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Abstract

A functional commitment allows a user to commit to an input x and later, open the commitment to an arbitrary

function y = 𝑓 (x). The size of the commitment and the opening should be sublinear in |x| and |𝑓 |.
In this work, we give the first pairing-based functional commitment for arbitrary circuits where the size of the

commitment and the size of the opening consist of a constant number of group elements. Security relies on the

standard bilateral 𝑘-Lin assumption. This is the first scheme with this level of succinctness from falsifiable bilinear

map assumptions (previous approaches required SNARKs for NP). This is also the first functional commitment

scheme for general circuits with poly(𝜆)-size commitments and openings from any assumption that makes fully

black-box use of cryptographic primitives and algorithms. As an immediate consequence, we also obtain a succinct

non-interactive argument for arithmetic circuits (i.e., a SNARG for P/poly) with a universal setup and where the

proofs consist of a constant number of group elements. In particular, the CRS in our SNARG only depends on the

size of the arithmetic circuit |𝐶 | rather than the circuit 𝐶 itself; the same CRS can be used to verify computations

with respect to different circuits. Our construction relies on a new notion of projective chainable commitments

which may be of independent interest.

1 Introduction
A functional commitment scheme [IKO07, BC12, LRY16] allows a user to commit to an input x and later on, open the

commitment to an arbitrary function 𝑓 evaluated on the committed value (i.e., open to the value 𝑓 (x)). Moreover, we

require that both the size of the commitment and the size of the opening be short; they should be sublinear in the size

of the input x and the description length of 𝑓 . The security requirement is evaluation binding, which states that given

a commitment 𝜎 , an efficient adversary should not be able to open 𝜎 to two different values y ≠ y′ with respect to the

same function 𝑓 .

Functional commitments generalize notions like vector commitments [CFM08, LY10, CF13, LM19, GRWZ20]

and polynomial commitments [KZG10, PST13, LRY16, Lee21], and have found numerous applications to verifiable

outsourcing of storage [BGV11], authenticated data structures [PSTY13], and new constructions of homomorphic

signatures and verifiable databases [CFT22]. As a primitive, functional commitments can be viewed as a particular

case of succinct non-interactive arguments (SNARGs) for “commit-and-prove” languages, albeit satisfying a weaker
security notion of evaluation binding rather than soundness. In many cases, functional commitments are a building

block in many constructions of succinct arguments [MBKM19, GWC19, CHM
+
20, BDFG21, BFS20, COS20, Lee21,

ACL
+
22, CLM23] (where the stronger security requirement of soundness is obtained by relying either on the random

oracle model or making a stronger knowledge assumption on the underlying commitment scheme).

Recently, there has been significant progress on constructing functional commitments that can support arbitrary
circuits from both pairing-based [BCFL23, KLVW23] and lattice-based assumptions [dCP23, WW23b, KLVW23,

BCFL23, WW23a]. With the exception of the RAM delegation scheme of [KLVW23], the size of the commitments or

the openings (or both) in the other constructions scale with the depth of the circuit. The RAM delegation scheme of

[KLVW23] gives a functional commitment where the size of the commitments and openings scale polylogarithmically

with the length of the input and the size of the circuit, but relies on extensive non-black-use of cryptography.

∗
Part of this work was done while visiting NTT Research.
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Scheme Functions |crs| |𝜎 | |𝜋 | BB Assumption

[LRY16, Gro16] arithmetic circuits 𝑂 (𝑠) 𝑂 (1) 𝑂 (1) ✗ generic group

[LRY16] linear functions 𝑂 (ℓ) 𝑂 (1) 𝑂 (𝑚) ✓ subgroup decision

[LM19] linear functions 𝑂 (ℓ𝑚) 𝑂 (1) 𝑂 (1) ✓ generic group

[LP20] sparse polynomials 𝑂 (𝜇)∗ 𝑂 (𝑚) 𝑂 (1) ✓ uber assumption

[CFT22] degree-𝑑 polynomials 𝑂 (ℓ𝑑𝑚) 𝑂 (𝑑) 𝑂 (𝑑) ✓ ℓ𝑑 -DHE

[BCFL23]
†

arithmetic circuits 𝑂 (𝑠5) 𝑂 (1) 𝑂 (𝑑) ✓ ℓ-HiKer

[KLVW23]
§

arithmetic circuits poly(𝜆) 𝑂 (1) poly(𝜆) ✗ 𝑘-Lin

This work arithmetic circuits 𝑂 (𝑠5) 𝑂 (1) 𝑂 (1) ✓ bilateral 𝑘-Lin
∗
The parameter 𝜇 is a sparsity parameter for the polynomials (c.f., [LP20]).

†
The authors of [BCFL23] also give a scheme that supports bounded-width arithmetic circuits where the CRS contains

𝑂 (𝑤5 ) group elements and the openings contain𝑂 (𝑑2 ) group elements. Our techniques also yield a construction

with these parameters (and from the standard 𝑘-Lin assumption as opposed to the non-standard 𝑞-type assumption);

see Remark 5.18.

§
While [KLVW23] construct delegation for RAM programs, their construction can be adapted to obtain a functional

commitments for general Boolean and arithmetic circuits. We consider the instantiation of their scheme with pairing-

based batch arguments [WW22].

Table 1: Summary of pairing-based non-interactive functional commitments. For each scheme,

we report the class of functions they support, the number of group elements in the common

reference string crs, the commitment 𝜎 , and the opening 𝜋 as a function of the input length ℓ

and the output length𝑚. For the constructions that support arithmetic circuits, we write 𝑠 to

denote the size of the circuit and 𝑑 to denote the depth. We say that a scheme is “black-box”

(BB) if it only makes black-box use of the group and any cryptographic primitives.

This work. In this work, we study functional commitments for general arithmetic circuits from pairings. Our

goal in this work is to minimize the size of the commitments and the openings in a functional commitment scheme.

Towards that end, we construct the first pairing-based functional commitment scheme that supports arbitrary circuits

where the commitment and the openings consist of a constant number of group elements, irrespective of the input

length or the circuit size. The security of our construction relies on the standard bilateral 𝑘-Lin assumption
1
for any

constant 𝑘 > 1. We summarize our main theorem below:

Theorem 1.1 (Informal). Let 𝑘 > 1 be a constant. Assuming the bilateral 𝑘-Lin assumption over a pairing group of
prime order 𝑝 , there exists a (non-interactive) functional commitment scheme for arithmetic circuits (over Z𝑝 ) of a priori
bounded size with the following features:

• The commitment consists of 2𝑘 group elements.

• The opening consists of 𝑂 (𝑘2) group elements. (For 𝑘 = 2, the number is 54).

• The scheme requires a structured common reference string (CRS) with 𝑂 (𝑘3𝑠5) group elements, where 𝑠 is the size
of the circuit.

• If the circuit 𝐶 in the opening is known in advance, then we can preprocess it into a short verification key. Then,
the online verification of the commitment only requires computing 𝑂 (𝑚) bilinear map operations, where𝑚 is the
output length of the circuit 𝐶 . We refer to Remark 5.16 for more details.

We provide a comparison with other pairing-based constructions in Table 1. Notably, Theorem 1.1 is first functional

commitment scheme for circuits with the following efficiency features:

• The first scheme based on falsifiable bilinear map assumptions (e.g., bilateral 𝑘-Lin or 𝑞-type assumptions)

where the commitment and the opening consists of a constant number of group elements. The only previous

1
The bilateral 𝑘-Lin assumption is a variant of 𝑘-Lin where the challenge is encoded in both G1 and G2.
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constructions that support constant-size openings rely on the generic groupmodel or on knowledge assumptions

(due to the use of pairing-based SNARKs for NP).

• The first functional commitment scheme that makes fully black-box use of cryptographic primitives and

algorithms where the size of the commitment and the opening is poly(𝜆) bits, regardless of the underlying
assumptions. The recent lattice-based and pairing-based schemes in [dCP23, WW23b, BCFL23, WW23a] are

also black-box, but the size of the opening all scale with the depth of the circuit. Even for the special case of

constant-degree polynomials, our result improves upon the state of the art in [BCFL23] in that we rely on

𝑘-Lin instead of 𝑞-type assumptions. Constructions based on generic approaches (SNARKs or non-interactive

batch arguments) do achieve poly(𝜆) size, but requires non-black-box access to the underlying primitives and

algorithms. We provide more discussion on this below.

Moreover, our functional commitment scheme is additively-homomorphic, so using the results from [CFT22], we

obtain homomorphic signatures for all (bounded-size) arithmetic circuits from the bilateral 𝑘-Lin assumption. This is

the first homomorphic signature scheme for general circuits based on falsifiable pairing-based assumptions where the

signature consists of a constant number of group elements. The number of group elements in previous pairing-based

constructions either grow with the depth of the circuit [BCFL23] or require a poly(𝜆) number of group elements due

to non-black-box use of cryptography [KLVW23].

SNARG for P/poly with universal setup. Our functional commitment scheme immediately gives a succinct

non-interactive argument (SNARG) for P/poly with a universal setup. In this setting, the prover has an input x ∈ Zℓ𝑝 ,
and seeks to convince the verifier that y = 𝐶 (x), where 𝐶 is an arithmetic circuit. Moreover, the length of the proof

should be much shorter than the size of the arithmetic circuit |𝐶 | as well as the input length |x| and output length |y|.
In a SNARG with universal setup [GKM

+
18], the common reference string should only depend on a bound on the size

of the circuit |𝐶 | rather than the circuit 𝐶 itself. Moreover, there is then an algorithm that takes as input the CRS and

the circuit 𝐶 and outputs a succinct verification key vk𝐶 for 𝐶 . Given the preprocessed verification key vk𝐶 , checking
a proof that y = 𝐶 (x) should require time that is sublinear in the size of |𝐶 |.

A functional commitment scheme for arithmetic circuits directly implies a SNARG for P/poly. The proof is a
commitment 𝜎 to x together with an opening of 𝜎 to y with respect to the circuit 𝐶 . The SNARG verifier can check

that the commitment 𝜎 was honestly computed (since it knows the input x). Soundness now follows from evaluation

binding of the functional commitment scheme. If the functional commitment scheme supports fast verification,

then the resulting SNARG has a universal setup algorithm, where the same CRS can be used to check different

computations. Thus, Theorem 1.1 gives a SNARG for P/poly from bilateral 𝑘-Lin with a universal setup and where

the proof consists of a constant number of group elements. Previously, the work of [GZ21] showed how to construct

a SNARG for P/poly from the bilateral 𝑘-Lin assumption where the proof consists of a constant number of group

elements. The construction in [GZ21] relies on a circuit-dependent CRS where the circuit 𝐶 is embedded into the CRS.

It is possible to use universal circuits and have the description of𝐶 be part of the statement itself; the question then is

whether the resulting construction supports fast verification (given a precomputed verification key vk𝐶 ). Recent RAM
delegation schemes (i.e., SNARGs for P) [CJJ21, KVZ21, KLVW23] also imply a SNARG for P/poly with universal

setup by treating the description of the circuit 𝐶 as part of the initial contents of the memory of the RAM program.

Due to the non-black-box use of cryptography, the proofs in these constructions (when instantiated over groups with

bilinear maps) contain a super-constant number of group elements.

Comparison to generic approaches. Generic approaches based on SNARKs [LRY16] and non-interactive batch

arguments (BARGs) [KLVW23] provide an alternative route for constructing functional commitments for general

circuits. Here, we discuss some limitations of these approaches beyond their non-black-box use of cryptography:

• The SNARK-based approach [LRY16] instantiated using a pairing-based SNARKs for NP with constant-size

proofs (e.g., [Gro10, Lip12, GGPR13, BCI
+
13, DFGK14, Gro16]) yields a functional commitment where the

commitment and openings contain 𝑂 (1) group elements. However, the reliance on SNARKs for NP brings in

strong, non-falsifiable assumptions or requires working in the generic bilinear map model to argue security.

Moreover, constructing SNARKs for NP from simple falsifiable assumptions over bilinear maps is likely to be

3



difficult [GW11]. The functional commitments we build in this work rely solely on the falsifiable (bilateral)

𝑘-Lin assumption.

• The authors of [CJJ21, KLVW23] shows how to use non-interactive batch arguments (BARGs) for NP to obtain

a RAM delegation scheme. In particular, the approach from [KLVW23] can be adapted to obtain a functional

commitment for general circuits; we refer to [WW23a, §1.3] for a sketch of the adaptation. Combined with the

pairing-based BARG from [WW22], this yields a functional commitments for all circuits from the standard

𝑘-Lin assumption.
2
While the commitments in the resulting construction consist of a constant number of

group elements, the opening are longer. Specifically, the opening consists of a BARG proof. When the BARG is

instantiated with [WW22], the size of the BARG proof scales linearly with the size of the verification circuit for

the underlying NP relation. In [KLVW23], this NP relation includes the verification algorithm of a somewhere

extractable hash function. This is a cryptographic primitive, so the size of this circuit scales polynomially with

the security parameter. Correspondingly, the size of the opening contains poly(𝜆) group elements. It is unclear

how to adapt this approach to obtain a functional commitment where the opening consists of a constant number

of group elements. In this case, the non-black-box use of cryptography translates to an asymptotic loss in

succinctness.

On the flip side, these non-black-box approaches have the advantage that they require a short CRS. Notably, the

BARG-based approach of [KLVW23] only requires a CRS that grows polylogarithmically with the circuit size. Their

scheme thus supports circuits of unbounded size, but do not have constant-size openings.

Open problems. An interesting question is to construct functional commitments from 𝑘-Lin (or𝑞-type assumptions)

with constant-size commitments and openings (measured in terms of the number of group elements) with a shorter

CRS (e.g., a quadratic-size CRS or linear-size CRS). The CRS size in our current construction scales with𝑂 (𝑠5). Existing
approaches that have constant-size commitment and openings all rely on pairing-based SNARKs, which requires

strong non-falsifiable assumptions. We note that in this setting, there has been a long and successful line of work

focused on constructing and optimizing pairing-based SNARGs with constant-size proofs [Gro10, Lip12, GGPR13,

BCI
+
13, DFGK14, Gro16]. Similarly, in the related setting of batch arguments for NP, recursive composition has

proven useful for reducing the size of the CRS [KPY19, CJJ21, WW22, KLVW23]. It is an interesting to see if similar

techniques are applicable to obtain functional commitments with a shorter CRS (while retaining commitments and

openings that are only a constant number of group elements).

2 Technical Overview
The starting point of our construction is a new chainable functional commitment scheme for quadratic functions from

the 𝑘-Lin assumption. In a chainable functional commitment [BCFL23], the user can commit to an input x ∈ Zℓ𝑝
(with commitment 𝜎x) and then compute an opening 𝜋 to a new commitment 𝜎y of the output vector y = 𝑓 (x) where
𝑓 : Zℓ𝑝 → Zℓ𝑝 is a vector-valued function. The key difference between chainable functional commitments and standard

functional commitments is that the user opens to a succinct commitment of the output rather than the (possibly long)

output itself. The security requirement is evaluation binding, which says that an efficient adversary should not be

able to open the commitment 𝜎x to two different output commitments 𝜎y, 𝜎
′
y. The authors of [BCFL23] show that a

chainable commitment scheme directly implies a functional commitment scheme for arithmetic circuits. Here, we

describe their approach for the simpler setting of layered arithmetic circuits:

• The commitment itself is a commitment 𝜎1 to the input.

• To construct an opening to a (layered) arithmetic circuit 𝐶 where the value of layer 𝑖 is a quadratic function of

the values in layer 𝑖 − 1, the user first commits to the wires at each layer. If there are 𝑑 layers, then the user

constructs 𝑑 commitments 𝜎2, . . . , 𝜎𝑑 (note that the original commitment 𝜎1 corresponds to the inputs). Finally,

the user provides a chaining proof 𝜋𝑖,𝑖+1 that each pair (𝜎𝑖 , 𝜎𝑖+1) is correctly computed (with respect to the

quadratic function that implements the mapping from the layer-𝑖 wires to the layer-(𝑖 + 1) wires). This step is

implemented using a chainable commitment for quadratic functions.

2
This construction can also be instantiated in pairing-free groups by relying on the (subexponential) DDH assumption [CGJ

+
23].
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The above construction provides a general blueprint for constructing functional commitments for layered arithmetic

circuits where the size of the opening grows with the depth of the circuit. The authors of [BCFL23] then describe

how to construct chainable functional commitments for quadratic functions using a non-standard 𝑞-type assumption

on bilinear maps (the ℓ-HiKER assumption, where ℓ denotes the input length). We note that a similar approach was

also used for constructing succinct arguments in [GR19].

Overview of our approach. Our goal is to implement the [BCFL23] approach, but with only a constant number

of group elements in the opening. A natural approach is to commit to all of the wires in the circuit twice: once as
an input commitment 𝜎1 and once as an output commitment 𝜎2. Suppose we number the wires in topological order.

Then, to argue evaluation binding, we could try to argue that the first 𝑖 + 1 wires committed in 𝜎2 are consistent with

the first 𝑖 wires committed in 𝜎1. The problem with this strategy is the evaluation binding property for a chainable

commitment only allows us to reason globally about the input and output commitments, whereas this “wire-by-wire”

consistency property pertains to reasoning about prefixes of the committed vectors (i.e., analyzing relationships

between the first 𝑖 components of the input vector and the first 𝑖 + 1 components of the output vector). In this work,

we introduce the notion of a “projective chainable commitment” that allows us to reason about properties on prefixes

of the committed vectors. Our overall construction then has the following high-level structure:

• The commitment is a commitment 𝜎in to the input x.

• The opening for a circuit 𝐶 : Zℓ𝑝 → Z𝑚𝑝 contains 3 commitments: 𝜎1, 𝜎2 are commitments to all 𝑠 wire values

(where 𝑠 is the number of wires in 𝐶), and 𝜎out is a commitment to the𝑚 output wires.

In addition, the opening contain “proofs” that enforce the following prefix-based constraints:

• Input consistency: The first ℓ committed values in 𝜎1 are equal to the committed values in the input

commitment 𝜎in.

• Gate consistency: For all 𝑗 = ℓ + 1, . . . , 𝑠 , the first 𝑗 + 1 committed values in 𝜎2 are consistent with the first 𝑗

committed values in 𝜎1 as determined by the circuit’s “next wire” function (i.e., the function corresponding to

the gate computing wire 𝑗 ). The “next wire” function can be described by a quadratic function.

• Internal consistency: For all 𝑗 = ℓ +1, . . . , 𝑠 , the first 𝑗 committed values in 𝜎1 are equal to the first 𝑗 committed

values in 𝜎2.

• Output consistency: The last𝑚 committed values in 𝜎1 are equal to the committed values in 𝜎out

If all of these constraints are satisfied, then a straightforward iterative argument suffices to show evaluation binding

(several recent constructions of delegation follow this type of approach [GZ21, CJJ21, KLVW23]). To formalize this

approach, we need to first define what we mean when we say the “first 𝑗 committed values in a commitment 𝜎 .”

We formalize this by defining a trapdoor setup algorithm that takes as input an index 𝑗 and generates the public

parameters together with a trapdoor td( 𝑗 ) . Then, given a commitment 𝜎 , we can use the trapdoor to extract from 𝜎 a

commitment to the first 𝑗 committed values in 𝜎 ; we denote this latter commitment by Project(td( 𝑗 ) , 𝜎). In particular,

we can now restate the gate consistency and internal consistency constraints as follows:

• Gate consistency: For all 𝑗 = ℓ + 1, . . . , 𝑠 , the output of Project(td( 𝑗+1) , 𝜎2) is consistent with Project(td( 𝑗 ) , 𝜎1)
with respect to the circuit “next-wire” function.

• Internal consistency: For all 𝑗 = ℓ+1, . . . , 𝑠 , the output of Project(td( 𝑗 ) , 𝜎1) is consistent with Project(td( 𝑗 ) , 𝜎2)
with respect to the identity map.

Here, the “consistency requirement” corresponds to a chain-binding security property. In the actual construction, the

commitments 𝜎1 and 𝜎2 will have different “types” and a different projection trapdoor will be used to project 𝜎1 and

𝜎2. The added flexibility will allow us to carry out the full proof of evaluation binding (see Sections 2.3 and 5) We

refer to chainable commitments with this projective property as “projective chainable commitments.”
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2.1 Chainable Commitments for Quadratic Functions from Bilateral 𝑘-Lin
The starting point of our construction is a new construction of chainable commitments for quadratic functions. To

simplify the description in the overview, we start by describing a “designated-verifier” variant of the construction,

where a secret key is needed to check the opening. The secret-key version is simpler to describe, and readily extends

to the setting of public verifiability using the techniques of Kiltz and Wee [KW15]. In the technical sections (Section 4),

we only describe the version with public verification.

Notation. Throughout this work, we will use the implicit notation of group elements introduced in [EHK
+
13].

Our construction operates over a prime-order pairing group (G1,G2,G𝑇 ) of order 𝑝 with an efficiently-computable

non-degenerate pairing 𝑒 : G1 × G2 → G𝑇 . We let 𝑔1 denote a generator for G1 and analogously for 𝑔2 and 𝑔𝑇 . For

a matrix M ∈ Z𝑛×𝑚𝑝 , we write [M]1 ∈ G𝑛×𝑚1
to denote the matrix of group elements 𝑔M

1
(when exponentiation is

defined component-wise). Similarly, we write [M]2 to denote 𝑔M
2
and [M]𝑇 to denote 𝑔M

𝑇
. For matrices A,B,C,D over

Z𝑝 with compatible dimensions, we write A[B]1 + C[D]1 := [AB + CD]1, which can be computed using the group

operation over G1. We define linear operations over G2 and G𝑇 analogously. For two scalars 𝑎, 𝑏 ∈ Z𝑝 , the pairing
satisfies 𝑒 ( [𝑎]1, [𝑏]2) := [𝑎𝑏]𝑇 . We extend this to matrix and tensor products

3
by writing [A]1 [B]2 := [AB]𝑇 and

[A]1 ⊗ [B]2 := [A ⊗ B]𝑇 . In more detail, the individual components of the matrix and tensor products are computed

by applying the pairing to the corresponding elements of A and B and then, in the case of matrix multiplication,

applying the group operation over G𝑇 . Finally, in the following description, we write I𝑑 to denote the 𝑑-by-𝑑 identity

matrix.

Warm-up: a scheme for fixed linear functions. We first describe a functional commitment that supports a

single fixed linear function x ↦→ Mx. In this scheme, a user can commit to an input x and open to y = Mx. The
construction is an adaptation of the Kiltz-Wee proof system [KW15] for proving membership in linear spaces:

• The public parameters contain two encoding matrices [T]2, [ ˆT]2 ∈ G𝑘×ℓ2
, where 𝑘 is a constant (the parameter

in the 𝑘-Lin assumption) and ℓ is the input length. We sample T, ˆT r← Z𝑘×ℓ𝑝 .

• A commitment to x ∈ Zℓ𝑝 with respect to [T]2 is [Tx]2. We define commitments with respect to
ˆT analogously.

• In the overview (and the rest of this paper), we refer to commitments with respect to
ˆT as “Type-I commitments”

and those with respect to T as “Type-II commitments.” Our goal is to prove relationships between Type-I

and Type-II commitments. For the setting of linear functions, the input commitment [c]2 might be a Type-II

commitment to x and the goal is to construct an opening to a Type-I commitment [ĉ]2 of the vector y = Mx. We

will also consider relations where the input is a Type-I commitment and the output is a Type-II commitment.

We now describe how to support linear openings for Type-II commitments. Specifically, starting from a Type-II

commitment [Tx]2 of x, we want to construct an opening to the Type-I commitment [ ˆTMx]2 of the vector Mx. To do

so, we sample two vectors r,w r← Z𝑘𝑝 and publish [z]2 in the public parameters where

zT = wTT − rT ˆTM ∈ Zℓ𝑝 .

For now, we consider the designated-verifier setting where a secret key is needed to verify the openings. In this case,

the vectors (r,w) are the secret verification key. Observe now that

zTx = wTTx − rT ˆTMx.

We define the opening to be 𝑣 = zTx. Then, the verification relation takes the Type-II commitment [c]2 = [Tx]2, the
Type-I commitment [ĉ]2 = [ ˆTMx]2 and checks that

[𝑣]2
?

= wT [c]2 − rT [ĉ]2.
3
We recall some basic properties of the tensor product in Section 3.
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Security of the basic construction. The security requirement says that it should be computationally difficult to

construct a Type-II commitment [c]2 and a pair of distinct Type-I commitments [ĉ]2 ≠ [ĉ′]2 along with accepting

openings [𝑣]2, [𝑣 ′]2. In other words, it should be difficult for the adversary to output [c]2, [ĉ]2, [ĉ′]2, [𝑣]2, and [𝑣 ′]2
such that

rTĉ = wTc − 𝑣 and rTĉ′ = wTc − 𝑣 ′ .

Equivalently, the adversary must be able to come up with ĉ∗ = ĉ − ĉ′ ≠ 0 and 𝑣∗ = 𝑣 ′ − 𝑣 such that rTĉ∗ = 𝑣∗. To
argue that this is difficult, we first claim that the vector r (in the secret verification key) is computationally hidden

from the view of the adversary. This follows via the 𝑘-Lin assumption. Under 𝑘-Lin, [wTT]2 is pseudorandom given

[T]2 and [ ˆT]2. Thus [z]2 computationally hides the vector r. Since r is computationally hidden and r is sampled

uniformly from Z𝑘𝑝 , whenever ĉ∗ ≠ 0, the distribution of rTĉ∗ is uniform over Z𝑝 . In this case, for any fixed 𝑣∗ chosen
independently of r, the probability that rTĉ∗ = 𝑣∗ is 1/𝑝 , which is negligible.

Chainable commitments for linear functions. The basic scheme above supports a fixed function M, which

was programmed into the public parameters [z]2. To support arbitrary functions (as in the case of a functional

commitment) from Zℓ𝑝 → Zℓ𝑝 , we instantiate ℓ2 copies of the basic scheme. The ℓ2 schemes can be viewed as functional

commitment schemes for the fixed functions M𝑖, 𝑗 that is 0 everywhere and 1 in component (𝑖, 𝑗). The opening to

an arbitrary linear mapping x ↦→ Mx then corresponds to taking a linear combination of ℓ2 openings where the

coefficients are defined by the elements ofM. To describe the construction more compactly, we start with the following

identity: for allM ∈ Zℓ×ℓ𝑝 ,

rT ˆTM = vec(M)T (Iℓ ⊗ vec(rT ˆT)), (2.1)

where vec(M) is the vectorization operation that takes as input a matrix M and outputs the vector formed by

concatenating the columns of M from left to right (see Section 3). This means

rT ˆTMx = vec(M)T (Iℓ ⊗ vec(rT ˆT))x.

We now sample W r← Zℓ2×𝑘𝑝 and publish [Z]2 in the public parameters where Z = WT − Iℓ ⊗ vec(rT ˆT). Now,

vec(M)T · Z · x = vec(M)TW · Tx − vec(M)T (Iℓ ⊗ vec(rT ˆT))x
= vec(M)TW · Tx − rT ˆTMx.

We define the opening to be [𝑣]2 where 𝑣 = vec(M)TZx. Then, given a Type-II commitment [c]2 = [Tx]2 and an

opening [𝑣]2 to a Type-I commitment [ĉ]2 = [ ˆTMx]2, the verification algorithm uses the (secret) verification keys W
and r to check that

[𝑣]2
?

= vec(M)TW · [c]2 − rT [ĉ]2.

Security of the chainable commitment. The chain binding proof for this construction follows exactly as that for

the basic construction. Namely, suppose an adversary is able to output [c]2, [ĉ]2, [ĉ′]2, [𝑣]2, and [𝑣 ′]2 such that

rTĉ = vec(M)TWc − 𝑣 and rTĉ′ = vec(M)TWc − 𝑣 ′ .

Just as in the basic case, the adversary in this case is able to come up with ĉ∗ = ĉ − ĉ′ ≠ 0 and 𝑣∗ = 𝑣 ′ − 𝑣 such that

rTĉ∗ = 𝑣∗. Similar to the basic case, we can argue via 𝑘-Lin that [WT]2 is pseudorandom given [T]2 and [ ˆT]2. As
such, the vector r is computationally hidden from the view of the adversary. Then, when ĉ∗ ≠ 0, the distribution of

rTĉ∗ is uniform over Z𝑝 and the claim follows exactly as before.

Chainable commitments for quadratic functions. Next, we extend the above construction to obtain a chainable

commitment for quadratic functions. In this setting, our goal is to support openings to (homogeneous)
4
quadratic

functions x ↦→ M(x ⊗ x) whereM ∈ Zℓ×ℓ2𝑝 . A basic approach is to linearize the quadratic system and have the user

4
It suffices to consider homogeneous quadratic functions. We can support arbitrary quadratic functions by having the user commit to the vector

x′ =
[
1

x
]
. A quadratic function on x then corresponds to a homogeneous quadratic function on x′ .
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commit to x⊗ x, and then use the functional commitment for linear functions to open toM(x⊗ x). However, this basic
approach is not chainable: the input is a commitment to a tensored value x ⊗ x, while the output is a commitment to

the untensored value y = M(x ⊗ x). We do not have a way to evaluate a quadratic function on the commitment to y.
We take an alternative approach and replace the Type-II encoding matrix T with a pair of encoding matrices

T1,T2

r← Z𝑘×ℓ𝑝 . A Type-II commitment to x is now a pair ( [T1x]1, [T2x]2). To construct an opening, the client first

computes a tensored commitment [(T1 ⊗ T2) (x⊗ x)]2 and then applies the chainable commitment for linear functions

with T1 ⊗ T2 as the input encoding matrix and
ˆT as the output encoding matrix. The yields an opening to a Type-I

commitment
ˆTM(x ⊗ x) of the output y = M(x ⊗ x). We describe our construction below:

• The secret verification key is r r← Z𝑘𝑝 and a matrixW r← Zℓ3×𝑘2

𝑝 .

• The public key consists of encoding matrices [T1]1, [T2]2, [T1 ⊗ T2]2, [ ˆT]2, and [Z]2 where T1,T2, ˆT
r← Z𝑘×ℓ𝑝

and

Z = W(T1 ⊗ T2) − Iℓ2 ⊗ vec(rT ˆT) ∈ Zℓ3×ℓ2𝑝 .

• A Type-II commitment to a vector x ∈ Zℓ𝑝 is a pair ( [c1]1, [c2]2) where c1 = T1x ∈ Z𝑘𝑝 and c2 = T2x ∈ Z𝑘𝑝 . A
Type-I commitment to a vector y ∈ Zℓ𝑝 is [ĉ]2 where ĉ = ˆTy ∈ Z𝑘𝑝 .

• An opening for the quadratic function x ↦→ M(x ⊗ x) whereM ∈ Zℓ×ℓ2𝑝 consists of the tensored commitment

[c∗]2 = [(T1 ⊗ T2) (x ⊗ x)]2 and the opening [𝑣]2 = [vec(M)TZ(x ⊗ x)]2.

• Given a Type-II commitment

(
[c1]1, [c2]2

)
, a homogeneous quadratic functionM ∈ Zℓ×ℓ2𝑝 , a Type-I commitment

[ĉ]2, and an opening

(
[c∗]2, [𝑣]2

)
, the verification algorithm checks the following two conditions:

[c1]1 ⊗ [c2]2
?

= [1]1 · [c∗]2 and rT [ĉ]2
?

= vec(M)TW[c∗]2 − [𝑣]2 .

The first verification relation uses the pairing to check that the tensored commitment was correctly computed

from the Type-II commitment ( [c1]1, [c2]2) while the second relation is checking validity of the linearized

system.

Both correctness and security follow analogously to that of the linear system. For correctness, we observe the

following. If c1 = T1x, c2 = T2x and ĉ = ˆTy, where y = M(x ⊗ x), then we have

c1 ⊗ c2 = (T1x) ⊗ (T2x) = (T1 ⊗ T2) (x ⊗ x),

so the first verification relation passes. For the second verification relation, we appeal to Eq. (2.1) adapted to the case

where M ∈ Zℓ2×ℓ𝑝 :

rT ˆTM = vec(M)T (Iℓ2 ⊗ vec(rT ˆT)),

Then,

rTĉ = rT ˆTM(x ⊗ x) = vec(M)T (Iℓ2 ⊗ vec(rT ˆT)) (x ⊗ x) = vec(M)T (W(T1 ⊗ T2) − Z) (x ⊗ x) = vec(M)TWc∗ − 𝑣 .

To argue evaluation binding, we use a similar strategy and argue that [W(T1 ⊗ T2)]2 is pseudorandom given [T1]1,
[T2]2, and [T1 ⊗ T2]2. This follows from the bilateral 𝑘-Lin assumption (since the matrix T1 is encoded in both G1

and G2); we provide a formal proof of this in Lemma 3.10. If [W(T1 ⊗ T2)]2 is pseudorandom, then once again, the

vector r is computationally hidden from the view of the adversary. The analysis then proceeds exactly as in the case

for linear functions.
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Public verification via 𝑘-KerLin. We now show how to lift the designated-verifier constructions described above

to the public verification setting. We exploit the fact that the above verification relation is linear. As such, we can
use the technique from [KW15] of giving out a partial encoding of r and W and then implementing the verification

relation “in the exponent” via the pairing. Specifically, our scheme for quadratic functions now works as follows:

• We first sample a matrix A r← Z𝑘×(𝑘+1)𝑝 and sampleW r← Zℓ
3 (𝑘+1)×𝑘2

𝑝 and R r← Z(𝑘+1)×𝑘𝑝 . The common reference

string now contains

crs =
(
[A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [T1]1, [T2]2, [ ˆT]2, [T1 ⊗ T2]2, [Z]2

)
,

where T1, T2, ˆT
r← Z𝑘×ℓ𝑝 and Z = W(T1⊗T2)−Iℓ2 ⊗vec(R ˆT). In particular [(Iℓ3 ⊗A)W]1 and [AR]1 are the public

encodings of the secret verification keys. The key point is that A is compressing and loses information about W
and R. The reduction then embeds the private key of the designated-verifier scheme into the components of

W,R that are hidden given (Iℓ3 ⊗ A)W and AR.

• The commitments are constructed exactly as in the designated-verifier scheme. Since rT has been replaced by a

matrix, the analogous opening relation is now [v]2 = [(vec(M)T ⊗ I𝑘+1)Z(x ⊗ x)]2.

• Given an input commitment

(
[c1]1, [c2]2

)
, a homogeneous quadratic function M ∈ Zℓ×ℓ2𝑝 , and an opening(

[c∗]2, [v]2
)
, the public verification algorithm now checks the following:

[c1]1 ⊗ [c2]2
?

= [1]1 · [c∗]2 and (vec(M)T ⊗ I𝑘 ) [(Iℓ3 ⊗ A)W]1 [c∗]2
?

= [AR]1 [ĉ]2 + [A]1 [v]2.

We refer to Section 4.4 (Construction 4.38) for the full description (which describes the projective variant of this

construction). Correctness of this scheme follows by a similar calculation as in the designated-verifier case; we refer

to Theorem 4.39 for the exact details. We now provide a brief sketch of the security analysis for this construction.

