
#plication : Any PRF with large output space can be used as a MAC.

↳ AES has 128-bit output space,
so can be used as a MAC

#rawback : Domain of AES is 128-bits
,

so can only sign 128-bit (16-byte) messages

How do we sign longer messages ? We will look at two types of constructions :

1 . Constructing a large-domain PRE from a small-domain PRE (i. e.,
AES)

2. Hash-based constructions

Approach 1 : use CBC (without IV)

#
output

~

Not encrypting messages so no need for IV (or intermediate blocks)
↳ Mode often called "raw-CBC"

Raw-CBC is a way to build a large-domain PRF from a small-domain one

↳ Can show security for "crefix-free" messages more precisely,
raw-CBC is a prefix-free PRE : pseudorandom as longI

Eincludes fixed-length
I

as PRF never evaluated on two values where one is a prefix of other
I

messages as a special case

But not secure for variable- length messages
: "Extension attack"

1 . Query for MAC on arbitrary block X :

Et j #- F(kx) = tFt->T

2. Output forgery on message (X ,
X # t) and tag + => t is a valid tag on extendedmessage (x

, tox)

↳ Adversary succeed with advantage 1

raw CBC can be used to build a MAC on fixed-length messages,
but not variable- length messages

(more generally , prefix-free)
(ECBC)

For variable- length messages,
we use "encrypted CBC" : standards for banking/financial services

-
-> variant used in ANSIX9.9

,
ANSIX19.9 standards / Criticalforsecurita

key not secure)

& apply another PRF with a different key to the output of rawCBC

I
~#output !

To use encrypted CBC-MAC
, we need to assume message length is even multiple of block size (similar to CBC encryption)

↳ to sign messages that are not a multiple of the block size
,

we need to first ead the message
->

as was the case with encryption , padding must be injective
↳ in the case of encryption , injectivity needed for correctness

↳
in the case of integrity, injectivity needed for ecurity [if pad(mo) = pad (m,) ,

mo and m, will have the same
Standard approach to pad : append 1000 ... 0 to fill

up block [ANSIX9. 9 and ANSI X9. 19 standards)
~ Note : if message is an even multiple of the block length ,

need to introduce a dummy block

-> Necessary for
any injective function : 190, 13541 > 150 ,13"

-

This isapadding scheme [PKCS#7 that we discuss previously in the context of CBC
encryption

isabyte-padding scheme)

Encrypted CBC-MAC drawbacks : always need at least 2 PRF evaluations (using different keys) especially bad for authenticating
messages must be padded to block size

3
short (e.g., single-byte) messages

Better approach : raw CBC-MAC secure for prefix-free messages
↳ Can we apply a "prefix-free" encoding to the message?

~
equal-length messages cannot have one be prefix of other

-Option1 : Prepend the message length to the message " different-length messages differ in first block

Problematic if we do not know message length at the beginning (e.g.,
in a streaming setting)

Still requires padding message to multiple of block size)
-

Option2 : Apply a random secret shift to the last block of the
message

(X
, X2

,
. .

., Xe) + (X ,, Xz, . . .,
Xe0k) where k * X

Adversary that does not know In cannot construct two messages that are prefixes except with

probability "IX) (by guessing k)

->
randomized prefix-free encoding

Cipher-based MAC (CMAC) : variant of CBCMA) standardized by NIST in 2005 => clever technique to avoid extra paddinrock
better than encrypted CBC (should be

preferred over ANSI standards)

↓#standskey

Y different keys readed to avoid collision between unpadded

message and padded message
↑ ending in 100... 0

length , then pad (ANSI) andxor with

never needs to introduce an

&fferent secret key Ke &
additional block !#biltion
to drive there keys from one key

Emplication: Block size of PRF is important !
-

3DES : /X1 = 24 : need to update key after 23 signing queries
-

AES : IX1 = 2128 : can use key to sign many more messages /-264 messages)

A parallelizable MAC /PMAC) -

general idea :

~
derived as E(k, 01)

-

so key is just k,
V

It ...t P (k,) are important - otherwise
, adversary can

↓
9(k, 1)-⑦ P(k,2)= 4(k,3 - 0 P(k,

1)+ &ermute the blocks↳ "mask" term is of the form Vick where

multiplication is done over GF(24) where n is

the block size (constants Vi carefully chosen for

efficient evaluation(
I

Can use similar ideas as CMAC Crandomized prefix-free encoding) to support messages that is not constant multiple of block size

Parallel structure of PMAC makes it easily updateable lassuming F is a PRP)
↳

suppose we change block i from m[i) to m'[i) : PMAC is "incremental" :

compute F (k
,tag)m(iJtP(kil)Ok,m'ZiP(k

T & can make local updates
old value without full recomputation

In terms of performance :

-

On sequential machine
, PMAL comparable to ECBC, NMAC,

CMAC Best MAC we're seen so far
,

but not used...

