
- HMAC (most widely used MAC)

So how do we use hash functions to obtain a secure MAC? Will revisit after studying constructions of CRHFs
.

Many cryptographic hash functions (e.g.,
MD5

,
SHA-1

,
SHA-256) follow the Merkle-Damgard paradigm : Start from hash function onhort

messages and use it to build a collision-resistant hash function on a long message :

1. Split message into blocks

2. Iteratively apply-pression function (hash function on short inputs) to message
blocks

Th ... Letlad ↳: compression function

↳ ↳ ↳ ↳ to,..., te : chaining variables

> output
padding introduced so last block is multiple of block

L
size

must also include an encoding of the message

Hash functions aredeterministic
,

so IV is a fixed string length : typically of the form 100... 01/ <)

(defined in the specification) - can be taken to be all-zeroes string
, where (S) is aFelength binary representation

but usually set to a custom value in constructions of message length in blocks

Recall : 100-- - O padding was used in the

ANSI standard

if not enough space to include the length, then

for SHA-256 :
extra block is added (similar to CBC encryption)

X = 30, 13256 = y

Theorem. Suppose h : XXY-+ X be a compression function. Let H : y
&

-> X be the Merkle-Damgard hash function

constructed from h
.

Then
,

if his collision-resistant
,

H is also collision-resistant.

&rot . Suppose we have a collision-finding algorithm A for H.
We use A to build a collision-finding algorithm for h:

1. Run A to obtain a collision M and M' (H(M) = H(MY and MFM')
.

2. Let M= m
, mz-- - mu and M' = mims--. my be the blocks of M and M

, respectively.
Let to

,
t
, ...,

th and

tits---to be the corresponding chaining variables.

3. Since H(M) = H(M')
,

it must be the case that

H (M) = h(tu-1
,
mu) = h(tv - 1 ,

mr) = H(m)

I either th- try or MutMi
,

then we have a collision for h.

Otherwise
,

Mu = mr and tu = tre
.

Since Mu and my include an encoding of the length of M and M! it must

be the case that U = V. Now
,

consider the second-to-last block in the construction (with output tu-1 = tu-) :

tu = h(turz
,
Mur) = h(tuz

,
mar) = ta-

Either we have a collision or tuz = turz and mu = mu
. Repeat down the chain until we have collision or

we have concluded that Mi = m for all i
,

and so M= M'
,

which is a contradiction.

Note: Above constructing
isesequential . Easy to adapt construction(using a tree) to obtain a parallelizable construction.

Sufficientnow toconstruct aempressionfunction
. .

Davies- Meyer : Let F : RXX + X be a block cipher.
The Davies-Meyer compression function h : KXX-X is ther

h(k ,
x) : = F(k ,x)0Xpetex Many other variants also possible : h(k

,
x) = F(k, x)@k@X

Zused in Whirlpool hash family]
Need to be careful with design !

- h(k
,x) = F(k ,

x) is not collision-resistant : h(k ,
x) = h(k'

,
F

+ (k' , F(k,
x)))

- h(k ,x) = F(k
,
x)#1 is not collision-resistant : h(k, x) = h(k'

,
F

+ (k'
,

F(k
,x)0k(x)

#rem.
If we model F as an ideal block cipher (i.e

,
a truly random permutation for every choice of key), then Davies-Meyer is

collision-resistant.

birthday attack run-time : 2280

- attack ran in time -264 (100,000aster)
&onclusion : Block cipher + Davies-Meyer + Merkle-Damgard => CRHFs January ,

2020 : chosen-prefix
collision in -263.4 time !

Examples: SHA-1 : SHACAL-1 block cipher with Davies-Meyer + Merkle-Damgard =
no longer secure [first collision found in 2017)

SHA-256 : SHACAL-2 block cipher with Davies - Meyer
+ Merkle-Damgard -

SHA-1 extensively used (e.g, git, sun
,

software updates,
PGP/6PG signatures,

Why not use AES ? certificates) -> attacks show need

-

Block size too small ! AES outputs are 128-bits, not 256 bits (so birthday attack finds collision in 264 time) to transition to

SHA-2 or SHA-3
- Short keys means small number of message bits processed per iteration

.