Consider an adversary for the evaluation binding game. Given the public parameters, the adversary outputs an

input commitment ( [c1]1, [c2]2), a homogeneous quadratic function M ∈ Zℓ×ℓ2𝑝 , two output vectors [ĉ]2, [ĉ′]2 along
with two openings 𝜋 = ( [c∗]2, [v]2) and 𝜋 ′ = ( [c′∗]2, [v′]2). If the adversary is successful, then ĉ ≠ ĉ′ and 𝜋 and 𝜋 ′

are valid openings. If the openings are valid, then c∗ = c′∗ and the verification relation now implies that

AR(ĉ − ĉ′) + A(v − v′) = 0.

Equivalently, we observe that any adversary that breaks evaluation binding must be able to compute ĉ∗ := ĉ − ĉ′ ≠ 0
and v∗ := v − v′ such that

A(Rĉ∗ + v∗) = 0. (2.2)

Our security proof now proceeds as follows:

• Step 1: First we rely on the kernel assumption (𝑘-KerLin), which is a search version of the 𝑘-Lin assump-

tion [MRV15] (and thus, implied by 𝑘-Lin). The assumption states that given [A]1 where A r← Z𝑘×(𝑘+1)𝑝 , it is

difficult to find [x]2 such that x ≠ 0 and Ax = 0. Under the 𝑘-KerLin assumption, if an efficient adversary can

find ĉ∗ and v∗ that satisfies Eq. (2.2), then it must be the case that Rĉ∗ + v∗ = 0. Otherwise, the adversary found

a non-trivial vector in the kernel of A.

• Step 2: Next, we use the fact that A is compressing. Let a⊥ ∈ Z𝑘+1𝑝 be an arbitrary non-zero vector in the kernel

of A (i.e., A · a⊥ = 0). Suppose we now sampleW and R as

W = W1 + (Iℓ3 ⊗ a⊥)W2

R = R1 + a⊥rT2,

whereW1

r← Zℓ
3 (𝑘+1)×𝑘2

𝑝 ,W2

r← Zℓ3×𝑘2

𝑝 , R1

r← Z(𝑘+1)×𝑘𝑝 , and r r← Z𝑘𝑝 . SinceW1 and R1 are uniform,W and R
are distributed exactly as in the real public parameters. However, the components (Iℓ3 ⊗ A)W and AR in the

public parameters information-theoretically hide the components W2, r2. In particular, since Aa⊥ = 0, we have

(Iℓ3 ⊗ A)W = (Iℓ3 ⊗ A)W1 + (Iℓ3 ⊗ Aa⊥)W2 = (Iℓ3 ⊗ A)W1

AR = AR1 + Aa⊥rT2 = AR1 .
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Consider now the verification relation. If Rĉ∗ + v∗ = 0, then it must be the case that

Rĉ∗ + v∗ = 0 =⇒ a⊥rT
2
ĉ∗ = −v∗ − R1ĉ∗ .

This is essentially the same type of verification relation as in the designated-verifier setting where r2 is the
secret key. Like in the basic scheme, what remains is to analyze the leakage on r2 from Z.

• Step 3: By a similar argument as in the designated verifier case, we can argue that under bilateral 𝑘-Lin, Z
computationally hides r2. Specifically, we can decompose

Z = W(T1 ⊗ T2) − Iℓ2 ⊗ vec(R ˆT) = Z1 + (Iℓ3 ⊗ a⊥) (W2 (T1 ⊗ T2) − Iℓ2 ⊗ vec(rT
2

ˆT)),

where Z1 does not depend on W2 and r2. By the bilateral 𝑘-Lin assumption, we can show that [W2 (T1 ⊗ T2)]2
is pseudorandom even given the other components in the public parameters, and thus, computationally hides

r2. The claim now follows exactly as in the designated-verifier case.

We give the formal proof of evaluation binding for quadratic functions in Section 4.4 (Theorem 4.40). The proof of

Theorem 4.40 is more involved since it is for the projective variant (see Section 2.2). That notwithstanding, the key

steps described here correspond to Lemma 4.43 (Step 1), Lemmas 4.44 and 4.45 (Step 2), and Lemma 4.46 (Step 3).

2.2 Projective Commitments
To go from a chainable commitment for quadratic functions to a functional commitment for general circuits, we

introduce the notion of a “projective” commitment. As described at the beginning of Section 2, in a projective

commitment, the goal is to take a commitment 𝜎 to a vector x = (𝑥1, . . . , 𝑥ℓ ) and “project” it onto a commitment

to a subvector (e.g., the vector x′ = (𝑥1, . . . , 𝑥 𝑗 ) for some 𝑗 ∈ [ℓ]). In this work, we will only consider projecting a

commitment onto its first 𝑗 components (i.e., a prefix of length 𝑗 ). Specifically, the syntax of a projective commitment

is defined as follows:

• The CRS for a projective commitment can be sampled either in a normal mode or in a projective mode. In this

work, we refer to the projective mode as a “semi-functional mode.”
5

• The semi-functional setup algorithm takes as input a Type-I index 𝑗1 and a Type-II index 𝑗2, and outputs a CRS

along with two trapdoors td1 and td2. The trapdoor td1 can be used to project Type-I commitments onto a

commitment to the first 𝑗1 components. Similarly, the trapdoor td2 can be used to efficiently project a Type-II

commitment onto a commitments to the first 𝑗2 components. We refer to the CRS output by the semi-functional

setup algorithm with indices ( 𝑗1, 𝑗2) as a ( 𝑗1, 𝑗2)-semi-functional CRS. We write Project(1) and Project(2) to
denote the projection algorithms for Type-I and Type-II commitments, respectively.

The chain binding security requirement now says the following:

• First, supposeM ∈ Zℓ×ℓ2𝑝 is the matrix associated with a (homogeneous) quadratic function with the property

that the first 𝑗2 components of the output M(x ⊗ x) only depends on the first 𝑗1 components of x. We say such

functions are ( 𝑗1, 𝑗2)-local. In other words, given just the first 𝑗1 components of the input vector x, we can
compute the first 𝑗2 outputs ofM(x ⊗ x).

• Now, suppose we sample a ( 𝑗1, 𝑗2)-semi-functional CRS. Let 𝜎1 and 𝜎
′
1
be a pair of Type-I commitments whose

projections onto their first 𝑗1 components are equal: Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1). Let 𝜎2 and 𝜎 ′2 be a
pair of Type-II commitments. Suppose the adversary comes up with valid openings for 𝜎2 and 𝜎

′
2
with respect

to 𝜎1 and 𝜎 ′
1
, respectively, and with respect to the same ( 𝑗1, 𝑗2)-local function M. Projective chain binding

security then requires that Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2). Unlike standard evaluation binding, we

allow two different input commitments 𝜎1 and 𝜎
′
1
; the only stipulation is that their projections match. Note that

we can define an analogous notion where the inputs are Type-II commitments while the outputs are Type-I

commitments.

5
Specifically, our realization of the projective mode will introduce a “shadow” subspace into the commitments and we embed a copy of the

chainable commitment within this shadow subspace. This type of approach is commonly used in dual-system proofs [Wat09, LW10], where a

shadow subspace is introduced when constructing the “semi-functional” keys and ciphertexts.
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Intuitively, the projective chain binding enforces local consistency on the committed values. If a quadratic function is

( 𝑗1, 𝑗2)-local, then the adversary should not be able to open two input commitments that “agree” on their first 𝑗1 values

to two output commitments that disagree on their first 𝑗2 outputs (since the first 𝑗2 output values are completely

determined by the first 𝑗1 input values). We require a few additional properties on the projective commitment:

• For all 𝑗1, 𝑗2 ∈ [ℓ], a ( 𝑗1, 𝑗2)-semi-functional CRS should be computationally indistinguishable from a normal

CRS.

• For all 𝑗1, 𝑗2, 𝑗
′
2
∈ [ℓ], a ( 𝑗1, 𝑗2)-semi-functional CRS should be computationally indistinguishable from a ( 𝑗1, 𝑗 ′2)-

semi-functional CRS even given the trapdoor td1. Likewise, for all 𝑗1, 𝑗 ′1, 𝑗2 ∈ [ℓ], a ( 𝑗1, 𝑗2)-semi-functional CRS

should be computationally indistinguishable from a ( 𝑗 ′
1
, 𝑗2)-semi-functional CRS even given the trapdoor td2.

Essentially, the first property is saying that if we keep the Type-I index associated with a semi-functional CRS

fixed, but change the Type-II index, the projections of a Type-I commitment (i.e., the output of Project(1) (td1, ·))
do not change. This stronger notion of CRS indistinguishability is often referred to as a “no-signaling extraction”

property [PR17, KPY19, GZ21, KVZ21, CJJ21].

• Finally, we require a semi-functional collision-resistance property, which essentially says that under a (ℓ, ℓ)-
semi-functional CRS (i.e., we are projecting onto all ℓ components of the vector), it should be difficult to find

two distinct vector y ≠ y′ whose honestly-generated commitments have identical projections.

We provide the formal abstraction as well as the security requirements in Section 4.1.

Constructing projective commitments. To construct a projective commitment scheme, we expand the commit-

ment space. In the basic chainable commitment from Section 2.1, the commitments live in a 𝑘-dimensional space.

Our projective commitments will live in a 2𝑘-dimensional vector space where the normal commitments inhabit a

𝑘-dimensional space while the “semi-functional” commitments inhabit a 𝑘-dimensional shadow subspace. A similar

projection approach was used in the delegation scheme from [GZ21]. Concretely, we proceed as follows:

• Let [B∗
1
| B∗

2
] ∈ Z2𝑘×2𝑘𝑝 be a basis for Z2𝑘𝑝 where B∗

1
,B∗

2
∈ Z2𝑘×𝑘𝑝 . To sample a semi-functional encoding matrix T

that supports projection onto the first 𝑗1 components, we set

T = B∗
1
S1 + B∗2S2,

where S1
r← Z𝑘×ℓ𝑝 , S2 = [S̃2 | 0𝑘×(ℓ− 𝑗1 ) ], and S̃2

r← Z𝑘× 𝑗1𝑝 . In particular, S2 is random in the first 𝑗1 columns and

zero in the remaining ℓ − 𝑗1 columns.

• Let B2 ∈ Z𝑘×2𝑘𝑝 be the (unique) matrix where B2B∗1 = 0 and B2B∗2 = I𝑘 . Consider a commitment to a vector

x ∈ Zℓ𝑝 . A commitment is an encoding of Tx. Then,

B2Tx = B2

(
B∗
1
S1 + B∗2S2

)
x = S2x.

Observe that this is essentially a commitment to x with respect to the new encoding matrix S2. Moreover, S2 is
zero in all but the first 𝑗1 columns. This means that S2 is a commitment to the first 𝑗1 components of x. Thus,
we have successfully projected a commitment Tx of x onto a commitment S2x to the first 𝑗1 components of x.
In this case, the projection trapdoor is the matrix B2.

In the actual construction (Construction 4.8), we use a different and independent choice of basis [B∗
1
| B∗

2
] for the

Type-I and Type-II encoding matrices T1,T2, ˆT. This allows us change the distribution of the Type-I encoding matrix

ˆT while retaining the ability to project Type-II commitments (and vice versa).

Arguing projective chain binding. When the CRS is ( 𝑗1, 𝑗2)-semi-functional, a Type-II commitment to x can be

viewed as two commitments: a normal commitment to x in the “normal” subspace, and a semi-functional commitment

to the first 𝑗2 components of x in the “semi-functional” subspace. Our goal is to argue that the scheme satisfies chain

binding. This essentially follows by a similar argument as the proof of chain binding security for quadratic functions,
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except we now implement it in the semi-functional subspace. There is, however, one important difference. Recall from

Section 2.1 that the binding analysis critically relied on the fact that [W(T1 ⊗ T2)]2 computationally hid the value

of [R]2 in [Z]2 where Z = W(T1 ⊗ T2) − Iℓ2 ⊗ vec(R ˆT). Previously, whenW,T1,T2 were all uniform, we were able

to appeal to the 𝑘-Lin assumption. If we consider this relation in the semi-functional space, we run into a potential

problem. Namely, the input encoding matrices T1 and T2 are no longer fully random in the semi-functional space:

they are only random in the first 𝑗2 components. As such, our previous proof strategy no longer applies.

Relying on locality. To complete the proof of projective chain binding, we rely on the fact that when the quadratic

relation M is ( 𝑗2, 𝑗1)-local,6 correctness does not require giving out all of Z. In particular, we only need to give out a

subset of the components of Z to ensure correctness. Towards this end, we define a projectionmatrix Pquad ∈ {0, 1}ℓ
3×ℓ3

(a square diagonal matrix) with the following two properties:

• For every ( 𝑗2, 𝑗1)-local functionM, it holds that vec(M)TPquad = vec(M)T. This property ensures correctness

for the scheme.

• If we now define Z to be W(T1 ⊗ T2) − (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R ˆT)), it holds that the non-zero columns of

(Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R ˆT)) in the semi-functional space precisely coincide with the non-zero columns of

W(T1 ⊗ T2) in the semi-functional space. Now, we can rely on the 𝑘-Lin assumption to argue that W(T1 ⊗ T2)
hides R in the semi-functional space. This allows us to essentially implement the original proof strategy of

chain binding for quadratic functions described in Section 2.1.

We provide the specific details (including the exact definition of the necessary projection matrix Pquad) in Section 4.4.

The proof of projective chain binding for the overall scheme is described in Theorem 4.40.

Additional proof systems. In addition to arguing projective chain binding for quadratic functions, our functional

commitment scheme for general circuits relies on two additional systems for proving relations on commitments.

These constructions rely on a similar (and simpler) set of techniques as that used to argue security of the projective

quadratic commitment. We state the properties we require (since these are needed for our functional commitments

scheme in Section 2.3), but defer the details of their construction and analysis to the relevant technical section.

• Projective commitment for linear functions. We require a (slimmed-down) version of our projective

chainable commitment for quadratic functions that just supports linear functions. While technically this is

subsumed by our above construction for quadratic functions, having a scheme for linear functions reduces

the size of the openings since it avoids the extra burden of needing to encode the output of the quadratic

commitment in both G1 and G2. We describe this construction in Section 4.3.

• Prefix matching. We require a proof system to show that two commitments 𝜎 and 𝜎 ′ share a common

prefix (of fixed length 𝑘). This will be used to argue consistency between a commitment to the input and

a commitment to all of the wires in an arithmetic circuit (which includes the input). The security property

essentially says that when the CRS is (𝑘, 𝑘)-semi-functional and the prefix-matching proof verifies, then

Project(1) (td1, 𝜎) = Project(1) (td1, 𝜎 ′). We describe this construction in Section 4.2.

2.3 Functional Commitments for Circuits
Using the projective commitments from Section 2.2, we are now ready to construct our functional commitment for

general circuits. We start with a more detailed version of the general overview from the beginning of Section 2:

• To commit to an input x ∈ Zℓ𝑝 , the input commitment consists of a Type-I commitment 𝜎in to x.

• To open 𝜎 to a value y = 𝐶 (x) where𝐶 : Zℓ𝑝 → Z𝑚𝑝 is a circuit of size 𝑠 , the user first defines the vector z ∈ Z𝑠𝑝 to

be the vector of all of the wire values of𝐶 (x), arranged in topological order (i.e., the value of wire 𝑖 is a function

of only the first 𝑖 − 1 wires). The user prepares a Type-I commitment 𝜎1 and a Type-II commitment 𝜎2 to z.
6
The relation is ( 𝑗2, 𝑗1 )-local since the inputs are Type-II commitments while the output is a Type-I commitment.
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• The user now constructs the following openings:

– First, the user uses the prefix-matching proof system to construct a proof 𝜋pre that 𝜎in and 𝜎1 share a

common prefix of length ℓ (i.e., they agree on the input).

– The user gives a chainable linear opening 𝜋lin that applying the identity mapping I𝑠 to the Type-I commit-

ment 𝜎1 yields the Type-II commitment 𝜎2 (recall that 𝜎1, 𝜎2 are both commitments to the wire values

𝐶 (x)).
– The user gives a chainable quadratic opening 𝜋quad that applying the “next-wire” function M𝐶 to the

Type-II commitment 𝜎2 yields the Type-I commitment 𝜎1. Here,M𝐶 is the circuit’s “next wire” function

whose 𝑖th output corresponds to the 𝑖th wire of𝐶 (x). By construction,M𝐶 implements the identity function

on the first ℓ wires (corresponding to the input), and a quadratic function for the remaining wires. Since

the wires are arranged topologically, for all 𝑖 ≥ ℓ , the function M𝐶 is (𝑖, 𝑖 + 1)-local (i.e., the value of wire
𝑖 + 1 is a function of the first 𝑖 wires only).

– Finally, the user computes a Type-II commitment 𝜎out to the output y = 𝐶 (x), together with a chainable

linear opening 𝜋out that 𝜎out is consistent with 𝜎1 under the linear projection operator that simply selects

for the output wires.

The opening consists of the commitments to the wires 𝜎1, 𝜎2 along with the openings 𝜋pre, 𝜋lin, 𝜋quad, and 𝜋out.

• To verify the opening 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out), the verifier first computes the Type-II commitment 𝜎out
to the purported output y itself and checks that each of the underlying openings are valid.

Using the projective commitment schemes described in Section 2.2 (see also Section 4), each of the commitments and

openings consists of a constant number of group elements, so we obtain a functional commitment for circuits with

constant-size commitments and openings.

Security analysis. We now describe how to leverage the security properties of our projective commitment scheme

to argue evaluation binding of the above construction. We provide the formal proof in Section 5. Suppose an

adversary comes up with an input commitment 𝜎in along with two openings 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and
𝜋 ′ = (𝜎 ′

1
, 𝜎 ′

2
, 𝜋 ′pre, 𝜋

′
lin, 𝜋

′
quad, 𝜋

′
out) for vectors y ≠ y′ and with respect to the same circuit 𝐶 . Our proof shares

many similarities with the iterative approaches from [GZ21, CJJ21, KLVW23] for constructing delegation schemes.

Specifically, our argument proceeds as follows:

• We start by switching the CRS to be (ℓ, ℓ)-semi-functional. If 𝜋pre and 𝜋 ′pre verify, then security of the prefix

matching construction now says that

Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎in) = Project(1) (td1, 𝜎 ′1).

• Since Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1), the identity function I𝑠 is (ℓ, ℓ)-local, and 𝜋lin, 𝜋
′
lin verify, linear

chain-binding (from Type-I to Type-II) then says that Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2).

• Now we switch the CRS to be (ℓ + 1, ℓ)-semi-functional. Since only the Type-I index changed, it must be the

case that Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2) still holds. This step critically relies on the fact that in the

CRS indistinguishability game, the reduction algorithm is given the projection trapdoor, and thus, can project

the Type-II commitments and check for equality. Note that because the Type-I index of the CRS has changed, it

may no longer be the case that Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1) anymore.

• Since the M𝐶 circuit is (ℓ, ℓ + 1)-local by construction, Project(2) (td2, 𝜎2) = Project(1) (td2, 𝜎 ′2), and 𝜋quad, 𝜋 ′quad
verify, quadratic chain-binding (fromType-II to Type-I) now re-establishes the property that Project(1) (td1, 𝜎1) =
Project(1) (td1, 𝜎 ′1).

• Now we switch the CRS to be (ℓ + 1, ℓ + 1)-semi-functional. Since only the Type-II index changed, this means

that Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1) still holds.
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• The above sequence of steps allowed us to move the CRS from (ℓ, ℓ)-semi-functional to (ℓ + 1, ℓ + 1)-semi-

functional while maintaining the invariant that Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1). We iterate this

same sequence of transitions to conclude that when the CRS is (𝑠, 𝑠)-semi-functional, it is still the case that

Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).

• When the CRS is (𝑠, 𝑠)-semi-functional, Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1), and 𝜋out, 𝜋
′
out verify, we can

appeal to linear chain binding to show that the output commitments 𝜎out, 𝜎
′
out satisfy Project(2) (td2, 𝜎out) =

Project(2) (td2, 𝜎 ′out). However, the verifier computes the output commitments 𝜎out, 𝜎out′ from y and y′ honestly.
If y ≠ y′, but 𝜎out and 𝜎 ′out are equal in the semi-functional space, then this breaks the collision resistance

property of the projective commitment scheme.

We provide the formal argument in Section 5 (Theorem 5.4). We also refer to Table 2 for a quick overview of the

formal hybrid structure. Taken together, this yields the construction in Theorem 1.1.

3 Preliminaries
We write 𝜆 to denote the security parameter. For a positive integer 𝑛 ∈ N, we write [𝑛] to denote the set {1, . . . , 𝑛}.
For a positive integer 𝑝 ∈ N, we write Z𝑝 to denote the integers modulo 𝑝 . We use bold uppercase letters to denote

matrices (e.g., A,B) and bold lowercase letters to denote vectors (e.g., u, v). We use non-boldface letters to refer to

their components: v = (𝑣1, . . . , 𝑣𝑛). For a vector v = (𝑣1, . . . , 𝑣𝑛), we write diag(v) to denote the 𝑛-by-𝑛 diagonal

matrix whose diagonal entries are (𝑣1, . . . , 𝑣𝑛). We write Iℓ to denote the ℓ-by-ℓ identity matrix.

We write poly(𝜆) to denote a function that is 𝑂 (𝜆𝑐 ) for some constant 𝑐 ∈ N and negl(𝜆) to denote a function

that is 𝑜 (𝜆−𝑐 ) for all 𝑐 ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial time in the length

of its input. We say that two families of distributions D1 = {D1,𝜆}𝜆∈N and D2 = {D2,𝜆}𝜆∈N are computationally

indistinguishable if no efficient algorithm can distinguish them with non-negligible probability, and we denote this

by writing D1

𝑐≈ D2. We say that D1 and D2 are statistically indistinguishable if the statistical distance Δ(D1,D2)
between the two distributions is bounded by a negligible function negl(𝜆).

Tensor products and vectorization. For matrices A ∈ Z𝑛×𝑚𝑝 and B ∈ Z𝑘×ℓ𝑝 , we write A ⊗ B to denote the tensor

(Kronecker) product of A and B. For matrices A,B,C,D where the products AC and BD are well-defined, the tensor

product satisfies the following mixed-product property:

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD). (3.1)

We now state two useful corollaries of the mixed-product property. For a vector x and a matrix A,

(x ⊗ I)A = (x ⊗ I) (1 ⊗ A) = x ⊗ A. (3.2)

For matrices A ∈ Z𝑛×𝑚𝑝 and B ∈ Z𝑘×ℓ𝑝 ,

A ⊗ B = (I𝑛 ⊗ B) (A ⊗ Iℓ ) = (A ⊗ I𝑘 ) (I𝑚 ⊗ B). (3.3)

For a matrix A ∈ Z𝑛×𝑚𝑝 , we write vec(A) to denote its vectorization (i.e., the vector formed by vertically stacking the

columns of A from leftmost to rightmost). We will use the following useful identity: for matrices A,B,C where the

product ABC is well-defined, then

vec(ABC) = (CT ⊗ A) · vec(B) and vec(ABC)T = vec(B)T (C ⊗ AT) (3.4)

Functional commitments. We now give the formal definition of a fully succinct functional commitment scheme

for arithmetic circuits:

Definition 3.1 (Succinct Functional Commitment). Let 𝜆 be a security parameter. A succinct functional commitment

for arithmetic circuits (over a ring) is a tuple of efficient algorithms FC = (Setup,Commit, Eval,Verify) with the

following properties:
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• Setup(1𝜆, 1ℓ , 1𝑠 ) → crs: On input the security parameter 𝜆, the input length ℓ , and the circuit size 𝑠 , the setup

algorithm outputs a common reference string crs. We assume that crs implicitly specifies the input space Rℓ
,

where R is a finite ring.

• Commit(crs, x) → (𝜎, st): On input the common reference string crs and an input x ∈ Rℓ
, the commitment

algorithm outputs a commitment 𝜎 and a state st.

• Eval(st,𝐶) → 𝜋 : On input a commitment state st, an arithmetic circuit 𝐶 : Rℓ → R𝑚 , the evaluation algorithm

outputs an opening 𝜋 .

• Verify(crs, 𝜎,𝐶, y, 𝜋) → {0, 1}: On input the common reference string crs, a commitment 𝜎 , an arithmetic

circuit 𝐶 : Rℓ → R𝑚 , a value y ∈ R𝑚 , and an opening 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

We now define several correctness and security properties on the functional commitment scheme:

• Correctness: For all 𝜆, ℓ, 𝑠 ∈ N, all crs in the support of Setup(1𝜆, 1ℓ , 1𝑠 ), all arithmetic circuits 𝐶 : Rℓ → R𝑚
(where R is the ring determined by crs), all inputs x ∈ Rℓ

,

Pr

[
Verify

(
crs, 𝜎,𝐶,𝐶 (x), 𝜋

)
= 1 :

(𝜎, st) ← Commit(crs, x);
𝜋 ← Eval(st,𝐶)

]
= 1.

• Binding: For a security parameter 𝜆 and an adversary A, we define the binding security game as follows:

1. On input the security parameter 𝜆, the adversary A outputs the input length 1
ℓ
and the circuit size 1

𝑠
.

2. The challenger samples crs← Setup(1𝜆, 1ℓ , 1𝑠 ) and gives crs to A. Let R be the ring associated with crs.

3. The adversary outputs a commitment 𝜎 , an arithmetic circuit 𝐶 : Rℓ → R𝑚 of size at most 𝑠 , and vectors

y, y′ ∈ R𝑚 along with openings 𝜋, 𝜋 ′.

4. The challenger outputs 𝑏 = 1 if y ≠ y′ and Verify(crs, 𝜎,𝐶, y, 𝜋) = 1 = Verify(crs, 𝜎,𝐶, y′, 𝜋 ′). Otherwise,
the challenger outputs 𝑏 = 0.

The functional commitment scheme is binding if for all efficient adversariesA, there exists a negligible function

negl(·) such that Pr[𝑏 = 1] = negl(𝜆) in the binding security game.

• Succinctness: There exists a universal polynomial poly(·) such that for all 𝜆, ℓ, 𝑠 ∈ N, all crs in the support of

Setup(1𝜆, 1ℓ , 1𝑠 ), all vectors x ∈ Rℓ
(where R is the ring associated with crs), all arithmetic circuits𝐶 : Rℓ → R𝑚 ,

all (𝜎, st) in the support of Commit(crs, x), and all 𝜋 in the support of Eval(st,𝐶),

|𝜎 | ≤ poly(𝜆 + log ℓ + log 𝑠) and |𝜋 | ≤ poly(𝜆 + log ℓ + log 𝑠).

3.1 Prime-Order Pairing Groups
We start by recalling the definition of a prime-order pairing group and the matrix decision Diffie-Hellman assumption

and kernel Diffie-Hellman assumptions we use in this work [EHK
+
13, MRV15].

Definition 3.2 (Prime-Order Bilinear Group). A prime-order asymmetric pairing group generator GroupGen is an

efficient algorithm that takes as input the security parameter 1
𝜆
and outputs a description G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒)

of two base groups G1 and G2 with generators 𝑔1, 𝑔2, respectively, a target group G𝑇 , all of prime order 𝑝 = 2
Θ(𝜆)

, and

a non-degenerate bilinear map 𝑒 : G1 × G2 → G𝑇 . We write 𝑔𝑇 = 𝑒 (𝑔1, 𝑔2) to denote a generator of G𝑇 . We require

that the group operation in G1,G2,G𝑇 and the pairing operations be efficiently computable.

Notation. Let G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) be a prime-order group. As described in Section 2.1, we use the implicit

representation of group elements [EHK
+
13] throughout this work. Namely, for matrices A,B, we write [A]1 to denote

𝑔A
1
and [A]1 [B]2 := [AB]𝑇 as well as [A]1 ⊗ [B]2 := [A ⊗ B]𝑇 .
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Matrix Diffie-Hellman assumptions. We now recall the matrix Diffie-Hellman and kernel Diffie-Hellman

assumptions we use in this work. Our presentation is adapted from [EHK
+
13, MRV15].

Definition 3.3 (𝑘-Lin Assumption). Let GroupGen be a group generator and 𝑘 ∈ N be a positive integer. The 𝑘-Lin
assumption holds in G2 with respect to GroupGen if for all efficient adversaries A, there exists a negligible function

negl(·) such that

| Pr[A(G, [A]2, [sTA]2) = 1] − Pr[A(G, [A]2, [uT]2) = 1] | = negl(𝜆),

where A = [1𝑘 | diag(𝑎1, . . . , 𝑎𝑘 )] ∈ Z𝑘×(𝑘+1)𝑝 and the probability is taken over G ← GroupGen(1𝜆), 𝑎1, . . . , 𝑎𝑘 r← Z𝑝 ,
s r← Z𝑘𝑝 , and u r← Z𝑘+1𝑝 .

Definition 3.4 (Matrix Diffie-Hellman Assumption). Let GroupGen be a group generator, and let 𝑘, ℓ, 𝑑 ∈ N be

positive integers. We say that the matrix Diffie-Hellman assumption with parameters 𝑘, ℓ, 𝑑 (MDDH𝑘,ℓ,𝑑 ) holds in G2

with respect to GroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that

| Pr[A(G, [A]2, [SA]2) = 1] − Pr[A(G, [A]2, [U]2) = 1] | = negl(𝜆),

where the probability is taken over G ← GroupGen(1𝜆), A← Z𝑘×ℓ𝑝 , S r← Z𝑑×𝑘𝑝 , and U r← Z𝑑×ℓ𝑝 .

Definition 3.5 (Kernel Diffie-Hellman Assumption). Let GroupGen be a group generator. We say that the kernel

Diffie-Hellman assumption (KerDH𝑘,ℓ ) holds in G1 with respect to GroupGen if for all efficient adversaries A, there

exists a negligible function negl(·) such that

Pr

[
Ax = 0 ∧ x ≠ 0 :

G ← GroupGen(1𝜆),A r← Z𝑘×ℓ𝑝 ,

[x]2 ← A(G, [A]1)

]
= negl(𝜆).

We define the KerDH𝑘,ℓ assumption in G2 analogously (where the challenge A is encoded in G2 and the adversary’s

output is in G1). Finally, we define the 𝑘-KerLin assumption to be an instance of the KerDH𝑘,𝑘+1 assumption where

the challenge matrix A is given by A = [1𝑘 | diag(𝑎1, . . . , 𝑎𝑘 )] ∈ Z𝑘×(𝑘+1)𝑝 and 𝑎1, . . . , 𝑎𝑘
r← Z𝑝 .

Bilateral MDDH assumptions. Similar to [GZ21], we rely on a bilateral Diffie-Hellman assumption in this work

where the challenge is encoded in both G1 and G2. We recall the assumptions below:

Definition 3.6 (Bilateral 𝑘-Lin Assumption). LetGroupGen be a group generator and 𝑘 ∈ N be a positive integer. The

bilateral 𝑘-Lin assumption holds with respect to GroupGen if for all efficient adversaries A, there exists a negligible

function negl(·) such that

| Pr[A(G, [A]1, [A]2, [sTA]1, [sTA]2) = 1] − Pr[A(G, [A]1, [A]2, [uT]1, [uT]2) = 1] | = negl(𝜆),

where A = [1𝑘 | diag(𝑎1, . . . , 𝑎𝑘 )] ∈ Z𝑘×(𝑘+1)𝑝 and the probability is taken over G ← GroupGen(1𝜆), 𝑎1, . . . , 𝑎𝑘 r← Z𝑝 ,
s r← Z𝑘𝑝 , and u r← Z𝑘+1𝑝 .

Definition 3.7 (Bilateral Matrix Diffie-Hellman Assumption). Let GroupGen be a group generator, and let 𝑘, ℓ, 𝑑 ∈ N
be positive integers. We say that the bilateral matrix Diffie-Hellman assumption with parameters 𝑘, ℓ, 𝑑 (bilateral

MDDH𝑘,ℓ,𝑑 ) holds with respect to GroupGen if for all efficient adversariesA, there exists a negligible function negl(·)
such that

| Pr[A(G, [A]1, [A]2, [SA]1, [SA]2) = 1] − Pr[A(G, [A]1, [A]2, [U]1, [U]2) = 1] | = negl(𝜆),

where the probability is taken over G ← GroupGen(1𝜆), A← Z𝑘×ℓ𝑝 , S r← Z𝑑×𝑘𝑝 , and U r← Z𝑑×ℓ𝑝 .

Remark 3.8 (Relationship to 𝑘-Lin). The analysis of Escala et al. [EHK+13] extends to show that for all 𝑘 ≥ 1, the 𝑘-Lin
assumption implies theMDDH𝑘,ℓ,𝑑 assumption for all polynomially-bounded ℓ and 𝑑 . An analogous result applies for

𝑘-KerLin and KerDH𝑘,ℓ . This analysis directly extends to the bilateral case when 𝑘 > 1. Finally, Morillo et al. [MRV15]

showed that the (standard) MDDH𝑘,ℓ,𝑑 in G1 (resp., G2) assumption implies the KerDH𝑘,ℓ assumption in G1 (resp.,

G2). Thus, for all 𝑘 > 1 and assuming the bilateral 𝑘-Lin assumption holds with respect to GroupGen, both bilateral

MDDH𝑘,ℓ,𝑑 and KerDH𝑘,ℓ hold with respect to GroupGen.
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Tensored MDDH. The security analysis of our functional commitment scheme will rely on a tensored version of

the bilateral MDDH assumption. We define this below and show that it is implied by the standard bilateral MDDH
assumption (Definition 3.7).

Definition 3.9 (TensoredMDDH). Let GroupGen be a group generator and let 𝑘, ℓ1, ℓ2, 𝑑 ∈ N be positive integers.

We say the tensored matrix Diffie-Hellman assumption with parameters 𝑘, ℓ, 𝑑 (tensoredMDDH𝑘,ℓ1,ℓ2,𝑑 ) holds in G2

with respect to GroupGen if for all efficient adversaries A, there exists a negligible function negl(·) such that

| Pr[A(G, 𝑋, [S(A ⊗ B)]2) = 1] − Pr[A(G, 𝑋, [U]2) = 1] | = negl(𝜆),

where 𝑋 =
(
[A]1, [A]2, [B]1, [B]2, [A ⊗ B]2

)
and the probability is taken over G ← GroupGen(1𝜆), A ← Z𝑘×ℓ1𝑝 ,

B← Z𝑘×ℓ2𝑝 , S r← Z𝑑×𝑘2

𝑝 , and U r← Z𝑑×ℓ1ℓ2𝑝 .

Lemma 3.10. Let 𝑘, ℓ1, ℓ2, 𝑑 ∈ N be positive integers and GroupGen be a group generator. If the bilateralMDDH𝑘,ℓ1,𝑘

and bilateralMDDH𝑘,ℓ2,ℓ1 assumptions hold with respect to GroupGen, then for all polynomials 𝑑 = 𝑑 (𝜆), the tensored
MDDH𝑘,ℓ1,ℓ2,𝑑 assumption holds in G2 with respect to GroupGen.

Proof. We first show the claim for 𝑑 = 1. The general case then follows by a hybrid argument. When 𝑑 = 1, the goal

is to show that the following two distributions are computationally indistinguishable:(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [sT (A ⊗ B)]2

) 𝑐≈
(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [uT]2

)
, (3.5)

where A r← Z𝑘×ℓ1𝑝 , B r← Z𝑘×ℓ2𝑝 , s r← Z𝑘2

𝑝 and u r← Zℓ1ℓ2𝑝 . To argue this, we first define T ∈ Z𝑘×𝑘𝑝 to be the matrix where

vec(T) = s. Then, by Eq. (3.4),

sT (A ⊗ B) = vec(T)T (A ⊗ B) = vec(BTTA) .
Thus, it suffices to show that(

G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [BTTA]2
) 𝑐≈

(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [V]2

)
,

where A r← Z𝑘×ℓ1𝑝 , B r← Z𝑘×ℓ2𝑝 , T r← Z𝑘×𝑘𝑝 , and V r← Zℓ2×ℓ1𝑝 . This follows by applying bilateralMDDH twice (once on

the left and once on the right). Formally, we define the following sequence of hybrid experiments:

• Hyb
0
: Sample G ← GroupGen(1𝜆), A r← Z𝑘×ℓ1𝑝 , B r← Z𝑘×ℓ2𝑝 , T r← Z𝑘×𝑘𝑝 . Output(

G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [BTTA]2
)
.

• Hyb
1
: Sample G ← GroupGen(1𝜆), A r← Z𝑘×ℓ1𝑝 , B r← Z𝑘×ℓ2𝑝 , T r← Z𝑘×𝑘𝑝 , U r← Z𝑘×ℓ1𝑝 . Output(

G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [BTU]2
)
.

• Hyb
2
: Sample G ← GroupGen(1𝜆), A r← Z𝑘×ℓ1𝑝 , B r← Z𝑘×ℓ2𝑝 , T r← Z𝑘×𝑘𝑝 , V r← Zℓ2×ℓ1𝑝 . Output(

G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [V]2
)
.

We now argue that each adjacent pair of distributions are computationally indistinguishable under the bilateral

MDDH assumption:

• Hyb
0
and Hyb

1
are computationally indistinguishable under bilateral MDDH𝑘,ℓ1,𝑘 . Specifically, on input a

bilateral MDDH𝑘,ℓ1,𝑘 challenge (G, [Ã]1, [Ã]2, [Z̃]1, [Z̃]2), the reduction algorithm samples B r← Z𝑘×ℓ2𝑝 and

constructs the challenge(
G, [Ã]1, [Ã]2, [B]1, [B]2, [Ã]2 ⊗ B,BT [Z̃]2

)
=
(
G, [Ã]1, [Ã]2, [B]1, [B]2, [Ã ⊗ B]2, [BTZ̃]2

)
.

When Z̃ = TÃ for T r← Z𝑘×𝑘𝑝 , this corresponds to Hyb
0
and if Z̃ r← Z𝑘×ℓ1𝑝 , then this corresponds to Hyb

1
.
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• Hyb
1
and Hyb

2
are computationally indistinguishable under bilateral MDDH𝑘,ℓ2,ℓ1 . Specifically, on input a

bilateral MDDH𝑘,ℓ2,ℓ1 challenge (G, [B̃]1, [B̃]2, [Z̃]1, [Z̃]2), the reduction algorithm samples A r← Z𝑘×ℓ1𝑝 and

constructs the challenge(
G, [A]1, [A]2, [B̃]1, [B̃]2,A ⊗ [B̃]2, [Z̃T]2

)
=
(
G, [A]1, [A]2, [B̃]1, [B̃]2, [A ⊗ B̃]2, [Z̃T]2

)
.

When Z̃ = UB̃ for U r← Zℓ1×𝑘𝑝 , this corresponds to Hyb
1
and if Z̃ r← Zℓ1×ℓ2𝑝 , then this corresponds to Hyb

2
.

For the general case (i.e., 𝑑 > 1), we proceed via a hybrid argument. For each 𝑖 ∈ {0, . . . , 𝑑}, we define experiment

Hyb𝑖 as follows:

• Hyb𝑖 for 𝑖 ∈ {0, . . . , 𝑑}: Sample G ← GroupGen(1𝜆), A r← Z𝑘×ℓ1𝑝 , B r← Z𝑘×ℓ2𝑝 , S r← Z𝑑×𝑘2

𝑝 . Parse S =
[ S1
S2

]
where

S1 ∈ Z𝑖×𝑘
2

𝑝 and S2 ∈ Z(𝑑−𝑖 )×𝑘
2

𝑝 . Let V r← Z𝑖×ℓ1ℓ2𝑝 . Output(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2,

[ V
S2 (A⊗B)

] )
.

By construction, the distributions in the bilateral MDDH𝑘,ℓ1,ℓ2,𝑑 assumption correspond to Hyb
0
and Hyb𝑑 . It suffices

to show that for all 𝑖 ∈ [𝑑], Hyb𝑖−1 andHyb𝑖 are computationally indistinguishable. This reduces to the 1-dimensional

case. The reduction algorithm receives a 1-dimensional challenge(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2, [zT]2

)
,

where A r← Z𝑘×ℓ1𝑝 , B r← Z𝑘×ℓ2𝑝 and samples V r← Z(𝑖−1)×ℓ1ℓ2𝑝 and S2
r← Z(𝑑−𝑖 )×𝑘

2

𝑝 . It then constructs the challenge(
G, [A]1, [A]2, [B]1, [B]2, [A ⊗ B]2,

[ [V]2
[zT ]2

S2 [A⊗B]2

] )
.

If zT = sT (A ⊗ B) where s r← Z𝑘2

𝑝 , then this challenge is distributed according to Hyb𝑖−1 whereas if z
r← Zℓ1ℓ2𝑝 , then it

is distributed according to Hyb𝑖 . Finally, since 𝑑 = poly(𝜆), the claim now follows by a hybrid argument. □

4 Projective Commitments from 𝑘-Lin
In this section, we introduce and construct the main building blocks that we use for constructing a succinct functional

commitment for general circuits from the bilateral 𝑘-Lin assumption. Our main construction relies on the ability to

project a committed vector onto a subset of its components and argue properties on the projected subset. We start by

defining the basic projection matrix we use throughout this section.

Definition 4.1 (Projection Matrix). Let ℓ be a vector dimension. For an index 𝑗 ∈ [ℓ], define the projection matrix

P𝑗 ∈ {0, 1}ℓ×ℓ as follows:
P𝑗 := diag

(
[11× 𝑗 | 01×(ℓ− 𝑗 ) ]

)
∈ {0, 1}ℓ×ℓ (4.1)

Namely, for every vector x = [𝑥1, . . . , 𝑥ℓ ]T, we have P𝑗x = [𝑥1, . . . , 𝑥 𝑗 , 0, . . . , 0]T.

Local functions. Our constructions in the subsequent sections will also consider local functions, which are

functions where some of the outputs only depend on a subset of the inputs.

Definition 4.2 (Local Function). Let 𝑓 : Xℓ → Y𝑚
be a vector-valued function. For parameters 𝑗1 ∈ [ℓ] and 𝑗2 ∈ [𝑚],

we say that 𝑓 is ( 𝑗1, 𝑗2)-local if the first 𝑗2 outputs of 𝑓 only depend the first 𝑗1 inputs to 𝑓 . In other words, if

𝑓𝑖 : Xℓ → Y is the function that computes the 𝑖th output of 𝑓 , then for all 𝑖 ≤ 𝑗2, the function 𝑓𝑖 (x) only depends

on the values of 𝑥1, . . . , 𝑥 𝑗1 . For a set 𝑆 ⊆ [ℓ] × [𝑚], we say that 𝑓 is 𝑆-local if for all ( 𝑗1, 𝑗2) ∈ 𝑆 , the function 𝑓 is

( 𝑗1, 𝑗2)-local. We refer to 𝑆 as a “locality set.”
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4.1 The Base Projective Commitment Scheme
We now define the syntax of our base projective commitment scheme. The base scheme supports two types of

commitments (which we refer to as Type I and Type II). The base commitment scheme does not provide any useful

functionality. However, in the subsequent sections, we augment the base scheme with succinct proof systems for

demonstrating relations on Type I and Type II commitments. These proof systems will be used as the main building

blocks for our (fully) succinct functional commitment scheme in Section 5.

Projective commitments. In a projective commitment, the CRS for the base scheme can be sampled in a “normal”

mode which is used for the real scheme, and a “semi-functional” mode which will be used for the security analysis.

When the CRS is sampled in the semi-functional mode, it will be possible to “project” a commitment to a vector x
onto a commitment to the first 𝑗 components of x′ = (𝑥1, . . . , 𝑥 𝑗 ). There are two different projection modes: one for

projecting Type-I commitments and one for projecting Type-II commitments. Essentially, the projection operators

allow us to “embed” a chainable commitment scheme within the semi-functional space of the projective commitment.

We can then leverage a proof strategy similar to [GZ21, CJJ21, KLVW23] in the semi-functional space of the projective

commitment scheme to obtain a functional commitment for general arithmetic circuits. We refer to Section 2 for a

high-level description and Section 5 for the formal description and analysis. We now describe the syntax and primary

security properties we require on our base projective commitment scheme.

Definition 4.3 (Projective Commitment Scheme). A (base) projective commitment scheme FC =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
is a tuple of efficient algorithms with the following syntax:

• SetupBase(1𝜆, 1ℓ ) → crsbase: On input the security parameter 𝜆 and a vector dimension ℓ , the normal setup

algorithm outputs a common reference string crsbase. We assume that crsbase implicitly contains a description

of the input space Rℓ
of the commitment scheme. We require that the input space R is a ring.

• SetupSF(1𝜆, 1ℓ , 𝑗1, 𝑗2) → (crsbase, td1, td2): On input the security parameter 𝜆, a vector dimension ℓ , a Type-I

index 𝑗1 ∈ [ℓ], and a Type-II index 𝑗2 ∈ [ℓ], the semi-functional setup algorithm outputs a common reference

string crsbase and projection trapdoors td1 and td2.

• Commit(1) (crsbase, x) → 𝜎1: On input the common reference string crsbase and a vector x ∈ Rℓ
, the Type-I

commitment algorithm outputs a Type-I commitment 𝜎1. This algorithm is deterministic.

• Commit(2) (crsbase, y) → 𝜎2: On input the common reference string crsbase and a vector y ∈ Rℓ
, the Type-II

commitment algorithm outputs a Type-II commitment 𝜎2. This algorithm is deterministic.

• Project(1) (td1, 𝜎1) → 𝜎 ′
1
: On input a Type-I projection trapdoor td1 and a Type-I commitment 𝜎1, the Type-I

projection algorithm outputs a projected commitment 𝜎 ′
1
. This algorithm is deterministic.

• Project(2) (td2, 𝜎2) → 𝜎 ′
2
: On input a Type-II projection trapdoor td2 and a commitment 𝜎2, the Type-I projection

algorithm outputs a projected commitment 𝜎 ′
2
. This algorithm is deterministic.

Roadmap. In the remainder of this section, we define the primary security properties we require of the base

projective commitment scheme. We summarize these below and follow with the formal definitions:

• Mode indistinguishability: The normal CRS (output by Setup) should be computationally indistinguishable

from a semi-functional CRS (output by SetupSF).

• Type-I indistinguishability: Semi-functional common reference strings with the same Type-II index 𝑗2, but

different Type-I indices 𝑗1, 𝑗
′
1
, should be computationally indistinguishable even given the Type-II trapdoor td2.

• Type-II indistinguishability: Semi-functional common reference strings with the same Type-I index 𝑗1, but

different Type-II indices 𝑗2, 𝑗
′
2
, should be computationally indistinguishable even given the Type-I trapdoor td1.
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• Type-II collision resistance: When the Type-II index 𝑗2 = ℓ is the vector length, then it should be computa-

tionally infeasible to find distinct vectors y ≠ y′ whose Type-II commitments are equal in their semi-functional
components.

In the subsequent sections, we design proof systems for arguing certain properties on the commitments in Construc-

tion 4.8:

• Prefix checking. If 𝜎1 and 𝜎 ′1 are Type-I commitments to vectors x, x′, respectively, we describe a proof system
to argue that x and x′ share a common prefix. We describe this in Section 4.2.

• Type-I to Type-II linear mapping. If 𝜎1 is a Type-I commitment to a vector x, we describe a proof system to

demonstrate that 𝜎2 is a Type-II commitment on a vector y = 𝑓 (x), where 𝑓 is a linear function. We describe

this in Section 4.3.

• Type-II to Type-I quadratic mapping. If 𝜎2 is a Type-II commitment to a vector y, we describe a proof
system to demonstrate that 𝜎1 is a Type-I commitment to a vector x = 𝑓 (y), where 𝑓 is a quadratic function.
We describe this in Section 4.4.

Finally, in Section 5, we show how to use the projective commitment from Construction 4.8 in conjunction with these

three proof systems to obtain a functional commitment for arbitrary circuits.

Security properties. We now give the formal definitions of the security properties outlined above.

Definition 4.4 (Mode Indistinguishability). Let FC be a projective commitment scheme where FC =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
. For a bit 𝑏 ∈ {0, 1} and an adversary A, we define the mode

indistinguishability game ExptMIA [𝜆,𝑏] as follows:

1. On input the security parameter 𝜆, algorithm A outputs the input length 1
ℓ
, and indices 𝑗1, 𝑗2 ∈ [ℓ].

2. The challenger samples the CRS as follows:

• If 𝑏 = 0, crsbase ← SetupBase(1𝜆, 1ℓ ).
• If 𝑏 = 1, (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗1, 𝑗2).

The challenger gives crsbase to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

The projective commitment scheme FC satisfies mode indistinguishability if for all efficient adversaries A, there

exists a negligible function negl(·) such that��
Pr[ExptMIA [𝜆, 0] = 1] − Pr[ExptMIA [𝜆, 0] = 1]

�� = negl(𝜆).

Definition 4.5 (Type-I Indistinguishability). Let FC be a projective commitment scheme where FC =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
. For a bit 𝑏 ∈ {0, 1} and an adversaryA, we define the Type-I

indistinguishability game ExptTIA [𝜆,𝑏] as follows:

1. On input the security parameter 𝜆, algorithmA outputs the input length 1
ℓ
, two Type-I indices 𝑗1, 𝑗

′
1
∈ [ℓ], and

a Type-II index 𝑗2 ∈ [ℓ],

2. The challenger samples the CRS as follows:

• If 𝑏 = 0, (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗1, 𝑗2).
• If 𝑏 = 1, (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗 ′

1
, 𝑗2).

The challenger gives crsbase and td2 to A.
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3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

The projective commitment scheme FC satisfies Type-I indistinguishability if for all efficient adversaries A, there

exists a negligible function negl(·) such that��
Pr[ExptTIA [𝜆, 0] = 1] − Pr[ExptTIA [𝜆, 0] = 1]

�� = negl(𝜆).

Definition 4.6 (Type-II Indistinguishability). Let FC be a projective commitment scheme where FC =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
. For a bit 𝑏 ∈ {0, 1} and an adversaryA, we define the Type-II

indistinguishability game ExptTIIA [𝜆,𝑏] as follows:

1. On input the security parameter 𝜆, algorithm A outputs the input length 1
ℓ
, a Type-I index 𝑗1 ∈ [ℓ], and two

Type-II indices 𝑗2, 𝑗
′
2
∈ [ℓ].

2. The challenger samples the CRS as follows:

• If 𝑏 = 0, (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗1, 𝑗2).
• If 𝑏 = 1, (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗1, 𝑗 ′2).

The challenger gives crsbase and td1 to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1} which is the output of the experiment.

The projective commitment scheme FC satisfies Type-II indistinguishability if for all efficient adversaries A, there

exists a negligible function negl(·) such that��
Pr[ExptTIIA [𝜆, 0] = 1] − Pr[ExptTIIA [𝜆, 0] = 1]

�� = negl(𝜆).

Definition 4.7 (Type-II Collision Resistance). Let FC be a projective commitment scheme where FC =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
. For an adversaryA, we define the Type-II collision resistance

game as follows:

1. On input the security parameter 𝜆, algorithm A outputs the input length 1
ℓ
and a Type-I index 𝑗1 ∈ [ℓ].

2. The challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗1, ℓ) and gives crsbase to A.

3. Algorithm A outputs two vectors y, y′ ∈ Rℓ
, where Rℓ

is the input space associated with crsbase.

4. The challenger then computes 𝜎2 = Commit(2) (crsbase, y) and 𝜎 ′2 = Commit(2) (crsbase, y′). The output of the
experiment is 𝑏 = 1 if

y ≠ y′ and Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2).

Otherwise, the experiment outputs 𝑏 = 0.

We say FC satisfies Type-II collision resistance if for all efficient adversaries A, there exists a negligible function

negl(·) such that Pr[𝑏 = 1] = negl(𝜆) in the Type-II collision resistance security game.

Constructing projective commitments from pairings. We now describe our base projective commitment

scheme from pairings and then show that it satisfies the security properties listed above (under the bilateral 𝑘-Lin
assumption).

Construction 4.8 (Projective Commitment Scheme). Let 𝑘 ∈ N be a constant and GroupGen be a prime-order

pairing group generator. Our base projective commitment scheme FC =
(
SetupBase, SetupSF,Commit(1) ,Commit(2) ,

Project(1) , Project(2)
)
is defined as follows:
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• SetupBase(1𝜆, 1ℓ ): On input the security parameter 𝜆 and the input length ℓ , the setup algorithm samples

G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ← GroupGen(1𝜆). Then, it samples
ˆT,T1,T2

r← Z2𝑘×ℓ𝑝 and sets T∗ = T1 ⊗ T2. It

outputs the common reference string

crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

The input space associated with crsbase is the ring Z𝑝 .

• SetupSF(1𝜆, 1ℓ , 𝑗1, 𝑗2): On input the security parameter 𝜆, the input length ℓ , the Type-I index 𝑗1 ∈ [ℓ], and the

Type-II index 𝑗2 ∈ [ℓ], the semi-functional setup algorithm samples the following components:

– Sample G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ← GroupGen(1𝜆).
– Sample full-rank matrices B̂,B1,B2

r← Z2𝑘×2𝑘𝑝 and define B̂∗ = B̂−1, B∗
1
= B−1

1
, and B∗

2
= B−1

2
. It parses the

matrices as

B̂ =

[
B̂1

B̂2

]
and B1 =

[
B1,1

B1,2

]
and B2 =

[
B2,1

B2,2

]
, (4.2)

where B̂1, B̂2,B1,1,B1,2,B2,1,B2,2 ∈ Z𝑘×2𝑘𝑝 . Similarly, it parses

B̂∗ =
[
B̂∗
1
, | B̂∗

2

]
and B∗

1
=
[
B∗
1,1 | B∗1,2

]
and B∗

2
=
[
B∗
2,1 | B∗2,2

]
, (4.3)

where B̂∗
1
, B̂∗

2
,B∗

1,1,B
∗
1,2,B

∗
2,1,B

∗
2,2 ∈ Z2𝑘×𝑘𝑝 .

– Construct the encoding matrices
ˆT,T1,T2 as follows:

∗ Type-I encodings: Sample Ŝ1, Ŝ2
r← Z𝑘×ℓ𝑝 and let

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗1 ∈ Z2𝑘×ℓ𝑝 .

∗ Type-II encodings: For 𝛼 ∈ {1, 2}, sample S𝛼,1, S𝛼,2
r← Z𝑘×ℓ𝑝 . Let T𝛼 = B∗𝛼,1S𝛼,1 + B∗𝛼,2S𝛼,2P𝑗2 ∈ Z2𝑘×ℓ𝑝 ,

where P𝑗1 , P𝑗2 are the projection matrices from Definition 4.1. Then, let T∗ = T1 ⊗ T2.

The setup algorithm outputs the common reference string crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and the

projection trapdoors td1 = B̂2 and td2 = (B1,2,B2,2). The message space associated with crsbase is the ring Z𝑝 .

• Commit(1) (crsbase, x): On input the common reference string crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and

a vector x ∈ Zℓ𝑝 , the Type-I commitment algorithm computes [ĉ]2 ← [ ˆT]2x = [ ˆTx]2. It outputs 𝜎1 = [ĉ]2 ∈ G2𝑘
2
.

• Commit(2) (crsbase, y): On input the common reference string crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and a vector y ∈ Zℓ𝑝 , the Type-II commitment algorithm computes [c1]1 ← [T1]1y = [T1y]1 ∈ G2𝑘

1
and

[c2]2 ← [T2]2y = [T2y]2 ∈ G2𝑘
2
. It outputs the commitment 𝜎2 = ( [c1]1, [c2]2).

• Project(1) (td1, 𝜎1): On input a Type-I projection trapdoor td1 = B̂2, and a commitment 𝜎1 = [ĉ]2, output
B̂2 [𝜎1]2.

• Project(2) (td2, 𝜎2): On input a Type-II projection trapdoor td2 = (B1,2,B2,2) and a commitment𝜎2 = ( [c1]1, [c2]2),
output (B1,2 [c1]1,B2,2 [c2]2).

Theorem 4.9 (Mode Indistinguishability). If the bilateral 𝑘-Lin assumption holds with respect to GroupGen, then
Construction 4.8 satisfies mode indistinguishability.

Proof. Take any adversary A for the mode indistinguishability game, and let ℓ, 𝑗1, 𝑗2 be the values chosen by the

adversary A. We define a sequence of hybrid experiments:

• Hyb
0
: This is experiment ExptMIA [𝜆, 0]. In this experiment, the challenger samplesG = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ←

GroupGen(1𝜆). It also samples
ˆT,T1,T2

r← Z2𝑘×ℓ𝑝 , computes T∗ ← T1 ⊗ T2 and outputs

crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
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• Hyb
1
: Same as Hyb

0
, except the challenger samples Ŝ1, Ŝ2

r← Z𝑘×ℓ𝑝 and B̂∗
1
, B̂∗

2

r← Z2𝑘×𝑘𝑝 . It then sets

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗1 ∈ Z2𝑘×ℓ𝑝 .

• Hyb
2
: Same as Hyb

1
, except the challenger samples S1,1, S1,2

r← Z𝑘×ℓ𝑝 and B∗
1,1,B

∗
1,2

r← Z2𝑘×𝑘𝑝 . It then sets

T1 = B∗
1,1S1,1 + B∗1,2S1,2P𝑗2 ∈ Z2𝑘×ℓ𝑝 .

• Hyb
3
: Same as Hyb

2
, except the challenger samples S2,1, S2,2

r← Z𝑘×ℓ𝑝 and B∗
2,1,B

∗
2,2

r← Z2𝑘×𝑘𝑝 . It then sets

T2 = B∗
2,1S2,1 + B∗2,2S2,2P𝑗2 ∈ Z2𝑘×ℓ𝑝 .

This is ExptMIA [𝜆, 1].

We now argue that each adjacent pair of hybrid experiments is computationally indistinguishable. In the following,

we implicitly use the fact that sampling A r← Z2𝑘×2𝑘𝑝 is statistically indistinguishable from sampling a full rank
A r← Z2𝑘×2𝑘𝑝 .

• Hybrids Hyb
0
and Hyb

1
are computationally indistinguishable under the MDDH𝑘,ℓ,2𝑘 assumption in G2. Given

the MDDH𝑘,ℓ,2𝑘 challenge (G, [A]2, [V]2) where A r← Z𝑘×ℓ𝑝 and V ∈ Z2𝑘×ℓ𝑝 , the reduction algorithm samples

T1,T2

r← Z2𝑘×ℓ𝑝 and Ŝ2
r← Z𝑘×ℓ𝑝 , B̂∗

2

r← Z2𝑘×𝑘𝑝 . It creates the CRS

crsbase =
(
G, [V]2 + B̂∗2Ŝ2P𝑗1 , [T1]1, [T1]2, [T2]2, [T1 ⊗ T2]2

)
.

When V r← Z2𝑘×ℓ𝑝 , this corresponds to the distribution in Hyb
0
and when V = SA where S r← Z2𝑘×𝑘𝑝 and

A r← Z𝑘×ℓ𝑝 , this corresponds to the distribution in Hyb
1
.

• Hybrids Hyb
1
and Hyb

2
are computationally indistinguishable under the bilateral MDDH𝑘,ℓ,2𝑘 assumption.

Given the bilateral MDDH𝑘,ℓ,2𝑘 challenge (G, [A]1, [A]2, [V]1, [V]2), the reduction algorithm samples T2

r←
Z2𝑘×ℓ𝑝 . It also samples Ŝ1, Ŝ2, S1,2

r← Z𝑘×ℓ𝑝 and B̂∗
1
, B̂∗

2
,B∗

1,2
r← Z2𝑘×𝑘𝑝 . It sets

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗1 . It creates the CRS

crsbase =
(
G, [ ˆT]2, [V]1 + B∗1,2S1,2P𝑗2 , [V]2 + B∗1,2S1,2P𝑗2 , [T2]2,

(
[V]2 + B∗1,2S1,2P𝑗2

)
⊗ T2

)
.

When V r← Z2𝑘×ℓ𝑝 , this corresponds to the distribution in Hyb
1
and when V = SA where S r← Z2𝑘×𝑘𝑝 and

A r← Z𝑘×ℓ𝑝 , this corresponds to the distribution in Hyb
2
.

• Hybrids Hyb
2
and Hyb

3
are computationally indistinguishable under the MDDH𝑘,ℓ,2𝑘 assumption in G2. Given

the MDDH𝑘,ℓ,2𝑘 challenge (G, [A]2, [V]2) where A r← Z𝑘×ℓ𝑝 and V ∈ Z2𝑘×ℓ𝑝 , the reduction algorithm samples

Ŝ1, Ŝ2, S1,1, S1,2, S2,2
r← Z𝑘×ℓ𝑝 and B̂∗

1
, B̂∗

2
,B∗

1,1B
∗
1,2,B

∗
2,2

r← Z2𝑘×𝑘𝑝 . It sets
ˆT = B̂∗

1
Ŝ1 + B̂∗2Ŝ2P𝑗1 and T1 = B∗

1,1S1,1 +
B∗
1,2S1,2P𝑗2 . It creates the CRS

crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [V]2 + B∗2,2S2,2P𝑗2 ,T1 ⊗

(
[V]2 + B∗2,2S2,2P𝑗2

) )
.

When V r← Z2𝑘×ℓ𝑝 , this corresponds to the distribution in Hyb
2
and when V = SA where S r← Z2𝑘×𝑘𝑝 and

A r← Z𝑘×ℓ𝑝 , this corresponds to the distribution in Hyb
3
.

Since ℓ = poly(𝜆), the bilateral 𝑘-Lin assumption implies each of the underlyingMDDH assumption we use in the

above analysis (Remark 3.8), the theorem now follows by a hybrid argument. □

Theorem 4.10 (Type-I Indistinguishability). If the 𝑘-Lin assumption holds in G2 with respect to GroupGen, then
Construction 4.8 satisfies Type-I indistinguishability.

Proof. Let A be an adversary and let ℓ, 𝑗1, 𝑗
′
1
, 𝑗2 be the values it chooses. We proceed via a hybrid argument:
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• Hyb
0
: This is ExptTIA [𝜆, 0]. In this experiment, the challenger samples G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ←

GroupGen(1𝜆). It samples B̂∗
1
, B̂∗

2

r← Z2𝑘×𝑘𝑝 , B1,B2

r← Z2𝑘×2𝑘𝑝 , and defines B∗
1
= B−1

1
and B∗

2
= B−1

2
. It parses

B1,B2 into matrices B1,1,B1,2,B2,1,B2,2 ∈ Z𝑘×2𝑘𝑝 according to Eq. (4.2) and B∗
1
,B∗

2
into B∗

1,1,B
∗
1,2,B

∗
2,1,B

∗
2,2 ∈ Z2𝑘×𝑘𝑝

according to Eq. (4.3). Next, it samples Ŝ1, Ŝ2, S1,1, S1,2, S2,1, S2,2
r← Z𝑘×ℓ𝑝 . It sets

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗1 and T1 = B∗

1,1S1,1 + B∗1,2S1,2P𝑗2 and T2 = B∗
2,1S2,1 + B∗2,2S2,2P𝑗2 .

Finally, it computes T∗ = T1 ⊗ T2 and outputs

crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
along with td2 = (B1,2,B2,2).

• Hyb
1
: Same as Hyb

0
except the challenger samples

ˆT r← Z2𝑘×ℓ𝑝 .

• Hyb
2
: Same as Hyb

0
except the challenger samples

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗 ′

1

. This is ExptTIA [𝜆, 1].

We now show that each adjacent pair of hybrid experiments is computationally indistinguishable. As before, we

implicitly use the fact that sampling A r← Z2𝑘×2𝑘𝑝 is statistically indistinguishable from sampling a full rank A r←
Z2𝑘×2𝑘𝑝 .

• Hybrids Hyb
0
and Hyb

1
are computationally indistinguishable under the MDDH𝑘,ℓ,2𝑘 assumption in G2. Given

the MDDH𝑘,ℓ,2𝑘 challenge (G, [A]2, [V]2) where A r← Z𝑘×ℓ𝑝 and V ∈ Z2𝑘×ℓ𝑝 , the reduction algorithm samples

B1,B2

r← Z2𝑘×2𝑘𝑝 and defines B∗
1
= B−1

1
, B∗

2
= B−1

2
. Then it samples S1,1, S1,2, S2,1, S2,2

r← Z𝑘×ℓ𝑝 and constructs

T1 = B∗
1,1S1,1 + B∗1,2S1,2P𝑗2 , and T2 = B∗

2,1S2,1 + B∗2,2S2,2P𝑗2 , where the components B∗
1,1,B

∗
1,2,B

∗
2,1,B

∗
2,2 are obtained

from B∗
1
,B∗

2
according to Eq. (4.3). Finally, it samples Ŝ2

r← Z𝑘×ℓ𝑝 , B̂∗
2

r← Z2𝑘×𝑘𝑝 and creates the CRS

crsbase =
(
G, [V]2 + B̂∗2Ŝ2P𝑗1 , [T1]1, [T1]2, [T2]2, [T1 ⊗ T2]2

)
and the trapdoor td2 = (B1,2,B2,2) where B1,2 and B2,2 are derived from B1,B2 as in Eq. (4.2). When V r← Z2𝑘×ℓ𝑝 ,

this corresponds to the distribution inHyb
1
andwhenV = SAwhere S r← Z2𝑘×𝑘𝑝 andA r← Z𝑘×ℓ𝑝 , this corresponds

to the distribution in Hyb
0
.

• Hybrids Hyb
1
and Hyb

2
are computationally indistinguishable under MDDH𝑘,ℓ,2𝑘 by an analogous argument.

Since ℓ = poly(𝜆), the 𝑘-Lin assumption in G2 implies the MDDH𝑘,ℓ,2𝑘 assumption in G2. The theorem now follows

by a hybrid argument. □

Theorem 4.11 (Type-II Indistinguishability). If the bilateral 𝑘-Lin assumption holds with respect to GroupGen, then
Construction 4.8 satisfies Type-II indistinguishability.

Proof. Let A be an adversary and let ℓ, 𝑗1, 𝑗2, 𝑗
′
2
be the values it chooses. We proceed via a hybrid argument:

• Hyb
0
: This is ExptTIIA [𝜆, 0]. In this experiment, the challenger samples G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ←

GroupGen(1𝜆). It samples B̂ r← Z2𝑘×2𝑘𝑝 and defines B̂∗ = B̂−1. Then it parses B̂ into matrices B̂1, B̂2 ∈
Z𝑘×2𝑘𝑝 according to Eq. (4.2) and B̂∗ into matrices B̂∗

1
, B̂∗

2
∈ Z2𝑘×𝑘𝑝 according to Eq. (4.3). It also samples

B∗
1,1,B

∗
1,2,B

∗
2,1,B

∗
2,2

r← Z𝑘×2𝑘𝑝 and Ŝ1, Ŝ2, S1,1, S1,2, S2,1, S2,2
r← Z𝑘×ℓ𝑝 . Finally, it sets

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗1 and T1 = B∗

1,1S1,1 + B∗1,2S1,2P𝑗2 and T2 = B∗
2,1S2,1 + B∗2,2S2,2P𝑗2 .

Finally, it computes T∗ = T1 ⊗ T2 and outputs

crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
along with td1 = B̂2.
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• Hyb
1
: Same as Hyb

0
except the challenger samples T1

r← Z2𝑘×ℓ𝑝 .

• Hyb
2
: Same as Hyb

1
except the challenger samples T2

r← Z2𝑘×ℓ𝑝 .

• Hyb
3
: Same as Hyb

2
except the challenger sets T2 = B∗

2,1S2,1 + B∗2,2S2,2P𝑗 ′
2

• Hyb
4
: Same as Hyb

3
except the challenger sets T1 = B∗

1,1S1,1 + B∗1,2S1,2P𝑗 ′
2

. This is ExptTIIA [𝜆, 1]

We now show that each adjacent pair of hybrid experiments is computationally indistinguishable. As before, we

implicitly use the fact that sampling A r← Z2𝑘×2𝑘𝑝 is statistically indistinguishable from sampling a full rank A r←
Z2𝑘×2𝑘𝑝 .

• Hybrids Hyb
0
and Hyb

1
are computationally indistinguishable under the bilateral MDDH𝑘,ℓ,2𝑘 assumption.

Specifically, given the bilateral MDDH𝑘,ℓ,2𝑘 challenge (G, [A]1, [A]2, [V]1, [V]2), the reduction algorithm

samples B̂ r← Z2𝑘×2𝑘𝑝 and defines B̂∗ = B̂−1. Then it parses B̂ into matrices B̂1, B̂2 ∈ Z𝑘×2𝑘𝑝 according to

Eq. (4.2) and B̂∗ into matrices B̂∗
1
, B̂∗

2
∈ Z2𝑘×𝑘𝑝 according to Eq. (4.3). It also samples B∗

1,2,B
∗
2,1,B

∗
2,2

r← Z𝑘×2𝑘𝑝 and

Ŝ1, Ŝ2, S1,2, S2,1, S2,2
r← Z𝑘×ℓ𝑝 . Next, it sets

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗1 and T2 = B∗

2,1S2,1 + B∗2,2S2,2P𝑗2 .

It gives A the CRS

crsbase =
(
G, [ ˆT]2, [V]1 + B∗1,2S1,2P𝑗2 , [V]2 + B∗1,2S1,2P𝑗2 , [T2]2,

(
[V]2 + B∗1,2S1,2P𝑗2

)
⊗ T2

)
and the projection trapdoor td1 = B̂2. When V r← Z2𝑘×ℓ𝑝 , this corresponds to the distribution in Hyb

1
and when

V = SA where S r← Z2𝑘×𝑘𝑝 and A r← Z𝑘×ℓ𝑝 , this corresponds to the distribution in Hyb
0
.

• Hybrids Hyb
1
and Hyb

2
are computationally indistinguishable under theMDDH𝑘,ℓ,2𝑘 assumption in G2. Specif-

ically, given the MDDH𝑘,ℓ,2𝑘 challenge (G, [A]2, [V]2), the reduction algorithm samples B̂ r← Z2𝑘×2𝑘𝑝 and

defines B̂∗ = B̂−1. Then it parses B̂ into matrices B̂1, B̂2 ∈ Z𝑘×2𝑘𝑝 according to Eq. (4.2) and B̂∗ into matrices

B̂∗
1
, B̂∗

2
∈ Z2𝑘×𝑘𝑝 according to Eq. (4.3). It also samples B∗

2,2
r← Z𝑘×2𝑘𝑝 and Ŝ1, Ŝ2, S2,2

r← Z𝑘×ℓ𝑝 . Next, it sets

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗1 and T1

r← Z2𝑘×ℓ𝑝 .

It gives A the CRS

crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [V]2 + B∗2,2S2,2P𝑗2 ,

(
T1 ⊗

(
[V]2 + B∗2,2S2,2P𝑗2

) )
and the projection trapdoor td1 = B̂2. When V r← Z2𝑘×ℓ𝑝 , this corresponds to the distribution in Hyb

2
and when

V = SA where S r← Z2𝑘×𝑘𝑝 and A r← Z𝑘×ℓ𝑝 , this corresponds to the distribution in Hyb
1
.

• Hybrids Hyb
2
and Hyb

3
are computationally indistinguishable under the MDDH𝑘,ℓ,2𝑘 assumption in G2. This

follows by an analogous argument as that used to argue indistinguishability of Hyb
1
and Hyb

2
.

• Hybrids Hyb
3
and Hyb

4
are computationally indistinguishable under the bilateral MDDH𝑘,ℓ,2𝑘 assumption.

This follows by an analogous argument as that used to argue indistinguishability of Hyb
0
and Hyb

1
.

Since ℓ = poly(𝜆), the bilateral 𝑘-Lin assumption implies the bilateral MDDH𝑘,ℓ,2𝑘 assumption (Remark 3.8). The

theorem now follows by a hybrid argument. □

Theorem 4.12 (Type-II Collision Resistance). Suppose the 𝑘-KerLin assumption holds in G2 with respect to GroupGen.
Then, Construction 4.8 satisfies Type-II collision resistance.

Proof. Take any adversary A that breaks the Type-II collision resistance of Construction 4.8 with non-negligible

probability 𝜀. Let ℓ and 𝑗1 be the input length and Type-I index chosen by A. We use A to construct an adversary B
that breaks the KerDH𝑘,ℓ assumption in G2 with respect to GroupGen:
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1. On input the KerDH𝑘,ℓ challenge (G, [A]2), algorithm B samples full-rank matrices B̂,B1,B2

r← Z2𝑘×2𝑘𝑝 and

defines B̂∗ = B̂−1, B∗
1
= B−1

1
, and B∗

2
= B−1

2
. Then it samples Ŝ1, Ŝ2, S1,1, S1,2, S2,1,

r← Z𝑘×ℓ𝑝 and constructs

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗1 and T1 = B∗

1,1S1,1 + B∗1,2S1,2 and [T2]2 = B∗
2,1S2,1 + B∗2,2 [A]2,

where the components B̂∗
1
, B̂∗

2
,B∗

1,1,B
∗
1,2,B

∗
2,1,B

∗
2,2 are obtained from B̂∗,B∗

1
,B∗

2
according to Eq. (4.3). Algorithm

B gives crsbase to A where

crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2,T1 ⊗ [T2]2

)
.

2. At the end of the game, algorithm A outputs two vectors y, y′ ∈ Zℓ𝑝 . Algorithm B outputs [y − y′]1.

Since the KerDH challenger samples A r← Z𝑘×ℓ𝑝 and Pℓ = Iℓ , algorithm B perfectly simulates an execution of the

Type-II collision resistance game for A. Thus, with probability at least 𝜀, algorithm A outputs y ≠ y′ such that

B2,2T2y = B2,2T2y′ (and B1,2T1y = B1,2T1y′). This means that

B2,2T2y = B2,2 (B∗2,1S2,1 + B∗2,2A)y = Ay
B2,2T2y′ = B2,2 (B∗2,1S2,1 + B∗2,2A)y′ = Ay′

We conclude that Ay = Ay′, so A(y − y′) = 0, but y ≠ y′. Correspondingly, algorithm B breaks KerDH𝑘,ℓ with

advantage 𝜀. Finally, since ℓ = poly(𝜆), the KerDH𝑘,ℓ assumption follows from 𝑘-KerLin, as required. □

4.2 Prefix Checking on Committed Values
The first proof system we design for the base projective commitment scheme in Section 4.1 is to argue that two Type-I

commitments share a common prefix (i.e., that 𝜎1, 𝜎
′
1
are commitments to x and x′ where 𝑥𝑖 = 𝑥 ′𝑖 for all 𝑖 ≤ 𝑗 ). In

the broader context of constructing functional commitments (Section 5), the prefix-checking proof system is used to

check consistency between a commitment to an input x and a commitment to all of the wires in an arithmetic circuit

evaluation𝐶 (x). The security requirement is enforced in the semi-functional space. We start by defining the syntax of

the prefix-checking proof system as well as its correctness and security requirements:

Definition 4.13 (Prefix Checking for Projective Commitments). Let FCbase =
(
SetupBase, SetupSF,Commit(1) ,

Commit(2) , Project(1) , Project(2)
)
be a projective commitment scheme. A prefix-checking proof system for FCbase is

a triple of efficient algorithms FCpre =
(
SetupPre,OpenPre,VerifyPre

)
with the following properties:

• SetupPre(crsbase, 𝑗) → crs: On input the common reference string crsbase (defining the associated input space

Rℓ
) and a prefix length 𝑗 ∈ [ℓ], the setup algorithm outputs a common reference string crs.

• OpenPre(crs, x, x′) → 𝜋 : On input a common reference string crs and two vectors x, x′ ∈ Rℓ
, the opening

algorithm outputs a proof 𝜋 .

• VerifyPre(crs, 𝜎1, 𝜎 ′1, 𝜋) → 𝑏: On input the common reference string crs, two Type-I commitments 𝜎1, 𝜎
′
1
, and

an opening 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

The prefix-checking proof system FCpre should satisfy the following two properties:

• Correctness: For all security parameters 𝜆 ∈ N, all vector lengths ℓ ∈ N, all prefix lengths 𝑗 ∈ [ℓ], all crsbase in
the support of SetupBase(1𝜆, 1ℓ ), all vectors x, x′ ∈ Rℓ

(where Rℓ
is the message space associated with crsbase)

where 𝑥𝑖 = 𝑥 ′𝑖 for all 𝑖 ≤ 𝑗 ,

Pr

VerifyPre(crs, 𝜎1, 𝜎
′
1
, 𝜋) = 1 :

crs← SetupPre(crsbase, 𝑗)
𝜎1 ← Commit(1) (crsbase, x)
𝜎 ′
1
← Commit(1) (crsbase, x′)
𝜋 ← OpenPre(crs, x, x′)

 = 1.
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• Prefix-matching security: For a security parameter 𝜆 and an adversary A, we define the prefix-matching

security game as follows:

1. On input the security parameter 𝜆, the adversary outputs the dimension 1
ℓ
and the prefix length 𝑗 ∈ [ℓ].

2. The challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗, 𝑗) and crs← SetupPre(crsbase, 𝑗). It gives
(crsbase, crs) to A.

3. The adversary outputs two Type-I commitments (𝜎1, 𝜎 ′1) and an opening 𝜋 .

4. The output of the experiment is 𝑏 = 1 if the following properties hold:

– Mismatching prefix: Project(1) (td1, 𝜎1) ≠ Project(1) (td1, 𝜎 ′1).
– Validity of opening: VerifyPre(crs, 𝜎1, 𝜎 ′1, 𝜋) = 1.

Otherwise, the challenger outputs 𝑏 = 0.

We say that that FCpre satisfies prefix-matching security if for all efficient adversariesA, there exists a negligible

function negl(·) such that Pr[𝑏 = 1] = negl(𝜆) in the prefix-matching security game.

Constructing a prefix-checking proof system. We now show how to construct a prefix-checking proof system

for the base projective commitment scheme from Section 4 (Construction 4.8).

Construction 4.14 (Prefix Checking for Projective Commitments). Let FCbase =
(
SetupBase, SetupSF,Commit(1) ,

Commit(2) , Project(1) , Project(2)
)
be the projective commitment scheme from Construction 4.8. We construct a

prefix-checking proof system FCpre =
(
SetupPre,OpenPre,VerifyPre

)
for FCbase as follows:

• SetupPre(crsbase, 𝑗): On input the common reference string crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
for the

base projective commitment scheme, and a prefix length 𝑗 ∈ [ℓ], the setup algorithm samples A r← Z𝑘×(𝑘+1)𝑝

andW r← Z(𝑘+1)×2𝑘𝑝 . Then, it computes

[Z]2 = W[ ˆT]2
[
0𝑗×(ℓ− 𝑗 )

Iℓ− 𝑗

]
∈ G(𝑘+1)×(ℓ− 𝑗 )

2
, (4.4)

Output the common reference string

crs = (crsbase, [A]1, [AW]1, [Z]2) . (4.5)

• OpenPre(crs, x, x′): On input the common reference string crs = (crsbase, [A]1, [AW]1, [Z]2) and two vectors

x, x′ ∈ Zℓ𝑝 , the opening algorithm computes and outputs

𝜋 = [v]2 = [Z]2 · [0(ℓ− 𝑗 )× 𝑗 | Iℓ− 𝑗 ] (x − x′) ∈ G𝑘+12
.

• VerifyPre(crs, 𝜎1, 𝜎 ′1, 𝜋): On input the common reference string crs = (crsbase, [A]1, [AW]1, [Z]2), two Type-I

commitments 𝜎1 = [ĉ]2, 𝜎 ′1 = [ĉ′]2, and an opening 𝜋 = [v]2, the verification algorithm outputs 1 if

[AW]1 ( [ĉ]2 − [ĉ′]2) = [A]1 [v]2 .

Theorem 4.15 (Correctness). Construction 4.14 is correct.

Proof. Take any 𝜆, ℓ ∈ N and 𝑗 ∈ [ℓ]. Let crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
← SetupBase(1𝜆, 1ℓ ). Let

crs = (crsbase, [A]1, [AW]1, [Z]2) ← SetupPre(crsbase, 𝑗). Take any two vectors x, x′ ∈ Zℓ𝑝 with a common prefix of

length 𝑗 . This means that [
0𝑗×(ℓ− 𝑗 )

Iℓ− 𝑗

]
[0(ℓ− 𝑗 )× 𝑗 | Iℓ− 𝑗 ] (x − x′) = x − x′ .

Suppose 𝜎1 ← Commit(1) (crsbase, x) and 𝜎 ′1 ← Commit(1) (crsbase, x′), and 𝜋 ← OpenPre(crs, x, x′). By construction,
𝜎1 = [ĉ]2 = [ ˆTx]2, 𝜎 ′1 = [ĉ′]2 = [ ˆTx′]2, and 𝜋 = [v]2 where

Av = AZ[0(ℓ− 𝑗 )× 𝑗 | Iℓ− 𝑗 ] (x − x′) = AW ˆT
[
0𝑗×(ℓ− 𝑗 )

Iℓ− 𝑗

]
[0(ℓ− 𝑗 )× 𝑗 | Iℓ− 𝑗 ] (x − x′) = AW ˆT(x − x′) = AW(ĉ − ĉ′). □
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Theorem 4.16 (Prefix-Matching Security). Suppose the KerLin𝑘,𝑘+1 assumption holds in G1 with respect to GroupGen.
Then, Construction 4.14 satisfies prefix-matching security.

Proof. Take any efficient adversary A for the prefix-matching security game. We start by defining a sequence of

hybrid experiments.

• Hyb
0
: This is the prefix-checking security experiment. We provide the full specification here:

– At the beginning of the game, the adversary A outputs 1
ℓ
and 𝑗 ∈ [ℓ].

– The challenger samples G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ← GroupGen(1𝜆). It samples full-rank matrices

B̂,B1,B2

r← Z2𝑘×2𝑘𝑝 and defines B̂∗ = B̂−1, B∗
1
= B−1

1
, and B∗

2
= B−1

2
. It parses B̂,B1,B2 as in Eq. (4.2) and

B̂∗,B∗
1
,B∗

2
as in Eq. (4.3).

– The challenger constructs the encoding matrices
ˆT,T1,T2 as follows:

∗ Type-I encodings: Sample Ŝ1, Ŝ2
r← Z𝑘×ℓ𝑝 and let

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗 ∈ Z2𝑘×ℓ𝑝 .

∗ Type-II encodings: For 𝛼 ∈ {1, 2}, sample S𝛼,1, S𝛼,2
r← Z𝑘×ℓ𝑝 . Let T𝛼 = B∗𝛼,1S𝛼,1 + B∗𝛼,2S𝛼,2P𝑗 ∈ Z2𝑘×ℓ𝑝 .

Finally, the challenger sets T∗ = T1 ⊗ T2 and sets crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

– The challenger samples A r← Z𝑘×(𝑘+1)𝑝 and W r← Z(𝑘+1)×2𝑘𝑝 . It computes

Z = W ˆT
[
0𝑗×(ℓ− 𝑗 )

Iℓ− 𝑗

]
.

The challenger gives the common reference string crs to A where

crs = (crsbase, [A]1, [AW]1, [Z]2) .

– The adversary outputs two commitments 𝜎1 = [ĉ]2, 𝜎 ′1 = [ĉ′]2 and an opening 𝜋 = [v]2.

The output of the experiment is 1 if B̂2ĉ ≠ B̂2ĉ′ (i.e., B̂2 (ĉ − ĉ′) ≠ 0) and AW(ĉ − ĉ′) = Av.

• Hyb
1
: Same as Hyb

0
, except the challenger outputs 1 if W(ĉ − ĉ′) = v and B̂2 (ĉ − ĉ′) ≠ 0.

• Hyb
2
: Same as Hyb

1
, except when constructing the CRS, the challenger samples a random nonzero vector

a⊥ ∈ Z𝑘+1𝑝 in the kernel of A. Then, it samplesWnorm
r← Z(𝑘+1)×𝑘𝑝 ,Wsf,1

r← Z(𝑘+1)×𝑘𝑝 , wsf,2
r← Z𝑘𝑝 . It sets

Wsf = Wsf,1 + a⊥wT
sf,2 and W = WnormB̂1 +WsfB̂2 .

The challenger then sets Z as

Z = WnormŜ1

[
0𝑗×(ℓ− 𝑗 )

Iℓ− 𝑗

]
.

Finally, the challenger sets the CRS to be

crs =
(
crsbase, [A]1,

[
A
(
WnormB̂1 +Wsf,1B̂2

) ]
1
, [Z]2

)
.

We write Hyb𝑖 (A) to denote the output distribution of an execution of hybrid Hyb𝑖 with adversaryA. We now show

that the output distribution of each pair of hybrids is indistinguishable.

Lemma 4.17. Suppose the KerDH𝑘,𝑘+1 assumption holds in G1 with respect to GroupGen. Then, it follows that��
Pr[Hyb

0
(A) = 1] − Pr[Hyb

1
(A) = 1]

�� = negl(𝜆).
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Proof. Suppose | Pr[Hyb
0
(A) = 1] − Pr[Hyb

1
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. The only difference between

Hyb
0
and Hyb

1
is the verification relation. Let [ĉ]2, [ĉ′]2, [v]2 be the output ofA in an execution of Hyb

0
or Hyb

1
. If

the outputs of Hyb
0
and Hyb

1
differ, then it must be the case that

AW(ĉ − ĉ′) = Av and W(ĉ − ĉ′) ≠ v. (4.6)

In all other cases, the output in Hyb
0
and Hyb

1
is identical. We use A to construct an efficient adversary B for

KerDH𝑘,𝑘+1:

1. On input the KerDH challenge (G, [A]1), algorithm B starts by running algorithm A. Algorithm A outputs

the input dimension 1
ℓ
and 𝑗 ∈ [ℓ].

2. Next, algorithm B samples full-rank matrices B̂,B1,B2

r← Z2𝑘×2𝑘𝑝 and defines B̂∗ = B̂−1, B∗
1
= B−1

1
, and B∗

2
= B−1

2
.

It parses the components of B̂,B1,B2 as in Eq. (4.2) and B∗
1
,B∗

2
, B̂∗ as in Eq. (4.3).

3. Algorithm B then constructs the encoding matrices
ˆT,T1,T2 as in Hyb

0
and Hyb

1
:

• Type-I encodings: Sample Ŝ1, Ŝ2
r← Z𝑘×ℓ𝑝 and let

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗 ∈ Z2𝑘×ℓ𝑝 .

• Type-II encodings: For 𝛼 ∈ {1, 2}, sample S𝛼,1, S𝛼,2
r← Z𝑘×ℓ𝑝 and let T𝛼 = B∗𝛼,1S𝛼,1 + B∗𝛼,2S𝛼,2P𝑗 .

Algorithm B computes T∗ = T1 ⊗ T2 and sets crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

4. Algorithm B samples W r← Z(𝑘+1)×2𝑘𝑝 and computes

Z = W ˆT
[
0𝑗×(ℓ− 𝑗 )

Iℓ− 𝑗

]
.

The challenger gives the common reference string crs to A where

crs = (crsbase, [A]1, [A]1W, [Z]2) = (crsbase, [A]1, [AW]1, [Z]2) .

5. Algorithm A outputs commitments 𝜎1 = [ĉ]2, 𝜎 ′1 = [ĉ′]2 and an opening 𝜋 = [v]2. Algorithm B outputs

W( [ĉ]2 − [ĉ′]2) − [v]2.

Since the KerDH challenger samples A r← Z(𝑘+1)×𝑘𝑝 , the common reference string crs constructed by B is distributed

exactly as required in Hyb
0
and Hyb

1
. By the above analysis, this means that with probability at least 𝜀, algorithm

A outputs [ĉ]2, [ĉ′]2, and [v]2 such that Eq. (4.6) holds. This means A
(
W(ĉ − ĉ′) − v

)
= 0 but W(ĉ − ĉ′) − v ≠ 0.

Correspondingly, algorithm B breaks the KerDH assumption with the same advantage 𝜀. □

Lemma 4.18. Pr[Hyb
1
(A) = 1] = Pr[Hyb

2
(A) = 1].

Proof. Consider the distribution of W in Hyb
2
. In Hyb

2
, both Wnorm and Wsf are sampled uniformly at random from

Z
(𝑘+1)×𝑘
𝑝 . Since B̂ = [B̂1 | B̂2] is a basis for Z2𝑘𝑝 , the distribution ofW is uniform over Z

(𝑘+1)×2𝑘
𝑝 , which matches the

distribution in Hyb
1
. Next,

W ˆT =
(
WnormB̂1 +Wsf,1B̂2 + a⊥wT

sf,2B̂2

) (
B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗

)
= WnormŜ1 +Wsf,1Ŝ2P𝑗 + a⊥wT

sf,2Ŝ2P𝑗 .

From Eq. (4.1), P𝑗 = diag

(
[11× 𝑗 | 01×(ℓ− 𝑗 ) ]

)
, so

P𝑗

[
0𝑗×(ℓ− 𝑗 )

Iℓ− 𝑗

]
= 0.
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Correspondingly, by Eq. (4.4),

Z = W ˆT
[
0𝑗×(ℓ− 𝑗 )

Iℓ− 𝑗

]
= WnormŜ1

[
0𝑗×(ℓ− 𝑗 )

Iℓ− 𝑗

]
.

We conclude that the distribution of Z is identical in Hyb
1
and Hyb

2
. Finally, we consider the remaining components

in the CRS. Again, using the fact that Aa⊥ = 0, we have that

AW = A
(
WnormB̂1 +Wsf,1B̂2 + a⊥wT

sf,2B̂2)
)
= A

(
WnormB̂1 +Wsf,1B̂2

)
.

We conclude that the components of the CRS are distributed identically in Hyb
1
and Hyb

2
. □

Lemma 4.19. Pr[Hyb
2
(A) = 1] = negl(𝜆).

Proof. By construction in Hyb
2
, the components of crs are independent of the vector wsf,2. This means that the

challenger in Hyb
2
can defer the sampling of wsf,2 until after the adversary outputs [ĉ]2, [ĉ′]2, and [v]2. For the

challenger to output 1 in Hyb
2
, it must be the case that B̂2 (ĉ − ĉ′) ≠ 0 and W(ĉ − ĉ′) = v. We argue that over the

choice of wsf,2, the probability that W(ĉ − ĉ′) = v is negligible. Since W =
(
WnormB̂1 +Wsf,1B̂2 + a⊥wT

sf,2B̂2

)
, this

means that

a⊥ ·wT
sf,2B̂2 (ĉ − ĉ′) = v −

(
WnormB̂1 +Wsf,1B̂2

)
(ĉ − ĉ′) ∈ Z𝑘+1𝑝 .

Since B̂2 (ĉ − ĉ′) ≠ 0 and wsf,2
r← Z𝑘𝑝 , the distribution of wT

sf,2B̂2 (ĉ − ĉ′) is uniform over Z𝑝 . Finally, since a⊥ ≠ 0 and
the challenger samples wsf,2

r← Z𝑘𝑝 after all other quantities have been fixed, we conclude that

Pr

[
a⊥ ·wT

sf,2B̂2 (ĉ − ĉ′) = v −
(
WnormB̂1 +Wsf,1B̂2

)
(ĉ − ĉ′) : wsf,2

r← Z𝑘𝑝
]
≤ 1

𝑝
= negl(𝜆). □

By Lemmas 4.17 to 4.19, we conclude that Pr[Hyb
0
(A) = 1] = negl(𝜆). Thus, Construction 4.14 satisfies prefix-

matching security. □

4.3 Proving Linear Relations on Committed Values
The second proof system we design is to argue that a Type-II commitment is consistent with a linear function applied

to a Type-I commitment. Specifically, we describe a succinct proof system for statements of the following flavor: for a

linear function 𝑓 : Zℓ𝑝 → Zℓ𝑝 :,

if 𝜎1 is a Type-I commitment to a vector x ∈ Zℓ𝑝 , then 𝜎2 is a Type-II commitment to the vector y = 𝑓 (x).

Specifically, the “binding” requirement is that the adversary cannot open an input commitment 𝜎1 to two different

output commitments 𝜎2, 𝜎
′
2
with respect to the same linear function 𝑓 . Following [BCFL23], we refer to this property

as a linear chain binding property (also called arguments of knowledge transfer in [GR19, GZ21]). Similar to our

prefix-checking proof system from Section 4.2, the chaining property is enforced in the semi-functional space (i.e., if
𝜎1 and 𝜎

′
1
agree in their semi-functional space, then 𝜎2, 𝜎

′
2
must also agree in their semi-functional space).

Projective chain binding for local functions. The security analysis of our functional commitment scheme in

Section 5 relies on a stronger notion of chain binding tailored to 𝑆-local linear functions (Definition 4.2). At a high

level, our security requirement captures the following idea:

• Let x𝑗1 denote the first 𝑗1 components of a vector x and let y𝑗2 denote the first 𝑗2 components of a vector y. If
( 𝑗1, 𝑗2) ∈ 𝑆 and the function 𝑓 is 𝑆-local, then the value of y𝑗2 is entirely determined by the value of x𝑗1 .

• Our notion of 𝑆-local chain binding then says that given two Type-I commitments 𝜎1, 𝜎
′
1
whose Type-I

projections are identical on the first 𝑗1 components, then the adversary should not be able to open 𝜎1, 𝜎
′
1
to

Type-II commitments 𝜎2, 𝜎
′
2
whose Type-II projections disagree in the first 𝑗2 components with respect to the

function 𝑓 . Observe that unlike standard chain binding, the adversary chooses two input commitments and two

output commitments (in standard chain binding, the adversary only chooses a single input commitment and

must open it two different ways).
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We now give the formal definition.

Definition 4.20 (Projective Chainable Commitments for Linear Functions). Let FCbase =
(
SetupBase, SetupSF,

Commit(1) ,Commit(2) , Project(1) , Project(2)
)
be a projective commitment scheme. In the following description, we

represent linear functions 𝑓 (x) := Mx by a matrix M. A chainable proof system for linear functions is a triple of

efficient algorithms FClin =
(
SetupLin,OpenLin,VerifyLin

)
with the following properties:

• SetupLin(crsbase, 𝑆) → crs: On input the common reference string crsbase (which defines the input space Rℓ
)

and a locality set 𝑆 ⊆ [ℓ] × [ℓ], the setup algorithm outputs a common reference string crs.

• OpenLin(crs, x,M) → 𝜋 : On input a common reference string crs, an input vector x ∈ Rℓ
, and a linear function

M ∈ Rℓ×ℓ
, the opening algorithm outputs a proof 𝜋 .

• VerifyLin(crs, 𝜎1,M, 𝜎2, 𝜋) → 𝑏: On input the common reference string crs, a Type-I commitment 𝜎1, a linear

function M ∈ Rℓ×ℓ
, a Type-II commitment 𝜎2, and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

The proof system should satisfy the following two properties:

• Correctness: For all security parameters 𝜆 ∈ N, all vector lengths ℓ ∈ N, all locality sets 𝑆 ⊆ [ℓ] × [ℓ], all
crsbase in the support of SetupBase(1𝜆, 1ℓ ), all vectors x ∈ Rℓ

(where Rℓ
is the message space associated with

crsbase), and all 𝑆-local linear functions M ∈ Rℓ×ℓ
,

Pr

VerifyLin(crs, 𝜎1,M, 𝜎2, 𝜋) = 1 :

crs← SetupLin(crsbase, 𝑆)
𝜎1 ← Commit(1) (crsbase, x)
𝜎2 ← Commit(2) (crsbase,Mx)

𝜋 ← OpenLin(crs, x,M)

 = 1.

• Chain binding for linear functions: For a security parameter 𝜆 and an adversary A, we define the chain

binding for linear functions security game as follows:

1. On input the security parameter 𝜆, the adversary outputs the dimension 1
ℓ
, a locality set 𝑆 ⊆ [ℓ] × [ℓ],

and a pair ( 𝑗1, 𝑗2) ∈ 𝑆 .
2. The challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗1, 𝑗2) and crs← SetupLin(crsbase, 𝑆). It gives
(crsbase, crs) to A.

3. The adversary outputs an 𝑆-local function M ∈ Rℓ×ℓ
, two Type-I commitments (𝜎1, 𝜎 ′1), two Type-II

commitments (𝜎2, 𝜎 ′2), and two openings 𝜋, 𝜋 ′.

4. The challenger outputs 𝑏 = 1 if all the following properties hold:

– Matching inputs: Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).
– Mismatching outputs: Project(2) (td2, 𝜎2) ≠ Project(2) (td2, 𝜎 ′2).
– Validity of openings: VerifyLin(crs, 𝜎1,M, 𝜎2, 𝜋) = 1 = VerifyLin(crs, 𝜎 ′

1
,M, 𝜎 ′

2
, 𝜋 ′).

Otherwise, the challenger outputs 𝑏 = 0.

We say that FClin satisfies chain binding for linear functions if for all efficient adversaries A, there exists a

negligible function negl(·) such that Pr[𝑏 = 1] = negl(𝜆) in the chain binding for linear functions security

game.

Constructing projective chainable commitments. We now show how to construct a projective chainable com-

mitment for local linear functions on top of the base projective commitment scheme from Section 4.1 (Construction 4.8).

Before describing our construction, we define the projection matrix for a local linear function.
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Definition 4.21 (Projection Matrix for a Local Linear Function). Let ℓ ∈ N be an input length. For indices 𝑗1, 𝑗2 ∈ [ℓ],
we define the projection matrix P( 𝑗1, 𝑗2 )lin to be

P( 𝑗1, 𝑗2 )lin
:= Iℓ2 −

(
Iℓ − P𝑗1

)
⊗ P𝑗2 ∈ {0, 1}ℓ

2×ℓ2 , (4.7)

where P𝑗1 , P𝑗2 ∈ {0, 1}ℓ×ℓ are the projection matrices from Definition 4.1. For a locality set 𝑆 ⊆ [ℓ] × [ℓ], we define
the projection matrix for 𝑆 to be

P(𝑆 )lin
:=

∏
( 𝑗1, 𝑗2 ) ∈𝑆

P( 𝑗1, 𝑗2 )lin ∈ {0, 1}ℓ2×ℓ2 . (4.8)

Lemma 4.22 (Projection Matrix for a Local Linear Function). Let ℓ ∈ N be an input length and 𝑆 ⊆ [ℓ] × [ℓ] be a
locality set. Suppose 𝑓 : Zℓ𝑝 → Zℓ𝑝 is an 𝑆-local linear function 𝑓 (x) := Mx where M ∈ Zℓ×ℓ𝑝 . Let Plin := P(𝑆 )lin be the
projection matrix associated with 𝑆 from Definition 4.21. Then the following properties hold:

• vec(M)TPlin = vec(M)T.

• For all ( 𝑗1, 𝑗2) ∈ 𝑆 and all vectors r ∈ Zℓ𝑝 , Plin
(
Iℓ ⊗ vec(rTP𝑗2 )

)
(Iℓ − P𝑗1 ) = 0, where P𝑗1 , P𝑗2 ∈ {0, 1}ℓ×ℓ are the

projection matrices from Definition 4.1.

Proof. We show each claim individually:

• For the first claim, we start by observing that if 𝑓 is ( 𝑗1, 𝑗2)-local, then the first 𝑗2 components of Me𝑖 are zero
for all 𝑖 > 𝑗1 and where e𝑖 ∈ {0, 1}ℓ is the 𝑖th basis vector. In other words,

P𝑗2 ·M · (Iℓ − P𝑗1 ) = 0. (4.9)

Then, for all ( 𝑗1, 𝑗2) ∈ 𝑆 ,

vec(M)TP( 𝑗1, 𝑗2 )lin = vec(M)T
[
Iℓ2 − (Iℓ − P𝑗1 ) ⊗ P𝑗2

]
= vec(M)T − vec(M)T

(
(Iℓ − P𝑗1 ) ⊗ P𝑗2

)
= vec(M)T − vec

(
PT
𝑗2
M(Iℓ − P𝑗1 )

)
by Eq. (3.4)

= vec(M)T by Eq. (4.9) and since P𝑗2 = PT
𝑗2
.

Since 𝑓 is ( 𝑗1, 𝑗2)-local for all ( 𝑗1, 𝑗2) ∈ 𝑆 , we have that

vec(M)TPlin = vec(M)T
∏
( 𝑗1, 𝑗2 ) ∈𝑆

P( 𝑗1, 𝑗2 )lin = vec(M)T.

• For the second claim, take any ( 𝑗1, 𝑗2) ∈ 𝑆 , and let Q𝑗1 = Iℓ − P𝑗1 ∈ {0, 1}ℓ×ℓ . Then,

(Iℓ ⊗ vec(rTP𝑗2 ))Q𝑗1 = (Iℓ ⊗ vec(rTP𝑗2 )) (Q𝑗1 ⊗ 1) = Q𝑗1 ⊗ vec(rTP𝑗2 ).

Since Q𝑗1 is a diagonal matrix and its entries are in {0, 1}, it follows that Q2

𝑗1
= Q𝑗1 . Similarly, since P𝑗2 is a

diagonal matrix with entries in {0, 1}, we have P𝑗2P
T
𝑗2
= P2𝑗2 = P𝑗2 . Then,

(Q𝑗1 ⊗ P𝑗2 ) (Q𝑗1 ⊗ vec(rTP𝑗2 )) = Q2

𝑗1
⊗
(
(P𝑗2 ⊗ 1) · vec(rTP𝑗2 )

)
by Eq. (3.1)

= Q𝑗1 ⊗ vec(rTP𝑗2P
T
𝑗2
) by Eq. (3.4)

= Q𝑗1 ⊗ vec(rTP𝑗2 ) since P𝑗2P
T
𝑗2
= P𝑗2 .

(4.10)

Combining the above two relations and using the fact that P( 𝑗1, 𝑗2 )lin = Iℓ2 − (Iℓ − P𝑗1 ) ⊗ P𝑗2 = Iℓ2 − Q𝑗1 ⊗ P𝑗2 ,

P( 𝑗1, 𝑗2 )lin

(
Iℓ ⊗ vec(rTP𝑗2 )

)
(Iℓ − P𝑗1 ) = P( 𝑗1, 𝑗2 )lin

(
Iℓ ⊗ vec(rTP𝑗2 )

)
Q𝑗1

= P( 𝑗1, 𝑗2 )lin

(
Q𝑗1 ⊗ vec(rTP𝑗2 )

)
by Eq. (3.1)

= (Iℓ2 − (Q𝑗1 ⊗ P𝑗2 ))
(
Q𝑗1 ⊗ vec(rTP𝑗2 )

)
by definition of P( 𝑗1, 𝑗2 )lin

=
(
Q𝑗1 ⊗ vec(rTP𝑗2 )

)
−
(
Q𝑗1 ⊗ vec(rTP𝑗2 )

)
by Eq. (4.10)

= 0.
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Finally, since the matrices P( 𝑗1, 𝑗2 )lin are diagonal for all 𝑗1, 𝑗2 ∈ [ℓ], they commute so we can write

Plin =
∏
(𝑠,𝑡 ) ∈𝑆

P(𝑠,𝑡 )lin =
©­«

∏
(𝑠,𝑡 ) ∈𝑆\{ ( 𝑗1, 𝑗2 ) }

P(𝑠,𝑡 )lin
ª®¬ · P( 𝑗1, 𝑗2 )lin .

Correspondingly,

Plin
(
Iℓ ⊗ vec(rTP𝑗2 )

)
(Iℓ − P𝑗1 ) =

©­«
∏

(𝑠,𝑡 ) ∈𝑆\{ ( 𝑗1, 𝑗2 ) }
P(𝑠,𝑡 )lin

ª®¬ · P( 𝑗1, 𝑗2 )lin

(
Iℓ ⊗ vec(rTP𝑗2 )

)
(Iℓ − P𝑗1 ) = 0. □

Construction 4.23 (Projective Chainable Commitments for Local Linear Functions). Let FCbase =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
be the projective commitment scheme from Construction 4.8.

We build a projective chainable commitment for local linear functions FClin =
(
SetupLin,OpenLin,VerifyLin

)
over

FCbase as follows:

• SetupLin(crsbase, 𝑆): On input the common reference string crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
for the

base projective commitment scheme (which defines the input space Zℓ𝑝 ) and a locality set 𝑆 ⊆ [ℓ] × [ℓ], the
setup algorithm samples A r← Z𝑘×(𝑘+1)𝑝 . Then, for 𝛼 ∈ {1, 2}, it samples R𝛼

r← Z(𝑘+1)×2𝑘𝑝 andW𝛼
r← Zℓ

2 (𝑘+1)×2𝑘
𝑝 .

It computes

[Z𝛼 ]2 = W𝛼 [ ˆT]2 − (Plin ⊗ I𝑘+1) (Iℓ ⊗ vec(R𝛼 [T𝛼 ]2))

= [W𝛼
ˆT − (Plin ⊗ I𝑘+1) (Iℓ ⊗ vec(R𝛼T𝛼 ))]2 ∈ Gℓ2 (𝑘+1)×ℓ

2
,

(4.11)

where Plin := P(𝑆 )lin is the projection matrix from Eq. (4.8). Output the common reference string

crs =
(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)W𝛼 ]1, [AR𝛼 ]1, [Z𝛼 ]2

}
𝛼∈{1,2}

)
. (4.12)

• OpenLin(crs, x,M): On input the common reference string crs (parsed as in Eq. (4.12)), the vector x ∈ Zℓ𝑝 , and
the matrix M ∈ Zℓ×ℓ𝑝 , the opening algorithm computes for each 𝛼 ∈ {1, 2},

[v𝛼 ]2 = (vec(M)T ⊗ I𝑘+1) [Z𝛼 ]2x ∈ G𝑘+12

along with [c′
1
]2 = [T1]2Mx = [T1Mx]2 ∈ G2𝑘

2
. It outputs the opening 𝜋 = ( [c′

1
]2, [v1]2, [v2]2).

• VerifyLin(crs, 𝜎1,M, 𝜎2, 𝜋): On input the common reference string crs (parsed as in Eq. (4.12)), a Type-I

commitment 𝜎1 = [ĉ]2, a matrix M ∈ Zℓ×ℓ𝑝 , a Type-II commitment 𝜎2 = ( [c1]1, [c2]2), and a proof 𝜋 =

( [c′
1
]2, [v1]2, [v2]2), the verification algorithm outputs 1 if the following conditions hold:

– [c1]1 [1]2 = [1]1 [c′1]2.
– (vec(M)T ⊗ I𝑘 ) [(Iℓ2 ⊗ A)W1]1 [ĉ]2 = [AR1]1 [c′1]2 + [A]1 [v1]2.
– (vec(M)T ⊗ I𝑘 ) [(Iℓ2 ⊗ A)W2]1 [ĉ]2 = [AR2]1 [c2]2 + [A]1 [v2]2.

Theorem 4.24 (Correctness). Construction 4.23 is correct.

Proof. Take any 𝜆, ℓ ∈ N and let 𝑆 ⊆ [ℓ] × [ℓ] be an arbitrary locality set. Let crsbase ← SetupBase(1𝜆, 1ℓ ) and parse

crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
Let crs← SetupLin(crsbase, 𝑆), and parse

crs =
(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)W𝛼 ]1, [AR𝛼 ]1, [Z𝛼 ]2

}
𝛼∈{1,2}

)
.

Take any vector x ∈ Zℓ𝑝 and any 𝑆-local linear function 𝑓 (x) := Mx where M ∈ Zℓ×ℓ𝑝 . Let y = Mx. Let

𝜎1 ← Commit(1) (crsbase, x), 𝜎2 ← Commit(2) (crsbase, y), and 𝜋 ← OpenLin(crs, x,M). We parse 𝜎1 = [ĉ]2,
𝜎2 = ( [c1]1, [c2]2) and 𝜋 = ( [c′

1
]1, [v1]2, [v2]2). Consider now VerifyLin(crs, 𝜎1,M, 𝜎2, 𝜋). By construction of the

underlying algorithms, we now have the following:
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• First, the commitments satisfy ĉ = ˆTx, c1 = T1y, and c2 = T2y. In addition, c′
1
= T1Mx = T1y = c1, and the first

verification relation holds.

• For the second verification relation, for 𝛼 ∈ {1, 2}, we have

(vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼 ĉ = (vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼
ˆTx

= (vec(M)T ⊗ A)W𝛼
ˆTx by Eq. (3.1)

= A(vec(M)T ⊗ I𝑘+1)W𝛼
ˆTx by Eq. (3.3).

(4.13)

Since 𝑓 is 𝑆-local, by Lemma 4.22, we have that vec(M)TPlin = vec(M)T. Then, we can write

(vec(M)T ⊗ I𝑘+1)Z𝛼 = (vec(M)T ⊗ I𝑘+1)W𝛼
ˆT − (vec(M)T ⊗ I𝑘+1) (Plin ⊗ I𝑘+1) (Iℓ ⊗ vec(R𝛼T𝛼 ))

= (vec(M)T ⊗ I𝑘+1)W𝛼
ˆT − (vec(M)T ⊗ I𝑘+1) (Iℓ ⊗ vec(R𝛼T𝛼 )) .

Thus, we have

(vec(M)T ⊗ I𝑘+1)W𝛼
ˆT = (vec(M)T ⊗ I𝑘+1)Z𝛼 + (vec(M)T ⊗ I𝑘+1) (Iℓ ⊗ vec(R𝛼T𝛼 )).

Substituting back into Eq. (4.13), and using the fact that v𝛼 = (vec(M)T ⊗ I𝑘+1)Z𝛼x, we have

(vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼 ĉ = A(vec(M)T ⊗ I𝑘+1)W𝛼
ˆTx

= A(vec(M)T ⊗ I𝑘+1)
(
Z𝛼x + (Iℓ ⊗ vec(R𝛼T𝛼 ))x

)
= Av𝛼 + A(vec(M)T ⊗ I𝑘+1) (Iℓ ⊗ vec(R𝛼T𝛼 ))x
= Av𝛼 + A(vec(M)T ⊗ I𝑘+1) (x ⊗ vec(R𝛼T𝛼 )).

(4.14)

To complete the proof, we now have

(vec(M)T ⊗ I𝑘+1) (x ⊗ vec(R𝛼T𝛼 )) = (vec(M)T ⊗ I𝑘+1) (x ⊗ Iℓ ⊗ I𝑘+1)vec(R𝛼T𝛼 ) by Eq. (3.2)

=
(
(vec(M)T (x ⊗ Iℓ )) ⊗ I𝑘+1

)
vec(R𝛼T𝛼 ) by Eq. (3.1)

=
(
(Mx)T ⊗ I𝑘+1

)
vec(R𝛼T𝛼 ) by Eq. (3.4)

= R𝛼T𝛼Mx = R𝛼T𝛼y = R𝛼c𝛼 by Eq. (3.4).

Substituting back into Eq. (4.14), we have Since v𝛼 = (vec(M)T ⊗ I𝑘+1)Z𝛼x, we can now write

(vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼 ĉ = Av𝛼 + A(vec(M)T ⊗ I𝑘+1) (x ⊗ vec(R𝛼T𝛼 ))
= Av𝛼 + AR𝛼c𝛼 .

Since c′
1
= c1, this means the second and third verification relations hold. □

Theorem 4.25 (Chain Binding for Linear Functions). Suppose the 𝑘-KerLin assumption holds in G1 with respect to
GroupGen and the 𝑘-Lin assumption holds in G2 with respect to GroupGen. Then, Construction 4.23 satisfies chain
binding for linear functions.

Proof. To simplify the proof, we start by defining a “homogeneous” version of the chain binding for linear functions

security game for Construction 4.23. We define the game below:

1. On input the security parameter 𝜆, the adversary outputs the dimension 1
ℓ
, a locality set 𝑆 ⊆ [ℓ] × [ℓ], and a

pair ( 𝑗1, 𝑗2) ∈ 𝑆 .

2. The challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗1, 𝑗2) and crs ← SetupLin(crsbase, 𝑆). Then,

crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
, td1 = B̂2, td2 = (B1,2,B2,2), and

crs =
(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)W𝛼 ]1, [AR𝛼 ]1, [Z𝛼 ]2

}
𝛼∈{1,2}

)
.

The challenger gives crs to A.
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3. The adversary outputs an 𝑆-local function M ∈ Zℓ×ℓ𝑝 and a tuple

(
[ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
.

4. The challenger outputs 1 if the following properties hold:

• Matching inputs: B̂2ĉ = 0.

• Mismatching outputs: either B1,2c1 ≠ 0 or B2,2c2 ≠ 0.

• Validity of openings: for each 𝛼 ∈ {1, 2}, (vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼 ĉ = AR𝛼c𝛼 + Av𝛼 .

We now show that any adversary that can win the homogeneous chain binding security game (i.e., cause the above

experiment to output 1) implies an adversary that can win the standard chain binding security game (Definition 4.20).

The claim essentially follows by linearity of the verification relation. We give the formal statement below:

Lemma 4.26. Suppose for all efficient adversaries B, there exists a negligible function negl(·) such that Pr[𝑏 = 1] =
negl(𝜆) in the homogeneous chain binding experiment for linear functions. Then, Construction 4.23 satisfies chain binding
security for linear functions.

Proof. Suppose there exists an adversary A that breaks chain binding security for linear functions (Definition 4.20)

with advantage 𝜀. We use A to construct an adversary B that wins the homogeneous chain binding game:

1. Algorithm B starts running algorithm A to obtain the input length 1
ℓ
, the locality set 𝑆 ⊆ [ℓ] × [ℓ], and a pair

( 𝑗1, 𝑗2) ∈ 𝑆 . It gives 1ℓ , 𝑆 , and ( 𝑗1, 𝑗2) to the challenger to obtain the common reference string crs.

2. AlgorithmB forwards crs toA and receives a functionM ∈ Zℓ×ℓ𝑝 , two Type-I commitments 𝜎1 = [ĉ]2, 𝜎 ′1 = [ĉ′]2,
two Type-II commitments 𝜎2 = ( [c1]1, [c2]2), 𝜎 ′2 = ( [c′1]1, [c′2]2), and two openings 𝜋 = ( [c̃1]2, [v1]2, [v2]2),
𝜋 ′ = ( [c̃′

1
]2, [v′1]2, [v′2]2).

3. Algorithm B outputs the same function M together with the tuple(
[ĉ]2 − [ĉ′]2, [c̃1]2 − [c̃′1]2, [c2]2 − [c′2]2, [v1]2 − [v′1]2, [v2]2 − [v′2]2

)
.

In the homogeneous chain binding game, the challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗1, 𝑗2) and
crs← SetupLin(crsbase, 𝑆). Thus algorithm B perfectly simulates an execution of the chain binding security game

for A. Thus, with probability 𝜀, the outputs of algorithm A satisfies the following properties:

• Matching inputs: Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).

• Mismatching outputs: Project(2) (td2, 𝜎2) ≠ Project(2) (td2, 𝜎 ′2).

• Validity of openings: VerifyLin(crs, 𝜎1,M, 𝜎2, 𝜋) = 1 = VerifyLin(crs, 𝜎 ′
1
,M, 𝜎 ′

2
, 𝜋 ′).

We claim that in this case, the output in the homogeneous chain binding game is also 1:

• Parse crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and

crs =
(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)W𝛼 ]1, [AR𝛼 ]1, [Z𝛼 ]2

}
𝛼∈{1,2}

)
.

In addition, parse td1 = B̂2, td2 = (B1,2,B2,2).

• Since VerifyLin(crs, 𝜎1,M, 𝜎2, 𝜋) = 1 = VerifyLin(crs, 𝜎 ′
1
,M, 𝜎 ′

2
, 𝜋 ′), the following conditions hold:

– c1 = c̃1 and c′
1
= c̃′

1
.
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– For 𝛼 ∈ {1, 2}, we have that

(vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼 ĉ = AR𝛼c𝛼 + Av𝛼
(vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼 ĉ′ = AR𝛼c′𝛼 + Av′𝛼 ,

where we have used the fact that c1 = c̃1 and c′
1
= c̃′

1
. Taking the difference of these two relations, we

have for each 𝛼 ∈ {1, 2},

(vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼 (ĉ − ĉ′) = AR𝛼 (c𝛼 − c′𝛼 ) + A(v𝛼 − v′𝛼 ).

This is precisely the third requirement in the homogeneous game.

• First, Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1) means that B̂2ĉ = B̂2ĉ′. Thus, B̂2 (ĉ − ĉ′) = 0, so the first

requirement in the homogeneous game is satisfied.

• Next Project(2) (td2, 𝜎2) ≠ Project(2) (td2, 𝜎 ′2) means that either B1,2c̃1 ≠ B1,2c̃′1 or B2,2c2 ≠ B2,2c′2. Since c1 = c̃1
and c′

1
= c̃′

1
, this means that either B1,2 (c1 − c′1) ≠ 0 or B2,2 (c2 − c′2) ≠ 0, so the second requirement in the

homogeneous game holds.

Correspondingly, the output is 1 in the homogeneous evaluation binding game, and the claim follows. □

Proof of Theorem 4.25. We now return to the proof of Theorem 4.25. Let A be an efficient adversary for the

homogeneous chain binding experiment. Let ℓ ∈ N be the vector dimension that A chooses (which will determine

the size of the MDDH assumption in Lemma 4.31). We now define a sequence of hybrid experiments:

• Hyb
0
: This is the homogeneous chain binding experiment. We recall the full specification here:

– At the beginning of the game, the adversaryA outputs the dimension ℓ , a locality set 𝑆 ⊆ [ℓ] × [ℓ], and a

pair ( 𝑗1, 𝑗2) ∈ 𝑆 .
– The challenger samples G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ← GroupGen(1𝜆).
– The challenger samples full-rank matrices B̂,B1,B2

r← Z2𝑘×2𝑘𝑝 and defines B̂∗ = B̂−1, B∗
1
= B−1

1
, B∗

2
= B−1

2
.

It parses B̂,B1,B2 as in Eq. (4.2) and B̂∗,B∗
1
,B∗

2
as in Eq. (4.3).

– The challenger constructs the encoding matrices
ˆT,T1,T2 as follows:

∗ Type-I encodings: Sample Ŝ1, Ŝ2
r← Z𝑘×ℓ𝑝 and let

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗1 ∈ Z2𝑘×ℓ𝑝 .

∗ Type-II encodings: For 𝛼 ∈ {1, 2}, sample S𝛼,1, S𝛼,2
r← Z𝑘×ℓ𝑝 . Let T𝛼 = B∗𝛼,1S𝛼,1 + B∗𝛼,2S𝛼,2P𝑗2 ∈ Z2𝑘×ℓ𝑝 .

Let T∗ = T1 ⊗ T2 and set crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

– The challenger samplesA r← Z𝑘×(𝑘+1)𝑝 . Then, for𝛼 ∈ {1, 2}, it samplesR𝛼
r← Z(𝑘+1)×2𝑘𝑝 ,W𝛼

r← Zℓ
2 (𝑘+1)×2𝑘
𝑝 ,

and computes for each 𝛼 ∈ {1, 2},

Z𝛼 = W𝛼
ˆT − (Plin ⊗ I𝑘+1) (Iℓ ⊗ vec(R𝛼T𝛼 )), (4.15)

where Plin = P(𝑆 )lin is projection matrix from Eq. (4.8). The challenger gives the common reference string

crs to A where

crs =
(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)W𝛼 ]1, [AR𝛼 ]1, [Z𝛼 ]2

}
𝛼∈{1,2}

)
.

– The adversary outputs an 𝑆-local function M ∈ Zℓ×ℓ𝑝 and a tuple

(
[ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
.

The output of the experiment is 1 if the following conditions hold:

B̂2ĉ = 0 and ∀𝛼 ∈ {1, 2} : (vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼 ĉ = AR𝛼c𝛼 + Av𝛼 and B1,2c1 ≠ 0 or B2,2c2 ≠ 0.
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• Hyb
1
: Same as Hyb

0
, except the challenger samples W(𝛼 )norm,W

(𝛼 )
sf

r← Zℓ
2 (𝑘+1)×𝑘
𝑝 for each 𝛼 ∈ {1, 2}. It then sets

W𝛼 = W(𝛼 )normB̂1+W(𝛼 )sf B̂2 when setting up the CRS. After the adversary outputs

(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
,

the challenger computes

v′𝛼 = v𝛼 − (vec(M)T ⊗ I𝑘+1)W(𝛼 )normB̂1ĉ. (4.16)

The output of the experiment is 1 if the following conditions hold:

B̂2ĉ = 0 and ∀𝛼 ∈ {1, 2} : AR𝛼c𝛼 + Av′𝛼 = 0 and B1,2c1 ≠ 0 or B2,2c2 ≠ 0.

• Hyb
2
: Same as Hyb

1
except the output of the experiment is 1 if the following conditions hold:

B̂2ĉ = 0 and ∀𝛼 ∈ {1, 2} : R𝛼c𝛼 + v′𝛼 = 0 and B1,2c1 ≠ 0 or B2,2c2 ≠ 0.

• Hyb
3
: Same as Hyb

2
except when constructing the CRS, the challenger samples a random nonzero vector

a⊥ ∈ Z𝑘+1𝑝 in the kernel of A (i.e., Aa⊥ = 0). Then, for each 𝛼 ∈ {1, 2}, it samples W(𝛼 )
sf,1

r← Z
ℓ2 (𝑘+1)×𝑘
𝑝 ,

W(𝛼 )sf,2
r← Zℓ2×𝑘𝑝 . It also samples R𝛼,1

r← Z(𝑘+1)×2𝑘𝑝 and r𝛼,2
r← Z2𝑘𝑝 , and sets

W(𝛼 )sf = W(𝛼 )sf,1 +
(
W(𝛼 )sf,2 ⊗ a⊥

)
and R𝛼 = R𝛼,1 +

(
rT𝛼,2 ⊗ a⊥

)
= R𝛼,1 + a⊥rT𝛼,2.

The challenger then computes

Z𝛼,1 =
(
W(𝛼 )normB̂1 +W(𝛼 )sf,1 B̂2

)
ˆT − (Plin ⊗ I𝑘+1)

(
Iℓ ⊗ vec

(
R𝛼,1T𝛼

) )
Z𝛼,2 = W(𝛼 )sf,2 Ŝ2P𝑗1 − Plin

(
Iℓ ⊗ vec

(
rT𝛼,2T𝛼 )

)
and sets Z𝛼 = Z𝛼,1 + (Iℓ2 ⊗ a⊥)Z𝛼,2.

• Hyb
4
: Same as Hyb

3
except when constructing the CRS, the challenger sets

crs =
(
crsbase, [A]1,

{[
(Iℓ2 ⊗ A)

(
W(𝛼 )normB̂1 +W(𝛼 )sf,1 B̂2

) ]
1
, [AR𝛼,1]1, [Z𝛼 ]2

})
.

• Hyb
5
: Same as Hyb

4
, except for each 𝛼 ∈ {1, 2}, the challenger samples U𝛼

r← Zℓ2×ℓ𝑝 and sets

Z𝛼,2 = U𝛼P𝑗1 − Plin
(
Iℓ ⊗ vec

(
rT𝛼,2T𝛼

) )
.

• Hyb
6
: Same as Hyb

5
, except for each 𝛼 ∈ {1, 2} the challenger samples r𝛼,2,norm, r𝛼,2,sf

r← Z𝑘𝑝 and sets

rT𝛼,2 = rT𝛼,2,normB𝛼,1 + rT𝛼,2,sfB𝛼,2.

Then, it sets

Z𝛼,2 = U𝛼P𝑗1 − Plin
(
Iℓ ⊗ vec

(
rT𝛼,2,normS𝛼,1

) )
− Plin

(
Iℓ ⊗ vec

(
rT𝛼,2,sfS𝛼,2P𝑗2

) )
.

• Hyb
7
: Same as Hyb

6
, except the challenger sets

Z𝛼,2 = U𝛼P𝑗1 − Plin
(
Iℓ ⊗ vec

(
rT𝛼,2,normS𝛼,1

) )
.

Recall that in this experiment, the challenger still samples U𝛼
r← Zℓ2×ℓ𝑝 .

We write Hyb𝑖 (A) to denote the output distribution of an execution of hybrid Hyb𝑖 with adversaryA. We now show

that the output distribution of each adjacent pair of hybrids is indistinguishable.

Lemma 4.27. Pr[Hyb
0
(A) = 1] = Pr[Hyb

1
(A) = 1].
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Proof. Since B̂ is a basis for Z2𝑘𝑝 and the matricesW(𝛼 )norm andW(𝛼 )sf are uniform, the distribution ofW(𝛼 ) is also uniform
in Hyb

1
, and thus, is identical to the distribution in Hyb

0
. It suffices to consider the outputs of the two experiments.

Suppose A outputs

(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
. First, if B̂2ĉ ≠ 0, then the output in both experiments is

identical. Suppose then that B̂2ĉ = 0. This means that

W𝛼 ĉ = W(𝛼 )normB̂1ĉ +WsfB̂2ĉ = W(𝛼 )normB̂1ĉ. (4.17)

Consider the value of AR𝛼c𝛼 + Av′𝛼 in Hyb
1
:

AR𝛼c𝛼 + Av′𝛼 = AR𝛼c𝛼 + Av𝛼 − A(vec(M)T ⊗ I𝑘+1)W(𝛼 )normB̂1ĉ by Eq. (4.16)

= AR𝛼c𝛼 + Av𝛼 − (vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W(𝛼 )normB̂1ĉ by Eq. (3.3)

= AR𝛼c𝛼 + Av𝛼 − (vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼 ĉ by Eq. (4.17).

Thus, in Hyb
1
, if B̂2ĉ = 0, then AR𝛼c𝛼 + Av′𝛼 = 0 if and only if (vec(M)T ⊗ I𝑘 ) (Iℓ2 ⊗ A)W𝛼 ĉ = AR𝛼c𝛼 + Av𝛼 .

Correspondingly, the output distribution of Hyb
1
(A) is identical to the output distribution of Hyb

0
(A). □

Lemma 4.28. Suppose the KerDH𝑘,𝑘+1 assumption holds in G1 with respect to GroupGen. Then, there exists a negligible
function negl(·) such that | Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1] | ≤ negl(𝜆).

Proof. Suppose | Pr[Hyb
1
(A) = 1] − Pr[Hyb

2
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. Suppose the output of A is(

M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2
)
in an execution of Hyb

1
or Hyb

2
. If the outputs of Hyb

1
and Hyb

2
differ, then it

must be the case that that for some 𝛼 ∈ {1, 2},

A(R𝛼c𝛼 + v′𝛼 ) = 0 and R𝛼c𝛼 + v′𝛼 ≠ 0. (4.18)

In all other cases, the output in Hyb
1
and Hyb

2
is identical. We use A to construct an efficient adversary B for

KerDH𝑘,𝑘+1:

1. On input the KerDH challenge (G, [A]1), algorithm B starts by running algorithm A. Algorithm A outputs

the input dimension ℓ , the locality set 𝑆 ⊆ [ℓ] × [ℓ], and a pair ( 𝑗1, 𝑗2) ∈ 𝑆 .

2. Next, algorithm B samples full-rank matrices B̂,B1,B2

r← Z2𝑘×2𝑘𝑝 and defines B̂∗ = B̂−1, B∗
1
= B−1

1
, B∗

2
= B−1

2
. It

parses the components of B̂,B1,B2 as in Eq. (4.2) and B̂∗,B∗
1
,B∗

2
as in Eq. (4.3).

3. Algorithm B then constructs the encoding matrices
ˆT,T1,T2 as in Hyb

1
and Hyb

2
:

• Type-I encodings: Sample Ŝ1, Ŝ2
r← Z𝑘×ℓ𝑝 and let

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗1 ∈ Z2𝑘×ℓ𝑝 .

• Type-II encodings: For 𝛼 ∈ {1, 2}, sample S𝛼,1, S𝛼,2
r← Z𝑘×ℓ𝑝 and let T𝛼 = B∗𝛼,1S𝛼,1 + B∗𝛼,2S𝛼,2P𝑗2 .

Let T∗ = T1 ⊗ T2 and set crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

4. For each 𝛼 ∈ {1, 2}, algorithm B samplesW(𝛼 )norm,W
(𝛼 )
sf

r← Zℓ
2 (𝑘+1)×𝑘
𝑝 and setsW𝛼 = W(𝛼 )normB̂1 +W(𝛼 )sf B̂2. It also

samples R𝛼
r← Z(𝑘+1)×2𝑘𝑝 . Then, for 𝛼 ∈ {1, 2}, it computes

Z𝛼 = W𝛼
ˆT − (Plin ⊗ I𝑘+1) (Iℓ ⊗ vec(R𝛼T𝛼 )),

where Plin = P(𝑆 )lin . The challenger gives the common reference string crs to A where

crs =
(
crsbase, [A]1,

{
(Iℓ2 ⊗ [A]1)W𝛼 , [A]1R𝛼 , [Z𝛼 ]2

}
𝛼∈{1,2}

)
=

(
crsbase, [A]1,

{
[(Iℓ2 ⊗ A)W𝛼 ]1, [AR𝛼 ]1, [Z𝛼 ]2

}
𝛼∈{1,2}

)
.
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5. After algorithm A outputs

(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
algorithm B computes for each 𝛼 ∈ {1, 2},

[v′𝛼 ]2 = [v𝛼 ]2 − (vec(M)T ⊗ I𝑘+1)W(𝛼 )normB̂1 [ĉ]2.

It then checks if there exist 𝛼 ∈ {1, 2} where

[AR𝛼 ]1 [c𝛼 ]2 + [A]1 [v′𝛼 ]2 = [0]𝑇 and R𝛼 [c𝛼 ]2 + [v′𝛼 ]2 ≠ [0]2 .

If so, it outputs R𝛼 [c𝛼 ]2 + [v′𝛼 ]2 = [R𝛼c𝛼 + v′𝛼 ]2.

Since the KerDH challenger samples A r← Z(𝑘+1)×𝑘𝑝 , the common reference string crs constructed by B is distributed

exactly as required in Hyb
1
and Hyb

2
. By the above analysis, this means that with probability 𝜀, algorithmA outputs(

M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2
)
which satisfies Eq. (4.18). Correspondingly, algorithm B breaks KerDH with the

same advantage 𝜀. □

Lemma 4.29. Pr[Hyb
2
(A) = 1] = Pr[Hyb

3
(A) = 1].

Proof. We argue that Hyb
2
and Hyb

3
are identically distributed. SinceW(𝛼 )sf,1 and R𝛼,1 are uniform over their respective

domains, it follows thatW(𝛼 )sf and R𝛼 are identically distributed as in Hyb
2
and Hyb

3
. To complete the proof, we show

that the distribution of Z𝛼 in Hyb
3
is identical to that in Hyb

2
. Suppose we construct Z𝛼 according to Eq. (4.15). Then,

Z𝛼 = W𝛼
ˆT − (Plin ⊗ I𝑘+1) (Iℓ ⊗ vec(R𝛼T𝛼 ))

=
(
W(𝛼 )normB̂1 +W(𝛼 )sf,1 B̂2 +

(
W(𝛼 )sf,2 ⊗ a⊥

)
B̂2

)
ˆT − (Plin ⊗ I𝑘+1)

(
Iℓ ⊗ vec

( (
R𝛼,1 + a⊥rT𝛼,2

)
T𝛼

) )
= Z𝛼,1 +

(
W(𝛼 )sf,2 ⊗ a⊥

)
B̂2

ˆT − (Plin ⊗ I𝑘+1)
(
Iℓ ⊗ vec

(
a⊥rT𝛼,2T𝛼

) )
. (4.19)

We analyze the components of Z𝛼 in the subspace spanned by a⊥. First, using Eq. (3.3), we can write(
W(𝛼 )sf,2 ⊗ a⊥

)
B̂2

ˆT = (Iℓ2 ⊗ a⊥)W(𝛼 )sf,2 B̂2
ˆT = (Iℓ2 ⊗ a⊥)W(𝛼 )sf,2 B̂2 (B̂∗1Ŝ1 + B̂∗2Ŝ2P𝑗1 ) = (Iℓ2 ⊗ a⊥)W(𝛼 )sf,2 Ŝ2P𝑗1 . (4.20)

For the remaining component in Eq. (4.19),

Iℓ ⊗ vec

(
a⊥rT𝛼,2T𝛼

)
= Iℓ ⊗

[ (
Iℓ ⊗ a⊥rT𝛼,2

)
vec(T𝛼 )

]
by Eq. (3.4)

= Iℓ ⊗
[
(Iℓ ⊗ a⊥)

(
Iℓ ⊗ rT𝛼,2

)
vec(T𝛼 )

]
by Eq. (3.1)

= Iℓ ⊗
[
(Iℓ ⊗ a⊥)vec

(
rT𝛼,2T𝛼

) ]
by Eq. (3.4)

=
(
Iℓ ⊗ (Iℓ ⊗ a⊥)

) (
Iℓ ⊗ vec

(
rT𝛼,2T𝛼

) )
by Eq. (3.1)

=
(
Iℓ2 ⊗ a⊥

) (
Iℓ ⊗ vec

(
rT𝛼,2T𝛼

) )
.

Finally, by Eq. (3.3),

(Plin ⊗ I𝑘+1)
(
Iℓ ⊗ vec

(
a⊥rT𝛼,2T𝛼

) )
= (Plin ⊗ I𝑘+1)

(
Iℓ2 ⊗ a⊥

) (
Iℓ ⊗ vec

(
rT𝛼,2T𝛼

) )
= (Iℓ2 ⊗ a⊥)Plin

(
Iℓ ⊗ vec

(
rT𝛼,2T𝛼

) )
. (4.21)

Combining Eq. (4.21), (4.20), and (4.19), we have

Z𝛼 = Z𝛼,1 +
(
Iℓ2 ⊗ a⊥

) (
W(𝛼 )sf,2 Ŝ2P𝑗1 − Plin

(
Iℓ ⊗ vec

(
rT𝛼,2T𝛼

) ) )
= Z𝛼,1 + (Iℓ2 ⊗ a⊥)Z𝛼,2,

which is precisely how the challenger constructs Z𝛼 in Hyb
3
. □

Lemma 4.30. Pr[Hyb
3
(A) = 1] = Pr[Hyb

4
(A) = 1].
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Proof. The distribution of crs in the two experiments are identical. In particular, in Hyb
3
, for 𝛼 ∈ {1, 2},

(Iℓ2 ⊗ A)W𝛼 = (Iℓ2 ⊗ A)
(
W(𝛼 )normB̂1 +W(𝛼 )sf B̂2

)
= (Iℓ2 ⊗ A)

(
W(𝛼 )normB̂1 +W(𝛼 )sf,1 B̂2 +

(
W(𝛼 )sf,2 ⊗ a⊥

)
B̂2

)
= (Iℓ2 ⊗ A)

(
W(𝛼 )normB̂1 +W(𝛼 )sf,1 B̂2

)
since Aa⊥ = 0. Similarly,

AR𝛼 = A
(
R𝛼,1 + a⊥rT𝛼,2

)
= AR𝛼,1.

This coincides with the distribution of crs in Hyb
4
. □

Lemma 4.31. Suppose theMDDH𝑘,ℓ,2ℓ2 assumption holds inG2 with respect toGroupGen. Then, there exists a negligible
function negl(·) such that | Pr[Hyb

4
(A) = 1] − Pr[Hyb

5
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb
4
(A) = 1] − Pr[Hyb

5
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A to construct an

efficient adversary B forMDDH𝑘,ℓ,ℓ2 :

1. On input theMDDH challenge (G, [Ŝ2]2, [V]2), algorithm A starts by parsing [V2] =
[ V1

V2

]
2

, where V1,V2 ∈
Zℓ

2×ℓ
𝑝 . Then, it samples full-rank matrices B̂,B1,B2

r← Z2𝑘×2𝑘𝑝 and defines B̂∗ = B̂−1, B∗
1
= B−1

1
, B∗

2
= B−1

2
. It

parses B̂,B1,B2 as in Eq. (4.2) and B̂∗,B∗
1
,B∗

2
as in Eq. (4.3).

2. Algorithm A constructs the Type-I and Type-II encoding matrices
ˆT,T1,T2 as follows:

• Type-I encodings: Sample Ŝ1
r← Z𝑘×ℓ𝑝 and let [ ˆT]2 = B̂∗

1
Ŝ1 + B̂∗2 [Ŝ2]2P𝑗1 ∈ Z2𝑘×ℓ𝑝 .

• Type-II encodings: For 𝛼 ∈ {1, 2}, sample S𝛼,1, S𝛼,2
r← Z𝑘×ℓ𝑝 . Let T𝛼 = B∗𝛼,1S𝛼,1 + B∗𝛼,2S𝛼,2P𝑗2 ∈ Z2𝑘×ℓ𝑝 .

Let T∗ = T1 ⊗ T2 and set crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

3. Sample A r← Z𝑘×(𝑘+1)𝑝 and a random nonzero vector a⊥ ∈ Z𝑘+1𝑝 in the kernel of A.

4. For 𝛼 ∈ {1, 2}, sample W(𝛼 )
norm

r← Zℓ
2 (𝑘+1)×𝑘
𝑝 , W(𝛼 )

sf,1
r← Zℓ

2 (𝑘+1)×𝑘
𝑝 , R𝛼,1

r← Z(𝑘+1)×2𝑘𝑝 , and r𝛼,2
r← Z2𝑘𝑝 . Set

R𝛼 = R𝛼,1 + a⊥rT𝛼,2. It then computes

[Z𝛼,1]2 =
(
W(𝛼 )normB̂1 +W(𝛼 )sf,1 B̂2

)
[ ˆT]2 − (Plin ⊗ I𝑘+1) (Iℓ ⊗ vec(R𝛼,1T𝛼 ))

[Z𝛼,2]2 = [V𝛼 ]2P𝑗1 − Plin
(
Iℓ ⊗ vec(rT

2,𝛼T𝛼 )
)
,

and [Z𝛼 ]2 = [Z𝛼,1]2 + (Iℓ2 ⊗ a⊥) [Z𝛼,2]2.

5. Finally, algorithm B gives crs to A where

crs =
(
crsbase, [A]1,

{[
(Iℓ2 ⊗ A)

(
W(𝛼 )normB̂1 +W(𝛼 )sf,1 B̂2

) ]
1
, [AR𝛼,1]1, [Z𝛼 ]2

})
.

6. After algorithm A outputs

(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
, algorithm B computes for each 𝛼 ∈ {1, 2},

[v′𝛼 ]2 = [v𝛼 ]2 − (vec(M)T ⊗ I𝑘+1)W(𝛼 )normB̂1 [ĉ]2

Then, it outputs 1 if the following hold:

B̂2 [ĉ]2 = [0]2 and ∀𝛼 ∈ {1, 2} : R𝛼 [c𝛼 ]2 + [v′𝛼 ]2 = [0]2 and B1,2 [c1]2 ≠ [0]2 or B2,2 [c2]2 ≠ [0]2.

By definition, theMDDH challenger samples Ŝ2
r← Z𝑘×ℓ𝑝 . Thus, algorithm B perfectly simulates the distribution of

every component other than [Z𝛼 ]2 in the common reference string according to the specification of Hyb
4
and Hyb

5
.

Thus it suffices to consider the distribution of Z𝛼 in the two cases:
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• Suppose V𝛼 = W(𝛼 )sf,2 Ŝ2 where the challenger samples W(𝛼 )sf,2
r← Zℓ2×𝑘𝑝 . Then algorithm B perfectly simulates the

distribution of crs in Hyb
4
. In this case, algorithm B outputs 1 with probability Pr[Hyb

4
(A) = 1].

• Suppose V r← Z2ℓ2×ℓ𝑝 , in which case V1,V2

r← Zℓ2×ℓ𝑝 . This corresponds to the distribution of Z𝛼 in Hyb
5
, so in

this case, algorithm B outputs 1 with probability Pr[Hyb
5
(A) = 1].

We conclude that the distinguishing advantage of B is exactly 𝜀 and the claim follows. □

Lemma 4.32. Pr[Hyb
5
(A) = 1] = Pr[Hyb

6
(A) = 1].