- On parallel machine, PMAC much better
3
&eason : patents : (not patented anymore

!]

-Summary : Many techniques to build a large-domain PRF from a small-domain one (domain extension for PRF)
↳) Each method (ECBC

,
CMAC

, PMAC) gives a MAC on variable- length messages
->

Many of these designs (or their variants) arestandardized

How do we combine confidentiality and integrity ?
↳ Systems with both guarantees are calledauthenticatedencryption schemes - gold standard for symmetric encryption

Tonatural options" :

1. Encrypt-then MAC (TLS 1 .2+, IPsec) ↑

guaranteed to be secure if we instantiate using CPA-secure encryption
2 . MAC-then-encrypt (SSL3.0/TLS 1. 0

,
802.

11 :)
and a secure MAC

as we will see
, not always secure

Definition. An encryption scheme TIE : (Encrypt,Decrypt) is an authenticated encryption scheme if it satisfies the following two properties:

- CPA security I confidentiality]
-

ciphertext integrity [integrity]

change
-

output c
special symbol t to denotedid cipeti

Define CIAdv[A
,
IsE] to be the probability that output of above experiment is 1. The scheme TISE satisfies

ciphertext integrity it for all efficient adversaries A,

CIAdv[A
,
TIse] = negl.(x)

↑

security parameter determines key length

Ciphertext integrity says adversary cannot come up
with a new ciphertext : only ciphertexts it can generate are those that are

alreadyralid. Why do we want this property ? Encrypted under KA
ka

,
k ke

Consider the following active attack scenario : #Bo
-

mail server

-

Each user shares a key with a mail server

↳ Alice Ke-

To send mail, user encrypts contents and send to mail server

- Mail server decrypts the email
, re-encrypts it under recipient's key and delivers email

Eve intercepts and
Encrypted under

modifies message
Encrypted under KA

If Eve is able to tamper with the encrypted message,

Finethen she is able to learn the encrypted contents (even if

the scheme is CPA-secure)
KA

milsan-> More broadly ,
an adversary can tamper and inject ciphertexts

into a system and observe the user's behavior to learn information

about the decrypted values- against active attackers, we need tyer notion of security

Definition .
An encryption scheme TIE (Encrypt, Decrypt) is secure against chosen-ciphertext attacks (CCA-secure) if for all efficient

adversaries A
,

CCAAdvIA
,
ITSE] = negl. where we define CLAAdvTA,

TISE] as follows :

bE90, 13

adversary challenges !-

=
adversary can make arbitrary encryption and decryption queries,

but cannot decrypt any ciphertexts it received from the

CCAAdrIA ,
TIse] = /Pr[b' = 1/ b = 0] - Pr[b = 11b = 1]) challenger (otherwise, adversary can trivially break security (

↳> called an "admissibility" criterion

CCA-security captures above attack scenario where adversary can tamper with ciphertexts
↳ Rules out possibility of transforming encryption of XIIz to encryption of yllz
↳ Necessary for security against active adversaries [CPA-security is for

security againstessive adversaries]
-> We will see an example of a real CCA attack in HW1

Theorem. If an encryption scheme The provide authenticated encryption,
then it is CCA-secure.

ProfLideal
.

Consider an adversary A in the CCA-security game. Since TISE provides ciphertext integrity ,
the challenger's response

to the adversary's decryption query will be 1 with all but negligible probability. This means we can implement the

decryption oracle with the "output 1" function. But then this is equivalent to the CPA-security game.

[Formalize using a hybrid argument] simple counter-example : concatenate unused bits to end of ciphertext
in a CCA-secure scheme (stripped away during↓ decryption)

Note: Converse of the above is not true since CCA-security # ciphertext integrity.
↳ However

, CCA-security + plaintext integrity-
> authenticated encryption

#ke-away : Authenticated encryption captures meaningful confidentiality + integrity properties ; provides active security

&Encrypt-then-MAC : Let (Encrypt, Verify) be a CPA-secure encryption scheme and (Sign, Verify) be a secure MAC. We define

Encrypt-then-MAC to be the following scheme :

Encrypt'((kE,
km)

,
m) : c = Encrypt (kE,

m)
↑ X

independent keys
t - Sign (km

,
c)

output (c
, t)

Decrypt" ((kE,
km)

, (c+)) : if Verify (km
,

c
,
+) = 0

, output
else

, output Decrypt (kE ,
c)

