc] < PREAdvTB

,
F]+ 1 .

Intuitionfor proof : 1. Output of PRF is computationally indistinguishable from that of a truly random function
.

2 .
If we replace the PRF with a truly random function

, adversary wins the MAC
game only if it

correctly predicts the random function at a new point. Success probability is then exactly"T.

Proof. We define the following sequence of hybrid experiments :

Hybo : This is the MAC security game :

adversary
Pr[Hybo (A) = 1) =

negl.#m) College
Galishow for all efficient

(m*, t* )

Experiment outputs 1 if adversary did not
query on m* and*

= E(k
,

m
*)

Hyb: Same as Hybo except we replace F(k ,
·) with f() where f = Funs[M

,
T)

Lemma1. .

If I is a secure PRF
,

then for all efficient adversaries A,

(Pr[Hybo (A) = 1) - PrEHyb, (A) = 1) = neyl
Prof, Suppose there exists efficient A such that above probability is 2. We construct B as follows :

adversary B

-hallenger
isis

I f : = [(k, .)

b = 1 if Funs [M,T]may
on my and +A = +(m+)

m L

PrTBoutputsb) PTHY PREAdvIB]

Lemma 2.
.

For all adversaries A
, PrTHyb ,

/A) : 17 : i.
-

&of Hyb ,
(A) outputs 1 if A predicts value of f at mA. Since f is uniform

,
A succeeds

with probability at most "T.



So far
,

we have focused on constructing a large-domain PRE from a small-domain PRF in order to construct a MAC

on long messages
-> Alternative approach : "compress" the message itself leg:

"hash the message) and MAC the compressed representation

still requireunforgeability : two messages should not hash to the same value [otherwise trivial attack : if H(m) = H(mz)
,

the

MAC on m , is also MAC on M2]

↳unter-intuitive : if hash value is shorter than messages,
collisions always exist -

so we can only require that they are

hard to find

Refinition
.

A hash function H : M + T is collision-resistant if for efficient adversaries A
,

CRHFAdvIA
,H] = Pr[(mo

,
mi) -> A : H(mo) = H(m .)] =

negl.

As stated, definition is problematic : if IM/ ITI
,

then there always exists a collision mo
,

my so consider the adversary
that has me , my hard coded and outputs mo , mit

-
Thus, some adversaryways exists leven if we may not be able to write it down explicitly)

↳
Formally ,

we model the hash function as being parameterized by an additional parameter leg., a "system parameter" or

a "key") so adversary cannot output a hard-coded collision

-
In practice ,

we have a concrete function (e
.g., SHA-256) that does not include security or system parameters

↳ believed to be hard to find a collision even though there are infinitely-

many (SHA-256 can take inputs
ofarbitrary length)

#Afrom CRHFs : Suppose we have the following
- A MAC (Sign , Verify) with key space 14

, message space Mo and tag space T Jeg,MoCost
- A collision-resistant hash function H : M, -> Mo

Define S'(k ,m) = S(k , H(m) and

V(k
,

m
,
t) = V(k

,
H(m)

, t)

#herem. Suppose TMAc = (Sign, Verify) is a secure MAC and H is a CRHF
·

Then
,

TIMAC is a secure MAC . Specifically,

for every efficient adversary A
,

there exist efficient adversaries Bo and B
,

such that

MACAdv[A
,

TTMAc] < MACAdvIBo
,

TTMAc] + CRHFAdv[Bi
,
F1]



#o Idea. Suppose A manages to produce a valid forgery + on a message m
. Ther

,
it must be the case that

- t is a valid MAC on H(m) under TTMAC

- If A queries the signing oracle on m' = m where H(m) = H(m)
,

then A breaks collision- resistance of H
- If A never queries signing oracle on m 'where H(m) = H(m)

,
then it has never seen a MAC on H(m) under

TTMAC .
Thus

,
A breaks security of TTMAC

.

[See Borch-Shoup for formal argument -

very
similar to above : just introduce event for collision occurring vs .

not occurring)

Constructing above is simple and elegant ,
but not used in practice

-

Disadvantage 1 : Implementation requires both a secure MAC and a secure CRHF : more complex , needmultiple software/hardware
-

implementations

Tsadvantage2 : CRHF is a keyless object and collision-finding is an offline attack (does not need to
query verification oracle)

Adversary with substantial i reprocessing power can compromise collision-resistance (especially if hash size is small)

Birthdayattack on CRHFs
· Suppose we have a hash function H : 90

,
1" + 20 , 13? How might we find a collision in 4 (without

knowing anything more about H)

Approach1 : Compute H(1)
,

H(2),
. . . ,

H(29 + 1) ~size of hash output space~

->
By Pigeonhole Principle, there must be at least one collision -

runs in time O(It)

#proach 2 : Sample mi 10,13" and compute H(mi)
. Repeat until collision is found.

How many samples needed to find a collision?

Theorem(Birthday Paradox)
. Take

any
set S where ISI =

u
. Suppose r

. . . .

.,
reES . Then

,

Pr[zitj : : = rj) =1-e

I of. Pr[itj : = = rj] = 1 - Pr[Vitj : ri + rj]
= 1- Pr[gr . 3) . Pr[V & Gr,

r
,3] .... - PrTreeGree , ..., r3]

= I- .....
dominant term when

= I-()
- automatically holds for X* - ~ |xk1
W

2) Ie since 1 +xe for all x(e*
= 1 + x ++ ..

men

=- =_ positive for all x> o

= 1-e-
number ofpeople inao e

birthdayL

When 121
. 25m

,
PrEcollision] = PrEEitj : : = rj] >E. [For birthdays ,

1025555 = 23]

↳ Birthdays not uniformly distributed ,
but this only mreases collision probability .

ETry proving this !]

For hash functions with range 90,13? we can use a birthday attack to find collisions in time dat = 28 can even do it with

↳ For 128-bit security (e.g .,
210)

, we need the output to be 256-bits (hence SLA-236) &onstant space !

↳ Quantum collision-finding can be done in 293 Clube root attack)
, though requires more space Tria Floyd'sCycle findl,as