Proof. For each 𝛼 ∈ {1, 2}, B𝛼 =

[
B𝛼,1

B𝛼,2

]
is a basis for Z2𝑘𝑝 , the distribution of r𝛼,2 in Hyb

6
is uniform over Z2𝑘𝑝 , which is

identical to the distribution of r𝛼,2 in Hyb
5
. It suffices to argue that Z𝛼,2 is correctly distributed. This follows by the

fact that B𝛼B∗𝛼 = I2𝑘 and the fact that T𝛼 = B∗𝛼,1S𝛼,1 + B∗𝛼,2S𝛼,2P𝑗2 . In particular, we can write

Plin
(
Iℓ ⊗ vec(rT𝛼,2T𝛼 )

)
= Plin

(
Iℓ ⊗ vec

( (
rT𝛼,2,normB𝛼,1 + rT𝛼,2,sfB𝛼,2

) (
B∗𝛼,1S𝛼,1 + B∗𝛼,2S𝛼,2P𝑗2

) ) )
= Plin

(
Iℓ ⊗ vec

(
rT𝛼,2,normS𝛼,1 + rT𝛼,2,sfS𝛼,2P𝑗2

) )
= Plin

(
Iℓ ⊗ vec

(
rT𝛼,2,normS𝛼,1

) )
+ Plin

(
Iℓ ⊗ vec

(
rT𝛼,2,sfS𝛼,2P𝑗2

) )
,

which matches the distribution in Hyb
6
. □

Lemma 4.33. Pr[Hyb
6
(A) = 1] = Pr[Hyb

7
(A) = 1].

Proof. The claim follows by properties of the projection matrix (Lemma 4.22). Specifically, we will show that for

𝛼 ∈ {1, 2}, the following two distributions are identically distributed over the choice of U:{
U𝛼P𝑗1 − Plin

(
Iℓ ⊗ vec

(
rT𝛼,2,sfS𝛼,2P𝑗2

) )
: U r← Zℓ2×ℓ𝑝

}
≡
{
U𝛼P𝑗1 : U𝛼

r← Zℓ2×ℓ𝑝

}
. (4.22)

Since ( 𝑗1, 𝑗2) ∈ 𝑆 and moreover, Plin = P(𝑆 )lin , we can appeal to Lemma 4.22 (applied to the vector rT
𝛼,2,sfS𝛼,2) to conclude

that

Plin
(
Iℓ ⊗ vec

(
rT𝛼,2,sfS𝛼,2P𝑗2

) ) (
Iℓ − P𝑗1

)
= 0.

Now, we can write

Plin
(
Iℓ ⊗ vec

(
rT𝛼,2,sfS𝛼,2P𝑗2

) )
= Plin

(
Iℓ ⊗ vec

(
rT𝛼,2,sfS𝛼,2P𝑗,2

) ) (
P𝑗1 + Iℓ − P𝑗1

)
= Plin

(
Iℓ ⊗ vec

(
rT𝛼,2,sfS𝛼,2P𝑗2

) )
P𝑗1 .

This means that

U𝛼P𝑗1 − Plin
(
Iℓ ⊗ vec

(
rT𝛼,2,sfS𝛼,2P𝑗2

) )
=

(
U𝛼 − Plin

(
Iℓ ⊗ vec

(
rT𝛼,2,sfS𝛼,2P𝑗2

) ) )
P𝑗1 . (4.23)

Since U𝛼 is uniform over Zℓ
2×ℓ
𝑝 and independent of Plin, r𝛼,2,sf , S𝛼,2, and P𝑗2 , it follows that{

U𝛼 − Plin
(
Iℓ ⊗ vec

(
rT𝛼,2,sfS𝛼,2P𝑗2

) )
: U𝛼

r← Zℓ2×ℓ𝑝

}
≡
{
U𝛼 : U𝛼

r← Zℓ2×ℓ𝑝

}
. (4.24)

Eq. (4.22) now follows by combining Eqs. (4.23) and (4.24). □

Lemma 4.34. There exists a negligible function negl(·) such that Pr[Hyb
7
(A) = 1] = negl(𝜆).

Proof. In Hyb
7
, the components of crs are independent of the vector r𝛼,2,sf for each 𝛼 ∈ {1, 2}. This means the

challenger in Hyb
7
can defer the sampling of r𝛼,2,sf until after the adversary outputs

(
M, [ĉ]2, [c1]2, [c2]2, [v1]2, [v2]2

)
.

For the challenger to output 1 in Hyb
7
, it must be the case that there exists 𝛼 ∈ {1, 2} where

R𝛼c𝛼 + v′𝛼 = 0 and B𝛼,2c𝛼 ≠ 0,
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where v′𝛼 = v𝛼 − (vec(M)T ⊗ I𝑘+1)W(𝛼 )
normB̂1ĉ. We argue that when B𝛼,2c𝛼 ≠ 0, the probability that R𝛼c𝛼 + v′𝛼 = 0 is

negligible when taken over the choice of r𝛼,2,sf . Since

R𝛼 = R𝛼,1 + a⊥rT𝛼,2 = R𝛼,1 + a⊥r𝛼,2,normB𝛼,1 + a⊥rT𝛼,2,sfB𝛼,2,

the equation R𝛼c𝛼 + v′𝛼 = 0 holds only if

a⊥ · rT𝛼,2,sfB𝛼,2c𝛼 = −v′𝛼 − R𝛼,1c𝛼 − a⊥ · rT𝛼,2,normB𝛼,1c𝛼 ∈ Z𝑘+1𝑝 .

Since B𝛼,2c𝛼 ≠ 0 and r𝛼,2,sf
r← Z𝑘𝑝 , the distribution of rT

𝛼,2,sfB𝛼,2c𝛼 is uniform over Z𝑝 . Finally, since a⊥ ≠ 0 and the

challenger samples r𝛼,2,sf
r← Z𝑘𝑝 after all other quantities have been fixed, we conclude that

Pr

[
a⊥ · rT𝛼,2,sfB𝛼,2c𝛼 = −v′𝛼 − R𝛼,1c𝛼 − a⊥ · rT𝛼,2,normB𝛼,1c𝛼 : r𝛼,2,sf

r← Z𝑘𝑝
]
≤ 1

𝑝
= negl(𝜆). □

By Lemmas 4.27 to 4.34, we conclude that Pr[Hyb
0
(A) = 1] ≤ negl(𝜆). This means that Construction 4.23 satisfies

homogeneous chain binding for linear functions. Finally, since the vector dimension ℓ = poly(𝜆), the 𝑘-Lin assumption

in G2 implies theMDDH𝑘,ℓ,ℓ2 assumption in G2 (Remark 3.8); similarly, the 𝑘-KerLin assumption in G1 implies the

KerDH𝑘,𝑘+1 assumption in G1. Theorem 4.25 now follows from Lemma 4.26. □

4.4 Proving Quadratic Relations on Committed Values
The final proof system we require is a way to argue that a Type-I commitment is consistent with a quadratic function

applied to a Type-II commitment. Specifically, we describe a succinct proof system for statements of the following

form: for a quadratic function 𝑓 : Zℓ𝑝 → Zℓ𝑝 ,

if 𝜎2 is a Type-II commitment to a vector x ∈ Zℓ𝑝 , then 𝜎1 is a Type-I commitment to a vector y = 𝑓 (x).

In contrast to the proof system for linear functions from Section 4.3, the inputs to this proof system are Type-II
commitments while the outputs are Type-I commitments. Similar to Section 4.3, we require chain binding for local
quadratic functions. We give the formal syntax and security requirement below:

Definition 4.35 (Projective Chainable Commitments for Quadratic Functions). Let FCbase =
(
SetupBase, SetupSF,

Commit(1) ,Commit(2) , Project(1) , Project(2)
)
be a projective commitment scheme. In the following description,

we represent (homogeneous) quadratic functions 𝑓 (x) := M(x ⊗ x) by a matrix M. A chainable proof system

for quadratic functions is a triple of efficient algorithms FCquad =
(
SetupQuad,OpenQuad,VerifyQuad

)
with the

following properties:

• SetupQuad(crsbase, 𝑆) → crs: On input the common reference string crsbase (which defines the input space Rℓ
)

and a locality set 𝑆 ⊆ [ℓ] × [ℓ], the setup algorithm outputs a common reference string crs.

• OpenQuad(crs, x,M) → 𝜋 : On input a common reference string crs, an input vector x ∈ Rℓ
, and a homogeneous

quadratic function M ∈ Rℓ×ℓ2
, the opening algorithm outputs a proof 𝜋 .

• VerifyQuad(crs, 𝜎2,M, 𝜎1, 𝜋) → 𝑏: On input the common reference string crs, a Type-II commitment 𝜎2, a linear

function M ∈ Rℓ×ℓ
, a Type-I commitment 𝜎1, and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

The proof system should satisfy the following two properties:

• Correctness: For all security parameters 𝜆 ∈ N, all vector lengths ℓ ∈ N, all locality sets 𝑆 ⊆ [ℓ] × [ℓ], all
crsbase in the support of SetupBase(1𝜆, 1ℓ ), all vectors x ∈ Rℓ

(where Rℓ
is the message space associated with

crsbase), and all 𝑆-local homogeneous quadratic functions M ∈ Rℓ×ℓ2
,

Pr

VerifyQuad(crs, 𝜎2,M, 𝜎1, 𝜋) = 1 :

crs← SetupQuad(crsbase, 𝑆)
𝜎2 ← Commit(2) (crsbase, x)

𝜎1 ← Commit(1) (crsbase,M(x ⊗ x))
𝜋 ← OpenQuad(crs, x,M)

 = 1.
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• Chain binding for quadratic functions: For a security parameter 𝜆 and an adversaryA, we define the chain

binding for quadratic functions security experiment as follows:

1. On input the security parameter 𝜆, the adversary outputs the dimension 1
ℓ
, a locality set 𝑆 ⊆ [ℓ] × [ℓ]

and a pair ( 𝑗1, 𝑗2) ∈ 𝑆 . Note here that 𝑗1 denotes the length of the prefix for the input (i.e., a Type-II index)
and 𝑗2 denotes the length of the prefix for the output (i.e., a Type-I index).

2. The challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗2, 𝑗1) and crs ← SetupQuad(crsbase, 𝑆). It
gives (crsbase, crs) to A.

3. The adversary outputs an 𝑆-local quadratic functionM ∈ Zℓ×ℓ2𝑝 , two Type-II commitments (𝜎2, 𝜎 ′2), two
Type-I commitments (𝜎1, 𝜎 ′1), and two openings 𝜋, 𝜋 ′.

4. The challenger outputs 𝑏 = 1 if all the following properties hold:

– Matching inputs: Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2).
– Mismatching outputs: Project(1) (td1, 𝜎1) ≠ Project(1) (td1, 𝜎 ′1).
– Validity of openings: VerifyQuad(crs, 𝜎2,M, 𝜎1, 𝜋) = 1 = VerifyQuad(crs, 𝜎 ′

2
,M, 𝜎 ′

1
, 𝜋 ′).

Otherwise, the challenger outputs 𝑏 = 0.

We say that FCquad satisfies chain binding for quadratic functions if for all efficient adversaries A, there exists

a negligible function negl(·) such that Pr[𝑏 = 1] = negl(𝜆) in the chain binding for quadratic functions security

game.

Constructing projective chainable commitments. Similar to the construction of chainable commitments for

linear functions from Section 4.3, we start by defining the projection matrix for a local quadratic function; this is the

analog of Definition 4.21. We then prove the analog of Lemma 4.22 for the case of (homogeneous) quadratic functions.

Definition 4.36 (Projection Matrix for a Local Quadratic Function). Let ℓ ∈ N be an input length. For indices

𝑗1, 𝑗2 ∈ [ℓ], we define the projection matrix P( 𝑗1, 𝑗2 )quad to be

P( 𝑗1, 𝑗2 )quad
:= Iℓ3 −

(
Iℓ2 −

(
P𝑗1 ⊗ P𝑗1

) )
⊗ P𝑗2 ∈ {0, 1}ℓ

3×ℓ3 ,

where P𝑗1 , P𝑗,2 ∈ {0, 1}ℓ×ℓ are the projection matrices from Definition 4.1. For a locality set 𝑆 ⊆ [ℓ] × [ℓ], we define
the projection matrix for 𝑆 to be

P(𝑆 )quad
:=

∏
( 𝑗1, 𝑗2 ) ∈𝑆

P( 𝑗1, 𝑗2 )quad ∈ {0, 1}
ℓ3×ℓ3 . (4.25)

Lemma 4.37 (Projection Matrix for a Local Quadratic Function). Let ℓ ∈ N be an input length and 𝑆 ⊆ [ℓ] × [ℓ] be a
locality set. Suppose 𝑓 : Zℓ𝑝 → Zℓ𝑝 is an 𝑆-local homogeneous quadratic function 𝑓 (x) ≔ M(x ⊗ x) where M ∈ Zℓ×ℓ2𝑝 . Let

Pquad := P( (𝑆 ) )quad be the projection matrix associated with 𝑆 from Definition 4.36. Then the following properties hold:

• vec(M)TPquad = vec(M)T.

• For all ( 𝑗1, 𝑗2) ∈ 𝑆 and all vectors r ∈ Zℓ𝑝 , Pquad
(
Iℓ2 ⊗ vec(rTP𝑗2 )

) (
Iℓ2 − (P𝑗1 ⊗ P𝑗1 )

)
= 0, where P𝑗1 , P𝑗2 ∈ {0, 1}ℓ×ℓ

are the projection matrices from Definition 4.1.

Proof. The proof follows a similar strategy as the proof of Lemma 4.22. We show each claim separately:

• For the first claim, we start by observing that if 𝑓 is ( 𝑗1, 𝑗2)-local, then the first 𝑗2 components ofM(e𝑖 ⊗ e𝑖′ )
are zero whenever 𝑖 > 𝑗1 or 𝑖

′ > 𝑗1, where e𝑖 ∈ {0, 1}ℓ is the 𝑖th basis vector. This means that

P𝑗2 ·M ·
(
Iℓ2 −

(
P𝑗1 ⊗ P𝑗1

) )
= 0, (4.26)
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Then, for all ( 𝑗1, 𝑗2) ∈ 𝑆 ,

vec(M)TP( 𝑗1, 𝑗2 )quad = vec(M)T
[
Iℓ3 −

(
Iℓ2 − (P𝑗1 ⊗ P𝑗1 )

)
⊗ P𝑗2

]
= vec(M)T − vec(M)T

( (
Iℓ2 − (P𝑗1 ⊗ P𝑗1 )

)
⊗ P𝑗2

)
= vec(M)T − vec

(
PT
𝑗2
M
(
Iℓ2 − (P𝑗1 ⊗ P𝑗1 )

) )
by Eq. (3.4)

= vec(M)T by Eq. (4.26) and since P𝑗2 = PT
𝑗2
.

• For the second claim, take any ( 𝑗1, 𝑗2) ∈ 𝑆 . Let Q𝑗1 = Iℓ2 − (P𝑗1 ⊗ P𝑗1 ) ∈ {0, 1}ℓ
2×ℓ2

. Then,

(Iℓ2 ⊗ vec(rTP𝑗2 ))Q𝑗1 = (Iℓ2 ⊗ vec(rTP𝑗2 )) (Q𝑗1 ⊗ 1) = Q𝑗1 ⊗ vec(rTP𝑗2 ).

Since Q𝑗1 is a diagonal matrix and its entries are in {0, 1}, it follows that Q2

𝑗1
= Q𝑗1 . Similarly, since P𝑗2 is a

diagonal matrix with entries in {0, 1}, it follows that P𝑗2P
T
𝑗2
= P2𝑗2 = P𝑗2 . Then,

(Q𝑗1 ⊗ P𝑗2 ) (Q𝑗1 ⊗ vec(rTP𝑗2 )) = Q2

𝑗1
⊗
(
(P𝑗2 ⊗ 1) · vec(rTP𝑗2 )

)
by Eq. (3.1)

= Q𝑗1 ⊗ vec(rTP𝑗2P
T
𝑗2
) by Eq. (3.4)

= Q𝑗1 ⊗ vec(rTP𝑗2 ) since P𝑗2P
T
𝑗2
= P𝑗2 .

(4.27)

Combining the above two relations and using the fact that P( 𝑗1, 𝑗2 )quad = Iℓ3 − Q𝑗1 ⊗ P𝑗2 , we now have

P( 𝑗1, 𝑗2 )quad

(
Iℓ2 ⊗ vec(rTP𝑗2 )

) (
Iℓ2 − (P𝑗1 ⊗ P𝑗1 )

)
= P( 𝑗1, 𝑗2 )quad

(
Iℓ2 ⊗ vec(rTP𝑗2 )

)
Q𝑗1

= P( 𝑗1, 𝑗2 )quad

(
Q𝑗1 ⊗ vec(rTP𝑗2 )

)
by Eq. (3.1)

=
(
Iℓ3 − (Q𝑗1 ⊗ P𝑗2 )

) (
Q𝑗1 ⊗ vec(rTP𝑗2 )

)
by definition of P( 𝑗1, 𝑗2 )quad

=
(
Q𝑗1 ⊗ vec(rTP𝑗2 )

)
−
(
Q𝑗1 ⊗ vec(rTP𝑗2 )

)
by Eq. (4.27)

= 0.

Next, the matrices P( 𝑗1, 𝑗2 )quad are diagonal for all 𝑗1, 𝑗2 ∈ [ℓ], so they commute. Thus,

Pquad =
∏
( 𝑗1, 𝑗2 ) ∈𝑆

P( 𝑗1, 𝑗2 )quad =
©­«

∏
(𝑠,𝑡 ) ∈𝑆\{ ( 𝑗1, 𝑗2 ) }

P(𝑠,𝑡 )quad
ª®¬ · P( 𝑗1, 𝑗2 )quad .

This means

Pquad
(
Iℓ2⊗vec(rTP𝑗2 )

) (
Iℓ2−(P𝑗1⊗P𝑗1 )

)
=
©­«

∏
(𝑠,𝑡 ) ∈𝑆\{ ( 𝑗1, 𝑗2 ) }

P(𝑠,𝑡 )quad
ª®¬·P( 𝑗1, 𝑗2 )quad

(
Iℓ2⊗vec(rTP𝑗2 )

) (
Iℓ2−(P𝑗1⊗P𝑗1 )

)
= 0. □

Construction 4.38 (Projective Chainable Commitments for Local Quadratic Functions). Let FCbase =
(
SetupBase,

SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)
)
be the projective commitment scheme from Construction 4.8.

We build a projective chainable commitment for local linear functions FCquad =
(
SetupQuad,OpenQuad,VerifyQuad

)
over FCbase as follows:

• SetupQuad(crsbase, 𝑆): On input the common reference string crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
for

the base projective commitment scheme (which defines the input space Zℓ𝑝 ) and a locality set 𝑆 ⊆ [ℓ] × [ℓ], the
setup algorithm samples A r← Z𝑘×(𝑘+1)𝑝 , R r← Z(𝑘+1)×2𝑘𝑝 andW r← Zℓ

3 (𝑘+1)×4𝑘2

𝑝 . It then computes

[Z]2 = W[T∗]2 − (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R[ ˆT]2))

= [WT∗ − (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R ˆT))]2 ∈ Gℓ3 (𝑘+1)×ℓ2
2

, (4.28)
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where Pquad = P(𝑆 )quad ∈ Z
ℓ3×ℓ3
𝑝 is the projection matrix from Eq. (4.25). Output the common reference string

crs = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2) . (4.29)

• OpenQuad(crs, x,M): On input the common reference string (parsed as in Eq. (4.29)), the vector x ∈ Zℓ𝑝 , and a

matrix M ∈ Zℓ×ℓ2𝑝 , the evaluation algorithm computes [c∗]2 ← [T∗]2 (x ⊗ x) ∈ G4𝑘2

2
and

[v]2 = (vec(M)T ⊗ I𝑘+1) [Z]2 (x ⊗ x) ∈ G𝑘+1
2

.

It outputs the opening 𝜋 = ( [c∗]2, [v]2).

• VerifyQuad(crs, 𝜎2,M, 𝜎1, 𝜋): On input the common reference string crs (parsed as in Eq. (4.29)), a Type-II

commitment 𝜎2 = ( [c1]1, [c2]2), a matrix M ∈ Zℓ×ℓ2𝑝 , a Type-I commitment 𝜎1 = [ĉ]2 and a proof 𝜋 =

( [c∗]2, [v]2), the verification algorithm outputs 1 if

[c1]1 ⊗ [c2]2 = [1]1 [c∗]2 and (vec(M)T ⊗ I𝑘 ) [(Iℓ3 ⊗ A)W]1 [c∗]2 = [AR]1 [ĉ]2 + [A]1 [v]2 .

Theorem 4.39 (Correctness). Construction 4.38 is correct.

Proof. Take any 𝜆, ℓ ∈ N and let 𝑆 ⊆ [ℓ] × [ℓ] be an arbitrary locality set. Let crsbase ← SetupBase(1𝜆, 1ℓ ) and
crs← SetupQuad(crsbase, 𝑆). Then crsbase =

(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and

crs = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2).

Take any input x ∈ Zℓ𝑝 and any 𝑆-local homogeneous quadratic function 𝑓 (x) := M(x ⊗ x) where M ∈ Zℓ×ℓ2𝑝 . Let

y = M(x ⊗ x). Suppose 𝜎2 ← Commit(2) (crsbase, x), 𝜎1 ← Commit(1) (crsbase, y), and 𝜋 ← OpenQuad(crs, x,M). We

parse 𝜎2 = ( [c1]1, [c2]2), 𝜎1 = [ĉ2]2, and 𝜋 = ( [c∗]2, [v]2). Consider VerifyQuad(crs, 𝜎2,M, 𝜎1, 𝜋). By construction of

the underlying algorithms, c∗ = T∗ (x ⊗ x), c1 = T1x, c2 = T2x, ĉ = ˆTy, and v = (vec(M)T ⊗ I𝑘+1)Z(x ⊗ x). Consider
now the verification relation VerifyQuad(crs, 𝜎2,M, 𝜎1, 𝜋):

• The first verification relation follows from Eq. (3.1):

c1 ⊗ c2 = (T1x) ⊗ (T2x) = (T1 ⊗ T2) (x ⊗ x) = T∗ (x ⊗ x) = c∗ .

• For the second verification relation, we first compute

(vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)Wc∗ = (vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)WT∗ (x ⊗ x)
= (vec(M)T ⊗ A)WT∗ (x ⊗ x) by Eq. (3.1)

= A(vec(M)T ⊗ I𝑘+1)WT∗ (x ⊗ x) by Eq. (3.3).

(4.30)

Next, since 𝑓 is 𝑆-local, by Lemma 4.37, we have that vec(M)TPquad = vec(M)T. This means

(vec(M)T ⊗ I𝑘+1)Z = (vec(M)T ⊗ I𝑘+1)WT∗ − (vec(M)T ⊗ I𝑘+1) (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R ˆT))
= (vec(M)T ⊗ I𝑘+1)WT∗ − (vec(M)T ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R ˆT)) .

Thus, we have

(vec(M)T ⊗ I𝑘+1)WT∗ = (vec(M)T ⊗ I𝑘+1)Z + (vec(M)T ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R ˆT)) .

Substituting into Eq. (4.30), and using the fact that v = (vec(M)T ⊗ I𝑘+1)Z(x ⊗ x), we have

(vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)Wc∗ = A(vec(M)T ⊗ I𝑘+1)WT∗ (x ⊗ x)
= A(vec(M)T ⊗ I𝑘+1)

(
Z(x ⊗ x) + (Iℓ2 ⊗ vec(R ˆT)) (x ⊗ x)

)
= Av + A(vec(M)T ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R ˆT)) (x ⊗ x)
= Av + A(vec(M)T ⊗ I𝑘+1) (x ⊗ x ⊗ vec(R ˆT)).

(4.31)
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To complete the proof, we now have

(vec(M)T ⊗ I𝑘+1) (x ⊗ x ⊗ vec(R ˆT)) = (vec(M)T ⊗ I𝑘+1) (x ⊗ x ⊗ Iℓ ⊗ I𝑘+1)vec(R ˆT) by Eq. (3.2)

=
(
(vec(M)T (x ⊗ x ⊗ Iℓ )) ⊗ I𝑘+1

)
vec(R ˆT) by Eq. (3.1)

=
(
(M(x ⊗ x))T ⊗ I𝑘+1

)
vec(R ˆT) by Eq. (3.4)

= (yT ⊗ I𝑘+1)vec(R ˆT) since y = M(x ⊗ x)
= R ˆTy = Rĉ by Eq. (3.4).

Substituting back into Eq. (4.31), we have

(vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)Wc∗ = Av + A(vec(M)T ⊗ I𝑘+1) (x ⊗ x ⊗ vec(R ˆT))
= Av + ARĉ.

and the verification relation holds.

Since both verification relations pass, the output of Verify is 1 and the claim follows. □

Theorem 4.40 (Chain Binding for Quadratic Functions). Suppose the bilateral 𝑘-Lin assumption holds with respect to
GroupGen. Then, Construction 4.38 satisfies chain binding for quadratic functions.

Proof. Similar to the proof of Theorem 4.25, we start by defining a “homogeneous” version of the chain binding for

quadratic functions security game for Construction 4.38. We define the game below:

1. On input the security parameter 𝜆, the adversary outputs the dimension ℓ , a locality set 𝑆 ⊆ [ℓ] × [ℓ], and a

pair ( 𝑗1, 𝑗2) ∈ 𝑆 .

2. The challenger samples (crsbase, td1, td2) ← SetupBase(1𝜆, 1ℓ , 𝑗2, 𝑗1) and crs← Setup(crsbase). Then crsbase =(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
, td1 = B̂2, td2 = (B1,2,B2,2), and

crs = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2) .

The challenger gives crs to A.

3. The adversary outputs an 𝑆-local homogeneous quadratic functionM ∈ Zℓ×ℓ2𝑝 and a triple ( [c∗]2, [ĉ]2, [v]2).

4. The challenger outputs 1 if the following properties hold:

• Matching inputs: (B1,2 ⊗ B2,2)c∗ = 0.

• Mismatching outputs: B̂2ĉ ≠ 0.

• Validity of opening: (vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)Wc∗ = ARĉ + Av.

We now show that any adversary that can win the homogeneous chain binding security game (i.e., cause the above

experiment to output 1) implies an adversary that can win the standard chain binding security game (Definition 4.35).

Like the proof of Lemma 4.26, the claim essentially follows by linearity of the verification relation. We give the formal

statement below:

Lemma 4.41. Suppose for all efficient adversaries B, there exists a negligible function negl(·) such that Pr[𝑏 = 1] =
negl(𝜆) in the homogeneous chain binding experiment for quadratic functions. Then, Construction 4.38 satisfies chain
binding security for quadratic functions.

Proof. Suppose there exists an adversaryA that breaks chain binding security for quadratic functions (Definition 4.35)

with advantage 𝜀. We use A to construct an adversary B for the homogeneous chain binding game:

1. Algorithm B starts running algorithm A to obtain the input length 1
ℓ
, the locality set 𝑆 ⊆ [ℓ] × [ℓ], and a pair

( 𝑗1, 𝑗2) ∈ 𝑆 . It gives 1ℓ , 𝑆 , and ( 𝑗1, 𝑗2) to the challenger to obtain the common reference string crs.
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2. Algorithm B forwards crs to A and receives a matrix M ∈ Zℓ×ℓ2𝑝 , two Type-II commitments 𝜎2 = ( [c1]1, [c2]2),
𝜎 ′
2
= ( [c′

1
]1, [c′2]2), two Type-I commitments 𝜎1 = [ĉ]2, 𝜎 ′1 = [ĉ′]2, and two openings 𝜋 = ( [c∗]2, [v]2),

𝜋 ′ = ( [c′∗]2, [v′]2).

3. Algorithm B outputs the same function M together with the triple(
[c∗]2 − [c′∗]2, [ĉ]2 − [ĉ′]2, [v]2 − [v′]2

)
.

In the homogeneous chain binding game, the challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1ℓ , 𝑗2, 𝑗1) and
crs← SetupQuad(crsbase, 𝑆). Thus algorithm B perfectly simulates an execution of the chain binding security game

for A. Thus, with probability 𝜀, the outputs of algorithm A satisfies the following properties:

• Matching inputs: Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2).

• Mismatching outputs: Project(1) (td1, 𝜎1) ≠ Project(1) (td1, 𝜎 ′1).

• Validity of openings: VerifyQuad(crs, 𝜎2,M, 𝜎1, 𝜋) = 1 = VerifyQuad(crs, 𝜎 ′
2
,M, 𝜎 ′

1
, 𝜋 ′).

We claim that in this case, the output in the homogeneous chain binding game is also 1:

• Parse crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
and crs = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2) . In

addition, parse td1 = B̂2, td2 = (B1,2,B2,2).

• Since VerifyQuad(crs, 𝜎2,M, 𝜎1, 𝜋) = 1 = VerifyQuad(crs, 𝜎 ′
2
,M, 𝜎 ′

1
, 𝜋 ′), the following two conditions hold:

– c1 ⊗ c2 = c∗ and c′
1
⊗ c′

2
= c′∗.

– (vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)W)c∗ = ARĉ + Av and (vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)W)c′∗ = ARĉ′ + Av′.

This means that

(vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)W(c∗ − c′∗) = AR(ĉ − ĉ′) + A(v − v′),

and the third requirement in the homogeneous chain binding experiment is satisfied.

• Since Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2), this means B1,2c1 = B1,2c′1 and B2,2c2 = B2,2c′2. This means that

(B1,2 ⊗ B2,2)c∗ = (B1,2 ⊗ B2,2) (c1 ⊗ c2) = (B1,2c1) ⊗ (B2,2c2)
= (B1,2c′1) ⊗ (B2,2c′2) = (B1,2 ⊗ B2,2) (c′1 ⊗ c′

2
) = (B1,2 ⊗ B2,2)c′∗ .

Correspondingly, this means that (B1,2 ⊗ B2,2) (c∗ − c′∗) = 0, and the first requirement of the homogeneous

chain binding experiment is satisfied.

• Finally, if Project(1) (td1, 𝜎1) ≠ Project(1) (td1, 𝜎 ′1), then B̂2ĉ ≠ B̂2ĉ′. Thus, B̂2 (ĉ − ĉ′) ≠ 0, and the second

requirement in the homogeneous game is satisfied.

Correspondingly, the output is 1 in the homogeneous evaluation binding game, and the claim follows. □

Proof of Theorem 4.40. We now return to the proof of Theorem 4.40. Let A be an efficient adversary for the

homogeneous chain binding experiment for quadratic functions. Let ℓ ∈ N be the vector dimension thatA chooses at

the beginning of the security experiment. This will determine the size of the tensorMDDH assumption in Lemma 4.46.

We now define a sequence of hybrid experiments. The sequence of experiments closely parallels those in the proof of

Theorem 4.25.

• Hyb
0
: This is the homogeneous chain binding experiment for quadratic functions. We give the full specification

here:

– At the beginning of the game, the adversary A outputs the input dimension ℓ , a locality set 𝑆 ⊆ [ℓ] × [ℓ],
and a pair ( 𝑗1, 𝑗2) ∈ 𝑆 .
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– The challenger samples G = (G1,G2,G𝑇 , 𝑝, 𝑔1, 𝑔2, 𝑒) ← GroupGen(1𝜆).
– The challenger samples full-rank matrices B̂,B1,B2

r← Z2𝑘×2𝑘𝑝 and defines B̂∗ = B̂−1, B∗
1
= B−1

1
, B∗

2
= B−1

2
.

It parses B̂,B1,B2 as in Eq. (4.2) and B̂∗,B∗
1
,B∗

2
, as in Eq. (4.3).

– The challenger constructs the encoding matrices
ˆT,T1,T2 as follows:

∗ Type-I encodings: Sample Ŝ1, Ŝ2
r← Z𝑘×ℓ𝑝 and let

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗2 ∈ Z2𝑘×ℓ𝑝 .

∗ Type-II encodings: For 𝛼 ∈ {1, 2}, sample S𝛼,1, S𝛼,2
r← Z𝑘×ℓ𝑝 . Let T𝛼 = B∗𝛼,1S𝛼,1 + B∗𝛼,2S𝛼,2P𝑗1 ∈ Z2𝑘×ℓ𝑝 .

Let T∗ = T1 ⊗ T2 and set crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

– The challenger samples A r← Z𝑘×(𝑘+1)𝑝 , R r← Z(𝑘+1)×2𝑘𝑝 and W r← Zℓ
3 (𝑘+1)×4𝑘2

𝑝 . Let

Z = WT∗ − (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R ˆT)) ∈ Zℓ
3 (𝑘+1)×ℓ2
𝑝 , (4.32)

where Pquad = P(𝑆 )quad is the projection matrix from Eq. (4.25). The challenger gives the common reference

string crs = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2) to A.

– Algorithm A outputs an 𝑆-local function M ∈ Zℓ×ℓ2𝑝 , and a triple ( [c∗]2, [ĉ]2, [v]2).

The output of the experiment is 1 if

(B1,2 ⊗ B2,2)c∗ = 0 and B̂2ĉ ≠ 0 and (vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)Wc∗ = ARĉ + Av.

• Hyb
1
: Same as Hyb

0
, except the challenger samples W as follows:

– Define matrices Dnorm and Dsf as follows:

Dnorm =


B1,1 ⊗ B2,1

B1,1 ⊗ B2,2

B1,2 ⊗ B2,1

 ∈ Z3𝑘
2×4𝑘2

𝑝 and Dsf = B1,2 ⊗ B2,2 ∈ Z𝑘
2×4𝑘2

𝑝 . (4.33)

– SampleWnorm
r← Zℓ

3 (𝑘+1)×3𝑘2

𝑝 and Wsf
r← Zℓ

3 (𝑘+1)×𝑘2

𝑝 and let W = WnormDnorm +WsfDsf .

Then, after the adversary outputs (M, [c∗]2, [ĉ]2, [v]2), the challenger first computes

v′ = v − (vec(M)T ⊗ I𝑘+1)WnormDnormc∗ . (4.34)

The output of the experiment is 1 if

Dsfc∗ = 0 and B̂2ĉ ≠ 0 and ARĉ + Av′ = 0.

• Hyb
2
: Same as Hyb

1
except the challenger outputs 1 if

Dsfc∗ = 0 and B̂2ĉ ≠ 0 and Rĉ + v′ = 0.

• Hyb
3
: Same as Hyb

2
except when constructing the CRS, the challenger samples a random nonzero vector a⊥ ∈

Z𝑘+1𝑝 in the kernel of A (i.e., Aa⊥ = 0). Then, it samplesWsf,1
r← Zℓ

3 (𝑘+1)×𝑘2

𝑝 ,Wsf,2
r← Zℓ3×𝑘2

𝑝 , R1

r← Z(𝑘+1)×2𝑘𝑝 ,

and r2
r← Z2𝑘𝑝 . It sets

Wsf = Wsf,1 + (Wsf,2 ⊗ a⊥) and R = R1 + (rT2 ⊗ a⊥) = R1 + a⊥rT2 .

The challenger then computes

Z1 = (WnormDnorm +Wsf,1Dsf)T∗ − (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R1
ˆT))

Z2 = Wsf,2 (S1,2 ⊗ S2,2) (P𝑗1 ⊗ P𝑗1 ) − Pquad
(
Iℓ2 ⊗ vec(rT

2

ˆT)
) (4.35)

and sets Z = Z1 + (Iℓ3 ⊗ a⊥)Z2.
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• Hyb
4
: Same as Hyb

3
except when constructing the CRS, the challenger sets

crs = (crsbase, [A]1, [(Iℓ3 ⊗ A) (WnormDnorm +Wsf,1Dsf)]1, [AR1]1, [Z]2)

• Hyb
5
: Same as Hyb

4
, except the challenger samples U r← Zℓ3×ℓ2𝑝 and sets

Z2 = U(P𝑗1 ⊗ P𝑗1 ) − Pquad
(
Iℓ2 ⊗ vec(rT

2

ˆT)
)
.

• Hyb
6
: Same as Hyb

5
, except the challenger samples r2,norm, r2,sf

r← Z𝑘𝑝 and sets

rT
2
= rT

2,normB̂1 + rT2,sfB̂2.

Then, it sets

Z2 = U(P𝑗1 ⊗ P𝑗1 ) − Pquad
(
Iℓ2 ⊗ vec

(
rT
2,normŜ1

) )
− Pquad

(
Iℓ2 ⊗ vec

(
rT
2,sf Ŝ2P𝑗1

) )
.

• Hyb
7
: Same as Hyb

6
, except the challenger sets

Z2 = U(P𝑗1 ⊗ P𝑗1 ) − Pquad
(
Iℓ2 ⊗ vec

(
rT
2,normŜ1

) )
.

Recall that in this experiment, the challenger still samples U r← Zℓ3×ℓ2𝑝 .

We write Hyb𝑖 (A) to denote the output distribution of an execution of hybrid Hyb𝑖 with adversaryA. We now show

that the output distribution of each adjacent pair of hybrids is indistinguishable.

Lemma 4.42. Pr[Hyb
0
(A) = 1] = Pr[Hyb

1
(A) = 1].

Proof. Since B1 and B2 are each a basis for Z2𝑘𝑝 , it follows that B1 ⊗ B2 is a basis for Z
4𝑘2

𝑝 . Moreover,

B1 ⊗ B2 =


B1,1 ⊗ B2,1

B1,1 ⊗ B2,2

B1,2 ⊗ B2,1

B1,2 ⊗ B2,2

 =
[
Dnorm
Dsf

]
.

This means that the distribution of W is identically distributed in Hyb
0
and Hyb

1
. It suffices to consider the outputs

of the two experiments. Suppose A outputs (M, [c∗]2, [ĉ]2, [v]2). Suppose Dsfc∗ ≠ 0. Then, the output in both

experiments is 0. Consider the case where Dsfc∗ = 0. In this case,

Wc∗ = WnormDnormc∗ +WsfDsfc∗ = WnormDnormc∗ . (4.36)

Now, in Hyb
1
, we have

ARĉ + Av′ = ARĉ + Av − A(vec(M)T ⊗ I𝑘+1)WnormDnormc∗ by Eq. (4.34)

= ARĉ + Av − (vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)WnormDnormc∗ by Eq. (3.3)

= ARĉ + Av − (vec(M)T ⊗ I𝑘 ) (Iℓ3 ⊗ A)Wc∗ by Eq. (4.36).

Thus, inHyb
1
, ifDsfc∗ = 0, thenARĉ+Av′ = 0 if and only ifARĉ+Av = (vec(M)T⊗ I𝑘 ) (Iℓ3 ⊗A)Wc∗. Correspondingly,

the output distribution of Hyb
1
(A) is identical to the output distribution of Hyb

0
(A). □

Lemma 4.43. Suppose the KerDH𝑘,𝑘+1 assumption holds in G1 with respect to GroupGen. Then, there exists a negligible
function negl(·) such that | Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1] | ≤ negl(𝜆).
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Proof. Suppose | Pr[Hyb
1
(A) = 1] − Pr[Hyb

2
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. The only difference between

Hyb
1
and Hyb

2
is the verification relation. Let (M, [c∗]2, [ĉ]2, [v]2) be the output of A in an execution of Hyb

1
or

Hyb
2
. If the outputs of Hyb

1
and Hyb

2
differ, then it must be the case that

A(Rĉ + v′) = 0 and Rĉ + v′ ≠ 0. (4.37)

In all other cases, the output in Hyb
1
and Hyb

2
is identical. We use A to construct an efficient adversary B for

KerDH𝑘,𝑘+1:

1. On input the KerDH challenge (G, [A]1), algorithm B starts by running algorithm A. Algorithm A outputs

the input dimension ℓ , the locality set 𝑆 ⊆ [ℓ] × [ℓ], and a pair ( 𝑗1, 𝑗2) ∈ 𝑆 .

2. Next, algorithm B samples full-rank matrices B̂,B1,B2

r← Z2𝑘×2𝑘𝑝 and defines B̂∗ = B̂−1, B∗
1
= B−1

1
, and B∗

2
= B−1

2
.

It parses the components of B̂,B1,B2 as in Eq. (4.2) and B̂∗,B∗
1
,B∗

2
as in Eq. (4.3).

3. Algorithm B then constructs the encoding matrices
ˆT,T1,T2 as in Hyb

1
and Hyb

2
:

• Type-I encodings: Sample Ŝ1, Ŝ2
r← Z𝑘×ℓ𝑝 and let

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗2 ∈ Z2𝑘×ℓ𝑝 .

• Type-II encodings: For 𝛼 ∈ {1, 2}, sample S𝛼,1, S𝛼,2
r← Z𝑘×ℓ𝑝 and let T𝛼 = B∗𝛼,1S𝛼,1 + B∗𝛼,2S𝛼,2P𝑗1 .

Let T∗ = T1 ⊗ T2 and set crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

4. Algorithm B defines Dnorm and Dsf according to Eq. (4.33). It samples Wnorm
r← Zℓ

3 (𝑘+1)×3𝑘2

𝑝 and Wsf
r←

Z
ℓ3 (𝑘+1)×𝑘2

𝑝 and setsW = WnormDnorm +WsfDsf . It also samples R r← Z(𝑘+1)×2𝑘𝑝 and constructs

Z = WT∗ − (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R ˆT)) ∈ Zℓ
3 (𝑘+1)×ℓ2
𝑝 ,

where Pquad = P(𝑆 )quad. The challenger gives the common reference string crs to A where

crs = (crsbase, [A]1, (Iℓ3 ⊗ [A]1)W, [A]1R, [Z]2) = (crsbase, [A]1, [(Iℓ3 ⊗ A)W]1, [AR]1, [Z]2)

5. After algorithm A outputs (M, [c∗]2, [ĉ]2, [v]2) algorithm B computes

[v′]2 = [v]2 − (vec(M)T ⊗ I𝑘+1)WnormDnorm [c∗]2

and outputs R[ĉ]2 + [v′]2 = [Rc + v′]2.

Since the KerDH challenger samples A r← Z(𝑘+1)×𝑘𝑝 , the common reference string crs constructed by B is distributed

exactly as required in Hyb
1
and Hyb

2
. By the above analysis, this means that with probability 𝜀, algorithm A

outputs (M, [c∗]2, [ĉ]2, [v]2) that satisfies Eq. (4.37). This means Rĉ + v′ ≠ 0 but A(Rĉ + v′) = 0, where v′ =
v − (vec(M)T ⊗ I𝑘+1)WnormDnormc∗. Correspondingly, algorithm B breaks KerDH with the same advantage 𝜀. □

Lemma 4.44. Pr[Hyb
2
(A) = 1] = Pr[Hyb

3
(A) = 1].

Proof. We argue that Hyb
2
and Hyb

3
are identically distributed. Since Wsf,1 and R1 are uniform over their respective

domains, it follows that Wsf and R are identically distributed as in Hyb
2
and Hyb

3
. To complete the proof, we show

that the distribution of Z in Hyb
3
is identical to that in Hyb

2
. Suppose we construct Z according to Eq. (4.32). Then,

we have

Z = WT∗ − (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R ˆT))
= (WnormDnorm +Wsf,1Dsf + (Wsf,2 ⊗ a⊥)Dsf)T∗ − (Pquad ⊗ I𝑘+1)

(
Iℓ2 ⊗ vec

(
(R1 + a⊥rT2) ˆT

) )
= Z1 + (Wsf,2 ⊗ a⊥)DsfT∗ − (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(a⊥rT

2

ˆT))
(4.38)
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We analyze the components of Z in the subspace spanned by a⊥. First, using Eq. (3.3), we can write

(Wsf,2 ⊗ a⊥)DsfT∗ = (Iℓ3 ⊗ a⊥)Wsf,2DsfT∗ . (4.39)

By definition, Dsf = B1,2 ⊗ B2,2 and T∗ = T1 ⊗ T2. By orthogonality, we can write

DsfT∗ = (B1,2 ⊗ B2,2) (T1 ⊗ T2)
= B1,2

(
B∗
1,1S1,1 + B∗1,2S1,2P𝑗1

)
⊗ B2,2

(
B∗
2,1S2,1 + B∗2,2S2,2P𝑗1

)
= (S1,2 ⊗ S2,2) (P𝑗1 ⊗ P𝑗1 ).

Substituting back into Eq. (4.39), we have

(Wsf,2 ⊗ a⊥)DsfT∗ = (Iℓ3 ⊗ a⊥)Wsf,2DsfT∗ = (Iℓ3 ⊗ a⊥)Wsf,2 (S1,2 ⊗ S2,2) (P𝑗1 ⊗ P𝑗1 ). (4.40)

For the remaining component in Eq. (4.38),

Iℓ2 ⊗ vec

(
a⊥rT

2

ˆT
)
= Iℓ2 ⊗

[
(Iℓ ⊗ a⊥rT

2
)vec( ˆT)

]
by Eq. (3.4)

= Iℓ2 ⊗
[
(Iℓ ⊗ a⊥) (Iℓ ⊗ rT

2
)vec( ˆT)

]
by Eq. (3.1)

= Iℓ2 ⊗
[
(Iℓ ⊗ a⊥)vec(rT

2

ˆT)
]

by Eq. (3.4)

=
(
Iℓ2 ⊗ (Iℓ ⊗ a⊥)

) (
Iℓ2 ⊗ vec(rT

2

ˆT)
)

by Eq. (3.1)

=
(
Iℓ3 ⊗ a⊥

) (
Iℓ2 ⊗ vec(rT

2

ˆT)
)
.

Combined with Eq. (3.3),

(Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(a⊥rT
2

ˆT)) = (Pquad ⊗ I𝑘+1)
(
Iℓ3 ⊗ a⊥

) (
Iℓ2 ⊗ vec(rT

2

ˆT)
)

= (Iℓ3 ⊗ a⊥)Pquad
(
Iℓ2 ⊗ vec(rT

2

ˆT)
)
.

(4.41)

Combining Eqs. (4.38), (4.40), and (4.41), we have the desired result:

Z = Z1 + (Wsf,2 ⊗ a⊥)DsfT∗ − (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(a⊥rT
2

ˆT)) by Eq. (4.38)

= Z1 +
(
Iℓ3 ⊗ a⊥

) (
Wsf,2 (S1,2 ⊗ S2,2) (P𝑗1 ⊗ P𝑗1 ) − Pquad

(
Iℓ2 ⊗ vec(rT

2

ˆT)
) )

by Eqs. (4.40) and (4.41)

= Z1 + (Iℓ3 ⊗ a⊥)Z2 by definition of Z2 from Eq. (4.35),

which is precisely how the challenger constructs Z in Hyb
3
. We conclude that the common reference string in Hyb

2

and Hyb
3
are identically distributed. □

Lemma 4.45. Pr[Hyb
3
(A) = 1] = Pr[Hyb

4
(A) = 1].

Proof. The distribution of crs in the two experiments are identical. In particular, in Hyb
3
,

(Iℓ3 ⊗ A)W = (Iℓ3 ⊗ A) (WnormDnorm +WsfDsf)
= (Iℓ3 ⊗ A) (WnormDnorm +Wsf,1Dsf + (Wsf,2 ⊗ a⊥)Dsf)
= (Iℓ3 ⊗ A) (WnormDnorm +Wsf,1Dsf)

since (Iℓ3 ⊗ A) (Wsf,2 ⊗ a⊥) = Wsf,2 ⊗ Aa⊥ = 0. Similarly,

AR = A(R1 + a⊥rT2) = AR1 + Aa⊥rT2 = AR1.

This coincides with the distribution of crs in Hyb
4
. □

Lemma 4.46. Suppose the tensor MDDH𝑘,ℓ,ℓ,ℓ3 assumption holds with respect to GroupGen. Then, there exists a
negligible function negl(·) such that | Pr[Hyb

4
(A) = 1] − Pr[Hyb

5
(A) = 1] | = negl(𝜆).
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Proof. Suppose | Pr[Hyb
4
(A) = 1] − Pr[Hyb

5
(A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A to construct an

efficient adversary B forMDDH𝑘,ℓ,ℓ,ℓ3 :

1. On input the tensorMDDH challenge (G, [S1,2]1, [S1,2]2, [S2,2]1, [S2,2]2, [S1,2⊗S2,2]2, [V]2), algorithmA samples

full-rank matrices B̂,B1,B2

r← Z2𝑘×2𝑘𝑝 and defines B̂∗ = B̂−1, B∗
1
= B−1

1
, and B∗

2
= B−1

2
. It parses B̂,B1,B2 as in

Eq. (4.2) and B̂∗,B∗
1
,B∗

2
as in Eq. (4.3). Define the matrices Dnorm and Dsf as in Eq. (4.33).

2. Algorithm A constructs the encoding matrices
ˆT,T1,T2 as follows:

• Type-I encodings: Sample Ŝ1, Ŝ2
r← Z𝑘×ℓ𝑝 and let

ˆT = B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗2 ∈ Z2𝑘×ℓ𝑝 .

• Type-II encodings: Sample S1,1, S2,1
r← Z𝑘×ℓ𝑝 . It constructs the encodings

[T1]1 = B∗
1,1S1,1 + B∗1,2 [S1,2]1P𝑗1 =

[
B∗
1,1S1,1 + B∗1,2S1,2P𝑗1

]
1

[T1]2 = B∗
1,1S1,1 + B∗1,2 [S1,2]2P𝑗1 =

[
B∗
1,1S1,1 + B∗1,2S1,2P𝑗1

]
2

[T2]2 = B∗
2,1S2,1 + B∗2,2 [S2,2]2P𝑗1 =

[
B∗
2,1S2,1 + B∗2,2S2,2P𝑗1

]
2
.

• Tensor encoding: Compute

[T∗]2 = (B∗1,1 ⊗ B∗
2,1) (S1,1 ⊗ S2,1) + (B∗1,1 ⊗ B∗

2,2) (S1,1 ⊗ [S2,2]2) (Iℓ ⊗ P𝑗1 )
+ (B∗

1,2 ⊗ B∗
2,1) ( [S1,2]2 ⊗ S2,1) (P𝑗1 ⊗ Iℓ ) + (B∗1,2 ⊗ B∗

2,2) [S1,2 ⊗ S2,2]2 (P𝑗1 ⊗ P𝑗1 ).

Let crsbase =
(
G, [ ˆT]2, [T1]1, [T1]2, [T2]2, [T∗]2

)
.

3. Sample A r← Z𝑘×(𝑘+1)𝑝 and a random nonzero vector a⊥ ∈ Z𝑘+1𝑝 in the kernel of A.

4. Sample Wnorm
r← Zℓ

3 (𝑘+1)×3𝑘2

𝑝 , Wsf,1
r← Zℓ

3 (𝑘+1)×𝑘2

𝑝 , R1

r← Z(𝑘+1)×2𝑘𝑝 , and r2
r← Z2𝑘𝑝 . It sets R = R1 + a⊥rT2. It

then computes

[Z1]2 = (WnormDnorm +Wsf,1Dsf) [T∗]2 − (Pquad ⊗ I𝑘+1) (Iℓ2 ⊗ vec(R1
ˆT))

[Z2]2 = [V]2 (P𝑗1 ⊗ P𝑗1 ) − Pquad
(
Iℓ2 ⊗ vec(rT

2

ˆT)
)
,

and [Z]2 = [Z1]2 + (Iℓ3 ⊗ a⊥) [Z2]2.

5. Finally, algorithm B gives crs = (crsbase, [A]1, [(Iℓ3 ⊗ A) (WnormDnorm +Wsf,1Dsf)]1, [AR1]1, [Z]2) to A.

6. After algorithm A outputs (M, [c∗]2, [ĉ]2, [v]2), algorithm B outputs 1 if the following hold

Dsf [c∗]2 = [0]2 and B̂2 [ĉ]2 ≠ 0 and R[ĉ]2 + [v]2 − (vec(M)T ⊗ I𝑘+1)WnormDnorm [c∗]2 = [0]2.

By definition, the tensor MDDH challenger samples S1,2, S2,2
r← Z𝑘×ℓ𝑝 . Thus, algorithm B perfectly simulates the

distribution of every component other than [Z]2 in the common reference string according to the specification of

Hyb
4
and Hyb

5
. Thus it suffices to consider the distribution of Z in the two cases:

• Suppose V = Wsf,2 (S1,2 ⊗ S2,2) where the challenger samples Wsf,2
r← Zℓ3×𝑘2

𝑝 . Then algorithm B perfectly

simulates the distribution of crs in Hyb
4
. In this case, algorithm B outputs 1 with probability Pr[Hyb

4
(A) = 1].

• Suppose V r← Zℓ3×ℓ2𝑝 . This corresponds to the distribution of Z in Hyb
5
, so in this case, algorithm B outputs 1

with probability Pr[Hyb
5
(A) = 1].

We conclude that the distinguishing advantage of B is exactly 𝜀 and the claim follows. □

Lemma 4.47. Pr[Hyb
5
(A) = 1] = Pr[Hyb

6
(A) = 1].
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Proof. Since B̂ is a basis for Z2𝑘𝑝 , the distribution of r2 inHyb6 is uniform over Z2𝑘𝑝 , which is identical to the distribution

of r2 in Hyb
5
. It suffices to argue that Z2 is computed identically. This follows by the fact that B̂B̂∗ = I2𝑘 and the fact

that
ˆT = B̂∗

1
Ŝ1 + B̂∗2Ŝ2P𝑗2 . In particular, we can write

Pquad
(
Iℓ2 ⊗ vec(rT

2

ˆT)
)
= Pquad

(
Iℓ2 ⊗ vec

( (
rT
2,normB̂1 + rT2,sfB̂2

) (
B̂∗
1
Ŝ1 + B̂∗2Ŝ2P𝑗2

) ) )
= Pquad

(
Iℓ2 ⊗ vec

(
rT
2,normŜ1 + rT2,sf Ŝ2P𝑗2

) )
= Pquad

(
Iℓ2 ⊗ vec

(
rT
2,normŜ1

) )
+ Pquad

(
Iℓ2 ⊗ vec

(
rT
2,sf Ŝ2P𝑗2

) )
,

which matches the distribution in Hyb
6
. □

Lemma 4.48. Pr[Hyb
6
(A) = 1] = Pr[Hyb

7
(A) = 1].

Proof. The claim follows by properties of the projection matrix (Lemma 4.37). Specifically, we will show that the

following two distributions are identically distributed over the choice of U:{
U(P𝑗1 ⊗ P𝑗1 ) − Pquad

(
Iℓ2 ⊗ vec

(
rT
2,sf Ŝ2P𝑗1

) )
: U r← Zℓ3×ℓ2𝑝

}
≡
{
U(P𝑗1 ⊗ P𝑗1 ) : U

r← Zℓ3×ℓ2𝑝

}
. (4.42)

Since ( 𝑗1, 𝑗2) ∈ 𝑆 and moreover, Pquad = P(𝑆 )quad, we can appeal to Lemma 4.37 (applied to the vector rT
2,sf Ŝ2) to conclude

that

Pquad
(
Iℓ2 ⊗ vec

(
rT
2,sf Ŝ2P𝑗2

) ) (
Iℓ2 − (P𝑗1 ⊗ P𝑗1 )

)
= 0.

Now, we can write

Pquad
(
Iℓ2 ⊗ vec

(
rT
2,sf Ŝ2P𝑗2

) )
= Pquad

(
Iℓ2 ⊗ vec

(
rT
2,sf Ŝ2P𝑗2

) ) (
(P𝑗1 ⊗ P𝑗1 ) + Iℓ2 − (P𝑗1 ⊗ P𝑗1 )

)
= Pquad

(
Iℓ2 ⊗ vec

(
rT
2,sf Ŝ2P𝑗2

) ) (
P𝑗1 ⊗ P𝑗1

)
.

This means that

U(P𝑗1 ⊗ P𝑗1 ) − Pquad
(
Iℓ2 ⊗ vec

(
rT
2,sf Ŝ2P𝑗2

) )
=

(
U − Pquad

(
Iℓ2 ⊗ vec

(
rT
2,sf Ŝ2P𝑗2

) ) )
(P𝑗1 ⊗ P𝑗1 ). (4.43)

Since U is uniform over Zℓ
3×ℓ2
𝑝 and independent of Pquad, r2,sf , Ŝ2, and P𝑗2 , it follows that{
U − Pquad

(
Iℓ2 ⊗ vec

(
rT
2,sf Ŝ2P𝑗2

) )
: U r← Zℓ3×ℓ2𝑝

}
≡
{
U : U r← Zℓ3×ℓ2𝑝

}
. (4.44)

Eq. (4.42) now follows by combining Eqs. (4.43) and (4.44). □

Lemma 4.49. There exists a negligible function negl(·) such that Pr[Hyb
7
(A) = 1] = negl(𝜆).

Proof. By construction inHyb
7
, the components of crs are independent of the vector r2,sf . Thismeans that the challenger

in Hyb
7
can defer the sampling of r2,sf until after the adversary outputs (M, [c∗]2, [ĉ]2, [v]2). For the challenger to

output 1 in Hyb
7
, it must be the case that B̂2ĉ ≠ 0 and Rĉ + v′ = 0, where v′ = v − (vec(M)T ⊗ I𝑘+1)WnormDnormc∗.

We argue that when B̂2ĉ ≠ 0, the probability that Rĉ + v′ = 0 is negligible when taken over the choice of r2,sf . Since
R = R1 + a⊥rT2 = R1 + a⊥r2,normB̂1 + a⊥rT

2,sfB̂2, the equation Rĉ + v′ = 0 holds only if

a⊥ · rT
2,sfB̂2ĉ = −v′ − R1ĉ − a⊥ · rT2,normB̂1ĉ ∈ Z𝑘+1𝑝 .

Since B̂2ĉ ≠ 0 and r2,sf
r← Z𝑘𝑝 , the distribution of rT

2,sfB̂2ĉ is uniform over Z𝑝 . Finally, since a⊥ ≠ 0 and the challenger

samples r2,sf
r← Z𝑘𝑝 after all other quantities have been fixed, we conclude that

Pr

[
a⊥ · rT

2,sfB̂2ĉ = −v′ − R1ĉ − a⊥ · rT2,normB̂1ĉ : r2,sf
r← Z𝑘𝑝

]
≤ 1

𝑝
= negl(𝜆). □

By Lemmas 4.42 to 4.49, we conclude that for all efficient adversariesA, Pr[Hyb
0
(A) = 1] ≤ negl(𝜆). This means that

Construction 4.38 satisfies homogeneous chain binding for quadratic functions. Finally, since the vector dimension

ℓ = poly(𝜆), the bilateral 𝑘-Lin assumption implies the MDDH𝑘,ℓ,ℓ,ℓ3 assumption in G2 (Lemma 3.10 and Remark 3.8)

as well as the 𝑘-KerLin assumption in G1. Theorem 4.40 now follows from Lemma 4.41. □
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5 Functional Commitments for all Circuits
In this section, we describe how to use our projective chainable commitments for to obtain a functional commitment

for arithmetic circuits. In our construction, we will use the following representation for arithmetic circuits:

Definition 5.1 (Arithmetic Circuit Representation). Let R be a ring, and let 𝐶 : Rℓ → R𝑚 be an arithmetic circuit

(consisting of binary addition and multiplication gates) with 𝑠 wires. We define the “next-wire” matrix M𝐶 ∈
R (𝑠+1)×(𝑠+1)2 associated with 𝐶 as follows:

• Index each wire in 𝐶 in topological order. Specifically, the input wires are associated with the indices 1, . . . , ℓ ,

and the output wires are associated with indices 𝑠 −𝑚 + 1, . . . , 𝑠 . The value of each intermediate wire 𝑖 is

a (quadratic) function of the values of the wires indexed {1, . . . , 𝑖 − 1}. We assume that there is a canonical

topological ordering for the wires of 𝐶 .

• For an input x ∈ Rℓ
, let z ∈ R𝑠 be the vector of wire values associated with 𝐶 (x) under the canonical wire

ordering. Let ẑ =
[
1

z
]
. In the following description, we write 𝑧0 = 1 to refer to the first entry of ẑ and 𝑧1, . . . , 𝑧𝑠

to refer to the remaining entries.

• Let 𝑆 = {( 𝑗, 𝑗 + 1) : 𝑗 ∈ {ℓ + 1, . . . , 𝑠}}. We defineM𝐶 ∈ R (𝑠+1)×(𝑠+1) to be an 𝑆-local homogeneous quadratic

mapping that satisfiesM𝐶 (ẑ ⊗ ẑ) = ẑ:

– For 𝑖 ∈ {0, . . . , ℓ}, the 𝑖th row of M𝐶 implements the identity mapping 𝑧𝑖 ↦→ 𝑧0𝑧𝑖 .

– For 𝑖 ∈ {ℓ + 1, . . . , 𝑠}, the 𝑖th row of M𝐶 implements the quadratic function associated with the gate

computing the 𝑖th wire of 𝐶 . Since we index the wires of 𝐶 in topological order, the value of the 𝑖th wire is

a quadratic function of the values of wires 1, . . . , 𝑖 − 1, or equivalently, the variables 𝑧1, . . . , 𝑧𝑖−1. Finally,
since we defined 𝑧0 = 1, we can express 𝑧𝑖 as a homogeneous quadratic function of 𝑧0, . . . , 𝑧𝑖−1.

By construction, for all 𝑗 ≥ ℓ + 1, the first 𝑗 + 1 outputs of M𝐶 only depend on the first 𝑗 values of ẑ, so the

function M𝐶 is 𝑆-local, as desired.

Construction 5.2 (Functional Commitment for Arbitrary Functions). Our functional commitment scheme will rely

on the projective commitments and the associated proof systems from Section 4:

• Let FCbase =
(
SetupBase, SetupSF,Commit(1) ,Commit(2) , Project(1) , Project(2)

)
be the base projective com-

mitment scheme (Definition 4.3).

• Let FCpre =
(
SetupPre,OpenPre,VerifyPre

)
be a prefix-checking proof system for FCbase (Definition 4.13).

• Let FClin =
(
SetupLin,OpenLin,VerifyLin

)
be a chainable proof system for local linear functions over FCbase

(Definition 4.20).

• Let FCquad =
(
SetupQuad,OpenQuad,VerifyQuad

)
be a chainable proof system for local quadratic functions

over FCbase (Definition 4.35).

We construct our functional commitment scheme FC = (Setup,Commit, Eval,Verify) for arithmetic circuits as follows:

• Setup(1𝜆, 1ℓ , 1𝑠 ): On input the security parameter 𝜆, the input length ℓ , and the circuit size 𝑠 , the setup algorithm

starts by sampling a CRS for the base projective commitment scheme crsbase ← SetupBase(1𝜆, 1𝑠+1). It samples

parameters for each of the underlying proof systems:

– crspre ← SetupPre(crsbase, ℓ + 1).
– crslin ← SetupLin(crsbase, 𝑆lin) where 𝑆lin = {( 𝑗, 𝑗) : 𝑗 ∈ [𝑠 + 1]}.
– crsquad ← SetupQuad(crsbase, 𝑆quad) where 𝑆quad = {( 𝑗, 𝑗 + 1) : 𝑗 ∈ {ℓ + 1, . . . , 𝑠}}.

The setup algorithm outputs

crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
.

The input ring associated with crs is the same as that associated with crsbase.
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• Commit(crs, x): On input the common reference string crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
, an input x ∈ Rℓ

(where ℓ ≤ 𝑠), the commit algorithm outputs the commitment

𝜎in ← Commit(1)base (crsbase, x̂) where x̂ =

[
1

x
0𝑠−ℓ

]
∈ R𝑠+1 (5.1)

and the state st = x̂.

• Eval(crs, st,𝐶): On input the common reference string crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
, the state st = x̂

(parsed into x ∈ Rℓ
according to Eq. (5.1)), and an arithmetic circuit 𝐶 : Rℓ → R𝑚 of size 𝑠 , the evaluation

algorithm starts by computing the following quantities:

– Let z ∈ R𝑠 be the vector of wire values associated with𝐶 (x) (as defined in Definition 5.1), and let ẑ =
[
1

z
]
.

– Compute commitments 𝜎1 ← Commit(1) (crsbase, ẑ) and 𝜎2 ← Commit(2) (crsbase, ẑ) to the wire values ẑ.

Then, it prepares the following openings:

– Input consistency: Compute 𝜋pre ← OpenPre(crspre, x̂, ẑ).
– Internal consistency: Compute 𝜋lin ← OpenLin(crslin, ẑ, I𝑠+1).
– Gate consistency: Compute 𝜋quad ← OpenQuad(crsquad, ẑ,M𝐶 ), where M𝐶 is the “next-wire” matrix

associated with 𝐶 (Definition 5.1).

– Output consistency: Let Pout = diag

(
[01×(𝑠+1−𝑚) | 11×𝑚]

)
∈ {0, 1} (𝑠+1)×(𝑠+1) be the matrix that projects

onto the last𝑚 components. Compute the opening 𝜋out ← OpenLin(crslin, ẑ, Pout).

Finally, it outputs the proof 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out).

• Verify(crs, 𝜎in,𝐶, y, 𝜋): On input the common reference string crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
, the input

commitment 𝜎in, a function 𝑓 : Rℓ → R𝑚 , an output y ∈ R𝑚 , and a proof 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out), the
verification algorithm computes 𝜎out ← Commit(2) (crsbase,

[ 0
y
]
) and checks each of the following properties:

– Input consistency: VerifyPre(crspre, 𝜎in, 𝜎1, 𝜋pre) = 1.

– Internal consistency: VerifyLin(crslin, 𝜎1, I𝑠+1, 𝜎2, 𝜋lin) = 1.

– Gate consistency: VerifyQuad(crsquad, 𝜎2,M𝐶 , 𝜎1, 𝜋quad) = 1, whereM𝐶 is the next-wire matrix associ-

ated with 𝐶 (Definition 5.1).

– Output consistency: VerifyLin(crslin, 𝜎1, Pout, 𝜎out, 𝜋out) = 1, where Pout = diag

(
[01×(𝑠+1−𝑚) | 11×𝑚]

)
.

The verification algorithm outputs 1 if all of the above checks pass and outputs 0 otherwise.

Theorem 5.3 (Correctness). If FCpre, FClin, and FCquad are correct, then Construction 5.2 is correct.

Proof. Let 𝜆, ℓ, 𝑠 ∈ N. Let crs ← Setup(1𝜆, 1ℓ , 1𝑠 ). Let R be the input ring associated with crs and let 𝐶 : Rℓ → R𝑚
be an arbitrary arithmetic circuit of size 𝑠 . Take any x ∈ Rℓ

. Suppose (𝜎in, st) ← Commit(crs, x) and 𝜋 ←
Eval(crs, st,𝐶). By construction, crs =

(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
, 𝜎in ← Commit(1) (crsbase, x̂) where x̂ =

[
1

x
]
,

and 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out). In addition, 𝜎1 ← Commit(1) (crsbase, ẑ) and 𝜎2 ← Commit(2) (crsbase, ẑ).
Consider the output of Verify(crs, 𝜎in,𝐶,𝐶 (x), 𝜋).

• Input consistency: By definition, ẑ =
[
1

z
]
, where z is the vector of wire values associated with 𝐶 (x). By

definition, the first ℓ components of z is exactly x. This means x̂ and ẑ share a common prefix of length ℓ + 1.
Since 𝜋pre ← OpenPre(crspre, x̂, ẑ), correctness of FCpre now says that VerifyPre(crspre, 𝜎in, 𝜎1, 𝜋pre) = 1.

• Internal consistency: Since 𝜎1 and 𝜎2 are both commitments to ẑ, the identity mapping ẑ ↦→ I𝑠+1ẑ is 𝑆lin-local,
and 𝜋lin ← OpenLin(crslin, ẑ, I𝑠+1), correctness of FClin implies VerifyLin(crslin, 𝜎1, I𝑠+1, 𝜎2, 𝜋lin) = 1.

• Gate consistency: From Definition 5.1, the mapping M𝐶 is 𝑆quad-local and moreover, M𝐶 ẑ = ẑ. Since

𝜋quad ← OpenQuad(crsquad, ẑ,M𝐶 ), correctness of FCquad implies VerifyQuad(crsquad, 𝜎2,M𝐶 , 𝜎1, 𝜋quad) = 1.
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Hybrid ( 𝑗1, 𝑗2) Project(1) Project(2) Justification

Hybreal — ✗ ✗

Hybsf (ℓ + 1, ℓ + 1) ✗ ✗ Mode Indistinguishability (Definition 4.4)

Hybℓ+1,0 (ℓ + 1, ℓ + 1) ✓ ✗ Prefix Matching (Definition 4.13)

Hyb𝑖,0 (𝑖, 𝑖) ✓ ✗

Hyb𝑖,1 (𝑖, 𝑖) ✓ ✓ Linear Chain Binding (Definition 4.20)

Hyb𝑖,2 (𝑖, 𝑖) ✗ ✓ Dropping Verification Condition

Hyb𝑖,3 (𝑖 + 1, 𝑖) ✗ ✓ Type-I Indistinguishability (Definition 4.5)

Hyb𝑖,4 (𝑖 + 1, 𝑖) ✓ ✓ Quadratic Chain Binding (Definition 4.35)

Hyb𝑖,5 (𝑖 + 1, 𝑖) ✓ ✗ Dropping Verification Condition

Hyb𝑖+1,0 (𝑖 + 1, 𝑖 + 1) ✓ ✗ Type-II Indistinguishability (Definition 4.6)

Table 2: Overview of main hybrid experiments in the proof of Theorem 5.4. For each hybrid, we provide the Type-I

projection index 𝑗1 and the Type-II projection index 𝑗2 associated with the (semi-functional) common reference string.

We also indicate whether each experiment is checking the consistency of the Type-I commitments using Project(1)

(which requires knowledge of td1) and the consistency of the Type-II commitments using Project(2) (which requires

knowledge of td2). The justification column lists the reason why the adversary’s advantage from one experiment to

the next cannot decrease by a non-negligible amount.

• Output consistency: By the convention in Definition 5.1, the last 𝑚 components of ẑ correspond to the

outputs of 𝐶 (x). This means that Poutẑ =
[ 0
y
]
, where y = 𝐶 (x). Next, the verification algorithm com-

putes 𝜎out ← Commit(2) (crsbase,
[ 0
y
]
). In addition, Pout is diagonal so it is also 𝑆lin-local. Since 𝜋out ←

OpenLin(crslin, 𝜎1, Pout, 𝜎out, 𝜋out), correctness of FClin implies that VerifyLin(crslin, 𝜎1, Pout, 𝜎out, 𝜋out) = 1.

Since each of the checks pass, the verification algorithm outputs 1 and correctness holds. □

Theorem 5.4 (Binding). Suppose FCbase satisfies mode indistinguishability, Type-I indistinguishability, Type-II indistin-
guishability, and Type-II collision resistance. Suppose also that FCpre, FClin, and FCquad are secure. Then, Construction 5.2
is binding.

Proof. We start by defining a sequence of hybrid experiments:

• Hybreal: This is the real binding experiment.

1. Algorithm A starts by outputting the input length 1
ℓ
and the circuit size 1

𝑠
.

2. The challenger samples the base common reference string crsbase ← SetupBase(1𝜆, 1𝑠+1) and

crspre ← SetupPre(crsbase, ℓ + 1)
crslin ← SetupLin(crsbase, 𝑆lin)

crsquad ← SetupQuad(crsbase, 𝑆quad),

where the locality sets 𝑆lin and 𝑆quad are defined as in Construction 5.2. The challenger replies to the

adversary with crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
. Let R be the input ring associated with crsbase.

3. The adversaryA outputs an input commitment 𝜎in, an arithmetic circuit𝐶 : Rℓ → R𝑚 , vectors y, y′ ∈ R𝑚 ,

and openings 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋
′
quad, 𝜋

′
out).

4. The output of the experiment is 1 if y ≠ y′, Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 and Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) = 1.

• Hybsf : Same as Hybreal, except the challenger samples crsbase in semi-functional mode:

(crsbase, td1, td2) ← SetupSF(1𝜆, 1𝑠+1, ℓ + 1, ℓ + 1).
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• Hyb𝑖,0 for 𝑖 ∈ {ℓ + 1, . . . , 𝑠 + 1}: Same as Hybsf except when setting up the CRS, the challenger samples

(crsbase, td1, td2) ← SetupSF(1𝜆, 1𝑠+1, 𝑖, 𝑖).

Moreover, the output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 and Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) = 1.

– Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).

• Hyb𝑖,1 for 𝑖 ∈ {ℓ + 1, . . . , 𝑠}: Same as Hyb𝑖,0 except the output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 and Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) = 1.

– Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).
– Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2).

• Hyb𝑖,2 for 𝑖 ∈ {ℓ + 1, . . . , 𝑠}: Same as Hyb𝑖,1 except the output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 and Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) = 1.

– Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2).

In particular, the challenger no longer checks the projection on 𝜎1, 𝜎
′
1
.

• Hyb𝑖,3 for 𝑖 ∈ {ℓ + 1, . . . , 𝑠}: Same as Hyb𝑖,2 except when setting up the CRS, the challenger samples

(crsbase, td1, td2) ← SetupSF(1𝜆, 1𝑠+1, 𝑖 + 1, 𝑖).

• Hyb𝑖,4 for 𝑖 ∈ {ℓ + 1, . . . , 𝑠}: Same as Hyb𝑖,3 except the output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 and Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) = 1.

– Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).
– Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2).

• Hyb𝑖,5 for 𝑖 ∈ {ℓ + 1, . . . , 𝑠}: Same as Hyb𝑖,4 except the output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 and Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) = 1.

– Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).

In particular, the challenger no longer checks the projection on 𝜎2, 𝜎
′
2
.

• Hybfinal: Same as Hyb𝑠+1,0, where the challenger samples

(crsbase, td1, td2) ← SetupSF(1𝜆, 1𝑠+1, 𝑠 + 1, 𝑠 + 1).

At the end of the experiment, after the adversary outputs 𝜎2, 𝐶 , y, y′ and 𝜋, 𝜋 ′, the challenger computes

𝜎out ← Commit(2)
(
crsbase,

[ 0
y
] )

and 𝜎 ′out ← Commit(2)
(
crsbase,

[ 0
y′
] )
.

The output of the experiment is 1 only if the following hold:

– y ≠ y′ and Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 and Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) = 1.

– Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).
– Project(2) (td2, 𝜎out) = Project(2) (td2, 𝜎 ′out).
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Take any efficient adversary A for the binding game. Let ℓ be the input length and 𝑠 be the circuit size chosen by A.

We write Hyb𝑖 (A) to denote the output distribution of an execution of Hyb𝑖 with adversary A. We now show that

the probability of a hybrid outputting 1 cannot decrease by a non-negligible amount as we move from one hybrid to

the next. Then, we show that in the final hybrid Hybfinal, the probability that the challenger outputs 1 is negligible

by Type-II collision-resistance of the underlying projective commitment (Definition 4.7). We summarize the key

sequence of hybrid transitions in Table 2.

Lemma 5.5. Suppose FCbase satisfies mode indistinguishability (Definition 4.4). Then there exists a negligible function
negl(·) such that | Pr[Hybreal (A) = 1] − Pr[Hybsf (A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hybreal (A) = 1] − Pr[Hybsf (A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. We use A to construct an

adversary B for the mode indistinguishability game:

1. Algorithm B starts running algorithm A which starts by outputting the input length 1
ℓ
and the circuit size 1

𝑠
.

Algorithm B sends (1𝑠+1, ℓ + 1, ℓ + 1) to the mode indistinguishability challenger and receives crsbase.

2. Algorithm B samples

crspre ← SetupPre(crsbase, ℓ + 1)
crslin ← SetupLin(crsbase, 𝑆lin)

crsquad ← SetupQuad(crsbase, 𝑆quad),

It give crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment 𝜎in, an arithmetic circuit 𝐶 : Rℓ → R𝑚 , vectors y, y′ ∈ R𝑚 , and
openings 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋

′
quad, 𝜋

′
out).

4. Algorithm B outputs 1 if y ≠ y′, Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 and Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) = 1. Otherwise, it

outputs 0.

By construction, if the challenger sampled crsbase ← SetupBase(1𝜆, 1𝑠+1), the algorithm B perfectly simulates

an execution of Hybreal for A and outputs 1 with probability Pr[Hybreal (A) = 1]. If the challenger sampled

crsbase ← SetupSF(1𝜆, 1𝑠+1, ℓ + 1, ℓ + 1), then algorithm B perfectly simulates an execution of Hybsf forA and outputs

1 with probability Pr[Hybsf (A) = 1]. Thus, algorithm B breaks mode indistinguishability with advantage 𝜀. □

Lemma 5.6. Suppose FCpre satisfies prefix-matching security (Definition 4.13). Then there exists a negligible function
negl(·) such that | Pr[Hybsf (A) = 1] − Pr[Hybℓ+1,0 (A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hybsf (A) = 1] − Pr[Hybℓ+1,0 (A) = 1] | ≥ 𝜀 for some non-negligible 𝜀. By construction, the com-

mon reference string crs in the two experiments is identically distributed. Thus, it must be the case that with probability

at least 𝜀, algorithm A will output 𝜎in, 𝐶 , y, y′, 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋
′
quad, 𝜋

′
out)

such that

Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 = Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) and Project(1) (td1, 𝜎1) ≠ Project(1) (td1, 𝜎 ′1). (5.2)

In all other cases, the outputs of Hybsf and Hybℓ+1,0 are identical. We useA to construct an adversary B for the prefix

matching security game:

1. Algorithm B runs algorithmA, which starts by outputting the input length 1
ℓ
and the circuit size 1

𝑠
. Algorithm

B forwards (1𝑠+1, ℓ + 1) to the prefix matching challenger and receives (crsbase, crspre).

2. Algorithm B samples crslin ← SetupLin(crsbase, 𝑆lin) and crsquad ← SetupQuad(crsbase, 𝑆quad). It gives the
common reference string crs =

(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment 𝜎in, an arithmetic circuit 𝐶 : Rℓ → R𝑚 , vectors y, y′ ∈ R𝑚 , and
openings 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋

′
quad, 𝜋

′
out).
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4. Algorithm B samples a bit 𝑏
r← {0, 1}. If 𝑏 = 0, it outputs (𝜎in, 𝜎1) and the opening 𝜋pre. If 𝑏 = 1, it outputs

(𝜎in, 𝜎 ′1) and the opening 𝜋 ′pre.

The prefix-matching security challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1𝑠+1, ℓ + 1, ℓ + 1), so algorithm B
perfectly simulates an execution of Hybsf and Hybℓ,0 for A. Thus, with probability at least 𝜀, the quantities output by

A satisfy Eq. (5.2). Then, the following hold:

• If Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 = Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′), then we have that VerifyPre(crspre, 𝜎in, 𝜎1, 𝜋pre) = 1 and

VerifyPre(crspre, 𝜎in, 𝜎 ′1, 𝜋 ′pre) = 1.

• If Project(1) (td1, 𝜎1) ≠ Project(1) (td1, 𝜎 ′1), then it must be the case that

either Project(1) (td1, 𝜎in) ≠ Project(1) (td1, 𝜎1) or Project(1) (td1, 𝜎in) ≠ Project(1) (td1, 𝜎 ′1).

Since algorithm B samples the bit 𝑏 uniformly at random, it breaks prefix matching with probability at least 𝜀/2. □

Lemma 5.7. Suppose FClin satisfies linear chain binding (Definition 4.20). Then there exists a negligible function negl(·)
such that for all 𝑖 ∈ {ℓ + 1, . . . , 𝑠}, | Pr[Hyb𝑖,0 (A) = 1] − Pr[Hyb𝑖,1 (A) = 1] | = negl(𝜆).

Proof. Suppose there exists an index 𝑖 ∈ {ℓ + 1, . . . , 𝑠} where | Pr[Hyb𝑖,0 (A) = 1] − Pr[Hyb𝑖,1 (A) = 1] | ≥ 𝜀 for some

non-negligible 𝜀. By construction, the common reference string in the two experiments is identically distributed. Thus,

it must be the case that with probability at least 𝜀, algorithmA will output 𝜎in,𝐶 , y, y′, 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out)
and 𝜋 ′ = (𝜎 ′

1
, 𝜎 ′

2
, 𝜋 ′pre, 𝜋

′
lin, 𝜋

′
quad, 𝜋

′
out) such that

• Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 = Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′).

• Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).

• Project(2) (td2, 𝜎2) ≠ Project(2) (td2, 𝜎 ′2).

In all other cases, the outputs of Hyb𝑖,0 and Hyb𝑖,1 are identical. We use A to construct an adversary B for the linear

chain binding game:

1. Algorithm B runs algorithm A, which starts by outputting the input length 1
ℓ
and the circuit size 1

𝑠
. Algo-

rithm B provides 1
𝑠+1

, the locality set 𝑆lin and indices (𝑖, 𝑖) to the linear chain binding adversary. It receives

(crsbase, crslin).

2. Algorithm B samples crsquad ← SetupQuad(crsbase) and crspre ← SetupPre(crsbase, ℓ +1). It gives the common

reference string crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment 𝜎in, an arithmetic circuit 𝐶 : Rℓ → R𝑚 , vectors y, y′ ∈ R𝑚 , and
openings 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋

′
quad, 𝜋

′
out).

4. Algorithm B outputs the matrix I𝑠+1, the Type-I commitments 𝜎1, 𝜎
′
1
, the Type-II commitments 𝜎2, 𝜎

′
2
, and the

openings 𝜋lin, 𝜋
′
lin.

First, we note that B is a valid adversary for the chain binding security game. Namely, (𝑖, 𝑖) ∈ 𝑆lin, and moreover,

I𝑠+1 is 𝑆lin-local. Then, the challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1𝑠+1, 𝑖, 𝑖), so algorithm B perfectly

simulates an execution of Hyb𝑖,0 and Hyb𝑖,1 forA. Thus, with probability at least 𝜀, the quantities output byA satisfy

the properties enumerated above. Then, the following hold:

• If Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 = Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′), then we have that VerifyLin(crslin, 𝜎1, I𝑠+1, 𝜎2, 𝜋lin) = 1

and VerifyLin(crslin, 𝜎 ′1, I𝑠+1, 𝜎 ′2, 𝜋 ′lin) = 1.

• Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).

• Project(2) (td2, 𝜎2) ≠ Project(2) (td2, 𝜎 ′2).
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These conditions precisely coincide with the requirements of the linear chain binding game, so we conclude that

algorithm B succeeds with advantage 𝜀. □

Lemma 5.8. For all 𝑖 ∈ {ℓ + 1, . . . , 𝑠}, Pr[Hyb𝑖,1 (A) = 1] ≤ Pr[Hyb𝑖,2 (A) = 1].

Proof. The verification conditions in Hyb𝑖,1 is a strict superset of those in Hyb𝑖,2. Correspondingly, if Hyb𝑖,1 (A)
outputs 1, then the same is true for Hyb𝑖,2 (A) and the claim holds. □

Lemma 5.9. Suppose FCbase satisfies Type-I indistinguishability (Definition 4.5). Then there exists a negligible function
negl(·) such that for all 𝑖 ∈ {ℓ + 1, . . . , 𝑠}, | Pr[Hyb𝑖,2 (A) = 1] − Pr[Hyb𝑖,3 (A) = 1] | = negl(𝜆).

Proof. Suppose there exists an index 𝑖 ∈ {ℓ + 1, . . . , 𝑠} where | Pr[Hyb𝑖,2 (A) = 1] − Pr[Hyb𝑖,3 (A) = 1] | ≥ 𝜀 for

some non-negligible 𝜀. We use A to construct an efficient adversary B that breaks Type-I indistinguishability of

Construction 4.8:

1. Algorithm B runs algorithmA, which starts by outputting the input length 1
ℓ
and the circuit size 1

𝑠
. Algorithm

B forwards 1
𝑠+1

, the Type-I indices (𝑖, 𝑖 + 1), and the Type-II index 𝑖 to its challenger. It receives the base

common reference string crsbase and the Type-II projection trapdoor td2.

2. Algorithm B samples

crspre ← SetupPre(crsbase, ℓ + 1)
crslin ← SetupLin(crsbase, 𝑆lin)

crsquad ← SetupQuad(crsbase, 𝑆quad),

It give crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment 𝜎in, an arithmetic circuit 𝐶 : Rℓ → R𝑚 , vectors y, y′ ∈ R𝑚 , and
openings 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋

′
quad, 𝜋

′
out).

4. AlgorithmB outputs 1 if y ≠ y′,Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1,Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) = 1, andProject(2) (td2, 𝜎2) =
Project(2) (td2, 𝜎 ′2). Otherwise, it outputs 0.

If the challenger sampled crsbase ← SetupSF(1𝜆, 1𝑠+1, 𝑖, 𝑖), the algorithm B perfectly simulates an execution of Hyb𝑖,2
forA and outputs 1 with probability Pr[Hyb𝑖,2 (A) = 1]. If the challenger sampled crsbase ← SetupSF(1𝜆, 1𝑠+1, 𝑖 +1, 𝑖),
then algorithm B perfectly simulates an execution of Hyb𝑖,3 for A and outputs 1 with probability Pr[Hyb𝑖,3 (A) = 1].
Correspondingly, algorithm B breaks Type-I indistinguishability with advantage 𝜀. □

Lemma 5.10. Suppose FCquad satisfies quadratic chain binding (Definition 4.35). Then there exists a negligible function
negl(·) such that for all 𝑖 ∈ {ℓ + 1, . . . , 𝑠}, | Pr[Hyb𝑖,3 (A) = 1] − Pr[Hyb𝑖,4 (A) = 1] | = negl(𝜆).

Proof. Suppose there exists an index 𝑖 ∈ {ℓ + 1, . . . , 𝑠} where | Pr[Hyb𝑖,3 (A) = 1] − Pr[Hyb𝑖,4 (A) = 1] | ≥ 𝜀 for some

non-negligible 𝜀. By construction, the common reference string in the two experiments is identically distributed. Thus,

it must be the case that with probability at least 𝜀, algorithmA will output 𝜎in,𝐶 , y, y′, 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out)
and 𝜋 ′ = (𝜎 ′

1
, 𝜎 ′

2
, 𝜋 ′pre, 𝜋

′
lin, 𝜋

′
quad, 𝜋

′
out) such that

• Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 = Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′).

• Project(1) (td1, 𝜎1) ≠ Project(1) (td1, 𝜎 ′1).

• Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2).

In all other cases, the outputs of Hyb𝑖,3 and Hyb𝑖,4 are identical. We use A to construct an adversary B for the

quadratic chain binding game:
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1. Algorithm B runs algorithmA, which starts by outputting the input length 1
ℓ
and the circuit size 1

𝑠
. Algorithm

B sends 1
𝑠+1

, the locality set 𝑆quad, and indices (𝑖, 𝑖 + 1) to the quadratic chain binding adversary. It receives

(crsbase, crsquad).

2. Algorithm B samples crslin ← SetupLin(crsbase) and crspre ← SetupPre(crsbase, ℓ + 1). It gives the common

reference string crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment 𝜎in, an arithmetic circuit 𝐶 : Rℓ → R𝑚 , vectors y, y′ ∈ R𝑚 , and
openings 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋

′
quad, 𝜋

′
out).

4. Algorithm B outputs the matrixM𝐶 , the Type-II commitments 𝜎2, 𝜎
′
2
, the Type-I commitments 𝜎1, 𝜎

′
1
, and the

openings 𝜋quad, 𝜋
′
quad.

First, we note that B is a valid adversary for the chain binding security game. From Definition 5.1, the “next-wire”

matrix M𝐶 is ( 𝑗, 𝑗 + 1)-local for all 𝑗 ≥ ℓ + 1. In particular, this means that M𝐶 is 𝑆quad-local and moreover, that

(𝑖, 𝑖 + 1) ∈ 𝑆quad. Then, the chain-binding challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1𝑠+1, 𝑖 + 1, 𝑖) Thus,
algorithm B perfectly simulates an execution of Hyb𝑖,3 and Hyb𝑖,4 for A, so with probability at least 𝜀, the quantities

output by A satisfy the properties enumerated above. Then, the following hold:

• If Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 = Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′), then VerifyQuad(crsquad, 𝜎2,M𝐶 , 𝜎1, 𝜋quad) = 1 and

VerifyQuad(crsquad, 𝜎 ′2,M𝐶 , 𝜎
′
1
, 𝜋 ′quad) = 1.

• Project(1) (td1, 𝜎1) ≠ Project(1) (td1, 𝜎 ′1).

• Project(2) (td2, 𝜎2) = Project(2) (td2, 𝜎 ′2).

These conditions precisely coincide with the requirements of the quadratic chain binding game, so we conclude that

algorithm B succeeds with advantage 𝜀. □

Lemma 5.11. For all 𝑖 ∈ {ℓ + 1, . . . , 𝑠}, Pr[Hyb𝑖,4 (A) = 1] ≤ Pr[Hyb𝑖,5 (A) = 1].

Proof. The verification conditions in Hyb𝑖,4 is a strict superset of those in Hyb𝑖,5. Correspondingly, if Hyb𝑖,4 (A)
outputs 1, then the same is true for Hyb𝑖,5 (A) and the claim holds. □

Lemma 5.12. Suppose FCbase satisfies Type-II indistinguishability (Definition 4.6). Then there exists a negligible function
negl(·) such that for all 𝑖 ∈ {ℓ + 1, . . . , 𝑠}, | Pr[Hyb𝑖,5 (A) = 1] − Pr[Hyb𝑖+1,0 (A) = 1] | = negl(𝜆).

Proof. Suppose there exists an index 𝑖 ∈ {ℓ + 1, . . . , 𝑠} where | Pr[Hyb𝑖,5 (A) = 1] − Pr[Hyb𝑖+1,0 (A) = 1] | ≥ 𝜀 for

some non-negligible 𝜀. We use A to construct an efficient adversary B that breaks Type-II indistinguishability of

Construction 4.8:

1. Algorithm B runs algorithmA, which starts by outputting the input length 1
ℓ
and the circuit size 1

𝑠
. Algorithm

B forwards 1
𝑠+1

, the Type-I index 𝑖 + 1, and two Type-II indices (𝑖, 𝑖 + 1) to its challenger. It receives the base

common reference string crsbase and the Type-I projection trapdoor td1.

2. Algorithm B samples

crspre ← SetupPre(crsbase, ℓ + 1)
crslin ← SetupLin(crsbase, 𝑆lin)

crsquad ← SetupQuad(crsbase, 𝑆quad),

It give crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment 𝜎in, an arithmetic circuit 𝐶 : Rℓ → R𝑚 , vectors y, y′ ∈ R𝑚 , and
openings 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋

′
quad, 𝜋

′
out).
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4. AlgorithmB outputs 1 if y ≠ y′,Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1,Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′) = 1, andProject(1) (td1, 𝜎1) =
Project(1) (td1, 𝜎 ′1). Otherwise, it outputs 0.

If the challenger sampled crsbase ← SetupSF(1𝜆, 1𝑠+1, 𝑖+1, 𝑖), the algorithmB perfectly simulates an execution ofHyb𝑖,5
for A and outputs 1 with probability Pr[Hyb𝑖,5 (A) = 1]. If the challenger sampled crsbase ← SetupSF(1𝜆, 1𝑠+1, 𝑖 +
1, 𝑖 + 1), then algorithm B perfectly simulates an execution of Hyb𝑖+1,0 for A and outputs 1 with probability

Pr[Hyb𝑖+1,0 (A) = 1]. Correspondingly, algorithm B breaks Type-II indistinguishability with advantage 𝜀. □

Lemma 5.13. Suppose FClin satisfies satisfies linear chain binding (Definition 4.20). Then there exists a negligible
function negl(·) such that | Pr[Hyb𝑠+1,0 (A) = 1] − Pr[Hybfinal (A) = 1] | = negl(𝜆).

Proof. This proof is similar to the proof of Lemma 5.7. Suppose | Pr[Hyb𝑠+1,0 (A) = 1] − Pr[Hybfinal (A) = 1] | ≥ 𝜀

for some non-negligible 𝜀. By construction, the common reference string in the two experiments is identically

distributed. Thus, it must be the case that with probability at least 𝜀, algorithm A will output 𝜎in, 𝐶 , y, y′, 𝜋 =

(𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋
′
quad, 𝜋

′
out) such that

• Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 = Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′).

• Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎1).

• Project(2) (td2, 𝜎out) ≠ Project(2) (td2, 𝜎 ′out), where

𝜎out ← Commit(2)
(
crsbase,

[ 0
y
] )

and 𝜎 ′out ← Commit(2)
(
crsbase,

[ 0
y′
] )
.

In all other cases, the outputs of Hyb𝑠+1,0 and Hybfinal are identical. We use A to construct an adversary B for the

linear chain binding game:

1. Algorithm B runs algorithmA, which starts by outputting the input length 1
ℓ
and the circuit size 1

𝑠
. Algorithm

B forwards 1
𝑠+1

, the locality set 𝑆lin, and indices (𝑠 + 1, 𝑠 + 1) to the linear chain binding challenger. It receives

(crsbase, crslin).

2. Algorithm B samples crsquad ← SetupQuad(crsbase) and crspre ← SetupPre(crsbase, ℓ +1). It gives the common

reference string crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment 𝜎in, an arithmetic circuit 𝐶 : Rℓ → R𝑚 , vectors y, y′ ∈ R𝑚 , and
openings 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋

′
quad, 𝜋

′
out).

4. Algorithm B outputs the matrix Pout, the Type-I commitments 𝜎1, 𝜎
′
1
, the Type-II commitments 𝜎out, 𝜎

′
out

(computed as in Section 5), and the openings 𝜋out, 𝜋
′
out.

First, we note that B is a valid adversary for the chain binding security game. Since Pout is a diagonal matrix, it is 𝑆lin-

local, and moreover, (𝑠 + 1, 𝑠 + 1) ∈ 𝑆lin. Thus, the challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1𝑠+1, 𝑠 + 1, 𝑠 + 1),
and algorithm B perfectly simulates an execution of Hyb𝑠+1,0 and Hybfinal forA. Thus, with probability at least 𝜀, the

quantities output by A satisfy the properties enumerated above. Then, the following hold:

• If Verify(crs, 𝜎in,𝐶, y, 𝜋) = 1 = Verify(crs, 𝜎in,𝐶, y′, 𝜋 ′), then we have that VerifyLin(crslin, 𝜎1, Pout, 𝜎out, 𝜋out) =
1 and VerifyLin(crslin, 𝜎 ′1, I𝑠 , 𝜎 ′out, 𝜋 ′out) = 1.

• Project(1) (td1, 𝜎1) = Project(1) (td1, 𝜎 ′1).

• Project(2) (td2, 𝜎out) ≠ Project(2) (td2, 𝜎 ′out).

These conditions precisely coincide with the requirements of the linear chain binding game, so we conclude that

algorithm B succeeds with advantage 𝜀. □

Lemma 5.14. Suppose FCbase satisfies Type-II collision resistance (Definition 4.7). Then there exists a negligible function
negl(·) such that Pr[Hybfinal (A) = 1] = negl(𝜆).
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Proof. Suppose Pr[Hybfinal (A) = 1] ≥ 𝜀 for some non-negligible 𝜀. We use A to construct an adversary B that

breaks Type-II collision resistance:

1. Algorithm B runs algorithmA, which starts by outputting the input length 1
ℓ
and the circuit size 1

𝑠
. Algorithm

B forwards 1
𝑠+1

and the Type-I index 𝑠 + 1 to the challenger. It receives crsbase.

2. Algorithm B samples

crspre ← SetupPre(crsbase, ℓ + 1)
crslin ← SetupLin(crsbase, 𝑆lin)

crsquad ← SetupQuad(crsbase, 𝑆quad),

It give crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
to A.

3. Algorithm A outputs an input commitment 𝜎in, an arithmetic circuit 𝐶 : Rℓ → R𝑚 , vectors y, y′ ∈ R𝑚 , and
openings 𝜋 = (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out) and 𝜋 ′ = (𝜎 ′1, 𝜎 ′2, 𝜋 ′pre, 𝜋 ′lin, 𝜋

′
quad, 𝜋

′
out).

4. Algorithm B outputs the vectors y, y′.

The challenger samples (crsbase, td1, td2) ← SetupSF(1𝜆, 1𝑠+1, 𝑠 + 1, 𝑠 + 1), so algorithm B perfectly simulates an

execution of Hybfinal for A. Thus, with probability at least 𝜀, it holds that y ≠ y′ and Project(2) (td2, 𝜎out) =

Project(2) (td2, 𝜎 ′out), where 𝜎out = Commit(2)
(
crsbase,

[ 0
y
] )

and 𝜎 ′out = Commit(2)
(
crsbase,

[ 0
y′
] )
. These conditions

precisely coincide with the requirements of the Type-II collision resistance game, so algorithm B succeeds with

advantage 𝜀. □

Since 𝑠 = poly(𝜆), we conclude via Lemmas 5.5 to 5.13 that

Pr[Hybfinal (A) = 1] ≥ Pr[Hybreal (A) = 1] − negl(𝜆).

By Lemma 5.14, we have that Pr[Hybfinal (A) = 1] = negl(𝜆), so we conclude that Pr[Hyb
0
(A) = 1] = negl(𝜆), and

binding holds. □

Succinct functional commitments from bilateral 𝑘-Lin. Combining the construction from Construction 5.2

with our projective commitments (and associated proof systems) from Section 4, we obtain a functional commitment

for all arithmetic circuits from the bilateral 𝑘-Lin assumption. Notably, both the commitments and the openings in

our construction consist of a constant number of group elements. We summarize our instantiation in the following

corollary.

Corollary 5.15 (Functional Commitments from 𝑘-Lin). Let 𝑘 > 1 be a constant and GroupGen be a prime-order
pairing group generator. If the bilateral 𝑘-Lin assumption holds with respect to GroupGen, then there exists a succinct
functional commitment that supports openings to arbitrary arithmetic circuits of size 𝑠 (over the ring Z𝑝 associated with
GroupGen) with the following properties:

• Commitment size: A commitment to an input x ∈ Zℓ𝑝 consists of 2𝑘 elements in the group G2.

• Opening size: An opening to an arithmetic circuit 𝐶 : Zℓ𝑝 → Z𝑚𝑝 consists of 2𝑘 elements in G1 and 4𝑘2 + 14𝑘 + 6
elements in G2.

• CRS size: The CRS is a structured reference string containing 𝑂 (𝑘3𝑠5) group elements.

For the particular case of 𝑘 = 2, a commitment consists of 4 group elements and an opening consists of 54 group elements
(specifically, 4 G1 and 50 G2 elements).

Proof. We instantiate the base scheme FCbase with Construction 4.8 and the proof systems FCpre, FClin, FCquad with

Constructions 4.8, 4.14, and 4.23. Then, we have the following:
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• Commitment size: A commitment to an input x ∈ Zℓ𝑝 is a Type-I commitment (output by Commit(1) ), which
is a vector in G2𝑘

2
.

• Opening size: An opening consists of a tuple (𝜎1, 𝜎2, 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out). We consider each component:

– 𝜎1 is a Type-I commitment so 𝜎1 ∈ G2𝑘
2
.

– 𝜎2 is a Type-II commitment so 𝜎2 ∈ G2𝑘
1
× G2𝑘

2
.

– 𝜋pre is an opening for FCpre so 𝜋pre ∈ G𝑘+12
.

– 𝜋lin is an opening for FClin, so 𝜋lin ∈ G4𝑘+2
2

.

– 𝜋quad is an opening for FCquad, so 𝜋quad ∈ G4𝑘2+𝑘+1
2

.

– 𝜋out is an opening for FClin so 𝜋out ∈ G4𝑘+2
2

.

Taken altogether, the opening consists of 2𝑘 elements in G1 and 4𝑘2 + 14𝑘 + 6 elements in G2.

• CRS size: The CRS in Construction 5.2 is a tuple crs =
(
1
𝑠 , crsbase, crspre, crslin, crsquad

)
. The base CRS consists of

𝑂 (𝑠2𝑘2) group elements. Next, crspre contains an additional𝑂 (𝑘2𝑠) group elements, crslin contains an additional

𝑂 (𝑘2𝑠3) and crsquad contains an additional 𝑂 (𝑘3𝑠5) group elements. Taken together, the CRS size contains

𝑂 (𝑘3𝑠5) group elements. □

Extensions and applications. We now describe several simple extensions and corollaries of our new functional

commitment scheme.

Remark 5.16 (Fast Verification). The running time of the verification algorithm for the functional commitment

scheme in Corollary 5.15 scales with 𝑂 (𝑠3), where 𝑠 is the size of the arithmetic circuit. This is the time needed

to implement the verification algorithm for the chainable proof system for quadratic functions (Construction 4.38).

However, when the circuit 𝐶 is known in advance, we can preprocess the circuit 𝐶 so that verification requires only

𝑂 (𝑚) bilinear map operations, where𝑚 is the output size. Specifically, we can precompute the following quantities

to reduce the online cost of checking 𝜋pre, 𝜋lin, 𝜋quad, 𝜋out in Construction 5.2:

• Checking 𝜋pre: The VerifyPre algorithm is already fast (only requires 𝑂 (𝑘) number of bilinear map operations),

so no preprocessing is needed for checking 𝜋pre.

• Checking 𝜋lin: We precompute (vec(I𝑠 )T⊗ I𝑘 ) [(Iℓ2 ⊗A)W1]2 ∈ G𝑘×2𝑘1
and (vec(I𝑠 )T⊗ I𝑘 ) [(Iℓ2 ⊗A)W2]2 ∈ G𝑘×2𝑘1

.

Then, evaluating VerifyLin in Construction 4.23 only requires 𝑂 (𝑘2) group operations. The precomputed key

in this case only depends on the size of the circuit 𝐶 and not on the actual description of 𝐶 .

• Checking 𝜋quad: We precompute the circuit-dependent verification key (vec(M𝐶 )T ⊗ I𝑘 ) [(Iℓ3 ⊗A)W]1 ∈ G𝑘×4𝑘
2

1
.

Then, evaluating VerifyQuad in Construction 4.38 only requires 𝑂 (𝑘3) group operations.

• Checking 𝜋out: Similar to the case for 𝜋lin, we precompute (vec(Pout)T ⊗ I𝑘 ) [(Iℓ2 ⊗ A]W1]2 ∈ G𝑘×2𝑘1
and

(vec(Pout)T ⊗ I𝑘 ) [(Iℓ2 ⊗ A]W2]2 ∈ G𝑘×2𝑘1
. With the precomputed key, evaluating VerifyLin only takes 𝑂 (𝑘2)

group operations.

Since 𝑘 = 𝑂 (1), these operations only require a constant number of bilinear group operations. The online cost of

the verification is then just the cost of computing the commitment 𝜎out to the output y, which requires 𝑂 (𝑚) group
operations. Note that if the target value y is also known in advance, then we can also precompute 𝜎out. In this case,

the online verification would only require a constant number of bilinear map operations.

Remark 5.17 (Application to Homomorphic Signatures). Previously, the authors of [CFT22] described a generic

approach for constructing a homomorphic signature from any additively-homomorphic functional commitment

scheme. The class of functions supported by the homomorphic signature scheme coincides with the class of functions

associated with the functional commitment scheme. Our functional commitment scheme (Corollary 5.15) satisfies

the required additive homomorphism property. Namely, the commitments in our scheme consist of a single Type-I
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commitment for the base projective commitment scheme (Construction 4.8). In Construction 4.8, a commitment to

x ∈ Zℓ𝑝 is [ ˆTx]2. The base commitment scheme is clearly additively homomorphic. Thus, we can apply the [CFT22]

approach to obtain a homomorphic signature for all bounded-size arithmetic circuits. The resulting homomorphic

signature scheme inherits the efficiency properties of the underlying functional commitment in this case. In our

setting, this gives a homomorphic signature for general circuits where the size of the signature is always a constant
number of group elements. Previous pairing-based approaches for homomorphic signatures either required knowledge

assumptions (through the use of general-purpose SNARKs), had signatures whose size grew with the depth of the

computation [BCFL23], or had signatures who size consisted of a super-constant number of group elements [KLVW23]

(specifically, the number of group elements is proportional to the size of a circuit implementing a cryptographic hash

function, which has size poly(𝜆)).

Remark 5.18 (Chainable Commitment for Arbitrary Circuits). In Construction 5.2, the input commitments are

Type-I commitments while the output commitments are Type-II. It is easy to construct a chainable commitment

where the input and outputs have the same type; namely, where the output commitment is also a Type-I commitment

𝜎out := Commit(1)base

(
crsbase,

[
1

𝐶 (x)
0

] )
.

To support this, we simply include an additional opening for the projection function that maps
1

z
𝐶 (x)

 ↦→


1

𝐶 (x)
0

 ,
where z denotes the input and intermediate wires of 𝐶 (x).7 Clearly, this is a linear mapping, and thus can be handled

using our techniques; technically, we will use the quadratic system here since we are converting from a Type-II

commitment to a Type-I commitment. In this way, we obtain a chainable commitment for arbitrary circuits. In

particular this allows a user to take a commitment 𝜎1 to an input x, apply a circuit 𝐶1 to x to obtain a commitment 𝜎2
to the value 𝐶1 (x). The user can then apply a new circuit 𝐶1 to obtain a commitment 𝜎3 to the value 𝐶2 (𝐶1 (x)), and
so on. As shown by the authors of [BCFL23], a chainable commitment can be used to obtain a functional commitment

for circuits of a priori unbounded depth, so long as we allow the size of the opening to scale with the depth of the

circuit. Our approach directly supports this setting.
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