-

Typically,
block cipher designed to be fast when using same key to encrypt many messages

↳ In Merkle-Damgard , Afferent keys are used
, so alternate design preferred (AES key schedule is expensive)

Recently : SHA-3 family of hash functions standardized (2015)
↳ Relies on different underlying structure ("sponge" function)
-> Both SHA-2 and SHA-3 are believed to be secure /most systems use SHA-2-typically much faster)

- or even better
,
a large-domain PRE

Back to building a secure MAC from a CRHF-can we do it more Infectly than using CRHF + small-domain MAC ?

↳ Main difficulty seems to be that CRHFs are less but MACs are keyed
Eda: include the key as part of the hashed input

By itself
,

collision-resistance does not provide any "randomness" guarantees on the output
↳> For instance ,

ifIt is collision-resistant
,

then H(m) = Moll - 1/mol/H(m) is also collision-resistant even though H' also

Leaks the first 10 bits/blocks of m

-> Constructing a PRF/MAC from a hush function will require more than just collision resistance

&tion 1 : Model hash function as an "ideal hash function" that behaves like a fixedtrulyrandom function

smodelingturistic called the random oracle model - will encounter later in this course

&tion 2 : Start with a concrete construction of a CRHF (e.g., Merkle-Damgard or the sponge construction)
and reason about its properties

↳ We will take this approach

Suppose H is a Merkle-Damgard hash function built from aeure compression function

Several
ways to build a keyed function :

1 . Prepend key : F(k
,

m) : = H (k 11m)

↳ Insecure due to structure of Merkle-Damgard : can mount an "extension attack."
given H(k//m)

,
can compute

H(k//m//m') by extending Merkle-Dangard chain

2. Append key : F(k
, m) : = H(m 11 k)

-> Similar to hash-then-MAC construction and vulnerable to same offline attack : adversary finds a collision in the

Merkle-Damgard prefix and uses that to construct a forgery -> for SHA-1
, they used PDF files

↳ Structure exploited in SHA-1 collision demonstration (can generate arbitrary collisions once prefix matches)
3. Envelope method : F(k

, m) : = H(k //m/lk) 3 for reasonable pseudorandomness assumptions on h (e.g.,
both

4 Two-key nest : F((k1
,

k2) , m) : = H(k2 //H(k , 11 m) ↑ (k
,m) : = h(k

, m) and Fz(k
,
m) : = h(m , k) is a PRF)

,
both

of these constructions are secure PRFs on a variable-size domain

hash-based MAC

HMAC is a PRF/MAC based on the two-key rest (though with correlated keys) :

HMAC(k
,

m) : = H(k ,
11 H(k2

,
m))

where k
,
5kipad and K2* k* opad

and iPad and opad are fixed strings (specified in the HMAC standard)

y &
0x36 repeated Ox5C repeated

Security : Since K
,

and ke are correlated
,

need to make stronger assumption on security (e.g .,
h remains pseudorandom under a relatedak)

#stantiations : Typically ,
denoted HMAC-H where H is the hash function

e.
g.,

HMAC-SHA1

HMAC-SHA256 -
one of the most widely-used MAC on the web (used in SSL/TLS,

IPsec
, SSH , and more)

#MACfor key-derivation : Recall that under reasonable assumptions ,
HMAC is a secure PRF

In
many protocols, we need to derive multiple keys from a single master keyle.g,

derived from a password)
↳ To derive multiple independent cryptographic keys, a PRF is a natural primitive :

Kenc =HMAC(kmaster
,

"enc" (YPRF security says derived keys are computationally indistinguishable from

kmacHMAC (kmaster
,

"mac") uniform

y y ↑
tag (just has to be uniquederived keys master key

This approach is used in TLS and IPsec to derive session keys durin session setup
↳ General paradigm is the "expand" step in hash-based key-derivation (HKDF-RFC 5869)

↳ Consists of two procedures :

-

Extract : derive a master key from
entropy

Source Le.g,
a user password)

-

Expand: derive sub-keys from the master

key
Both steps rely on HMAC

