
Using Homomorphic Encryption for Large Scale Statistical Analysis

David J. Wu and Jacob Haven

Abstract

The development of fully homomorphic encryption schemes in recent years has generated considerable
interest in the field of secure computing. In this paper, we consider the problem of performing statistical
analysis on encrypted data. Specifically, we focus on two tasks: computing the mean and variance of
univariate and multivariate data as well as performing linear regression on a multidimensional, encrypted
corpus. Due to the high overhead of homomorphic computation, previous implementations of similar
methods have been restricted to small datasets (on the order of a few hundred to a thousand elements)
or data with low dimension (generally 1-4). In this paper, we first construct a working implementation
of the scale-invariant leveled homomorphic encryption system in [Bra12]. Then, by taking advantage of
batched computation as well as a message encoding technique based on the Chinese Remainder Theorem,
we show that it becomes not only possible, but computationally feasible, to perform statistical analysis on
encrypted datasets with over four million elements and dimension as high as 24. By using these methods
along with some additional optimizations, we demonstrate the viability of using leveled homomorphic
encryption for large scale statistical analysis.

1 Introduction

In recent years, there has been growing interest in the field of fully homomorphic encryption. Starting
from Gentry’s breakthrough work in developing the first fully homomorphic encryption (FHE) scheme
[Gen09], researchers have proposed many different variants [BV11, BGV12, Bra12] as well as applications
[LNV11, GHS12b] of fully homomorphic encryption. At a high level, fully homomorphic encryption allows
the evaluation of arbitrary functions on encrypted data. Such a scheme has many applications, particularly
in regards to cloud computing and storage platforms. One of the principle concerns people raise regarding
cloud-based solutions is the privacy and security of their data. In many domains, such as financial, medical,
and military ones, these issues of privacy and confidentiality render cloud-based solutions inappropriate.
A natural method to address these concerns would be to store the data encrypted in the cloud. However,
if the data is stored encrypted, there must still exist a method of performing useful computations on the
encrypted data without the need to decrypt the data; in other words, the underlying encryption scheme
must be homomorphic.

The concept of homomorphic encryption is not a new one. Soon after the development of the RSA cryp-
tosystem, Rivest, et al. [RAD78] introduced the problem of developing an encryption scheme that would
support arbitrary manipulations on encrypted data. In the ensuing 30 years, many homomorphic schemes
have been proposed, such as the Pailier cryptosystem [Pai99] which supports homomorphic addition of
ciphertexts and the ElGamal cryptosystem [EG85], which supports homomorphic multiplication of two
ciphertexts. In each of these cases, the scheme is partially homomorphic in that they support exactly one
homomorphic operation: addition or multiplication. The Boneh-Goh-Nissim cryptosystem [BGN05] is the
first scheme to support both homomorphic addition and multiplication. Specifically, this scheme is able
to handle an arbitrary number of additions along with a single multiply. Gentry’s work [Gen09] presents
the first fully homomorphic encryption scheme in that it supports the evaluation of an arbitrary number
of both additions and multiplications.

1

In this paper, we consider a leveled homomorphic encryption scheme (without bootstrapping) for sta-
tistical analysis over encrypted data. Specifically, we consider computing the mean and covariance of both
univariate and multivariate data as well as performing linear regression over encrypted datasets. While
there are other methods such as multi-party computation (MPC) protocols that can accomplish the same
goal [HFN11], these schemes generally require a high degree of coordination and information exchange
between the individual data providers. In the limit where there is a large quantity of data from multiple
sources, fully homomorphic encryption becomes a more viable solution. To illustrate this, we consider a
concrete example. Suppose there are many hospitals providing health records and other potentially sensi-
tive information to a central server. For privacy reasons, this data must be sent encrypted. The central
server performs some analysis on the underlying data (i.e., identify certain factors that are strongly corre-
lated with a certain disease or prognosis), and forwards the encrypted result to a researcher. Presumably,
the researcher decrypts the ciphertext and uses the results from the analysis to facilitate further inves-
tigation. Because our FHE scheme is a public key system, each of the hospitals is able to encrypt and
send their data independent of the others. Specifically, we do not require any communication between the
hospitals. Thus, when we have a large number of data providers, FHE becomes a more viable method for
secure computation.

Using homomorphic encryption schemes to perform statistical analysis is certainly not a new idea.
Lauter et al. [LNV11] leveraged a somewhat homomorphic encryption scheme to compute the mean and
variance of small, univariate datasets, and more recently, Graepel, et al. [GLN12] trained a Fisher’s lin-
ear discriminant classifier over an encrypted dataset. In both of these implementations, the size and
dimensionality of the underlying dataset have generally been very small, consisting of several hundred to
a thousand elements and working over two to four dimensional data. The principal cause of these lim-
itations has been the significant overhead of fully homomorphic computation. Our contributions in this
paper are twofold. First, we present a working implementation of the scale-invariant leveled homomorphic
encryption scheme described in [Bra12]. Second, we combine the parallelism from batched computation
[SV11, BGV12, GHS12a] with a Chinese Remainder Theorem (CRT) based plaintext representation to
enable computation over datasets consisting of several hundred thousand to more than four million data
elements. Additionally, we scale up the computation to work over datasets with 24 dimensions in the
case of mean and covariance estimation and 5 dimensions in the case of linear regression. In doing so, we
demonstrate the possibility of leveraging homomorphic encryption for large scale statistical analysis.

2 Background

2.1 Mathematical Notation

For q ∈ Z, we identify the ring Z/qZ with the integers in (−q/2, q/2]. For any x ∈ Q, we write [x]q to
denote the unique value y ∈ (−q/2, q/2] such that x = y (mod q). We write bxe to denote rounding x
to the nearest integer and bxc, dxe to denote rounding down and up to the nearest integer, respectively.
In our implementation, we work over polynomial rings modulo a cyclotomic polynomial, R = Z[x]/Φm(x)
where Φm(x) denotes the mth cyclotomic polynomial. We write Rq to denote R/qR. In words, Rq is the set
of integer polynomials with degree of at most ϕ(m)− 1 and coefficients in Z/qZ. Finally, unless otherwise
specified, the base of the logarithm in our paper is always taken to be 2.

2.2 Canonical Embedding Norm

To facilitate our security and correctness analysis, we need to define a measure on the size of polynomials.
Here, we employ the canonical embedding norm as in [LPR10, GHS12a, GHS12b]. For integer m, let
ζm be a complex primitive mth root of unity. Then, the canonical embedding of f(x) ∈ Z[x]/Φm(x) is

2

given by the ϕ(m)-vector of complex numbers σ(f) with components f
(
ζi
)

and i ranging over (Z/mZ)∗.
The canonical embedding lp norm of f is defined to be ‖f‖canp = ‖σ(f)‖p. In most cases, we will take
p = ∞. In the following exposition, we make use of several properties of the canonical embedding norm.
For all f, g ∈ R, we have that ‖f · g‖can∞ ≤ ‖f‖can∞ ‖g‖

can
∞ and ‖f + g‖can∞ ≤ ‖f‖can∞ + ‖g‖can∞ . Furthermore,

we have ‖f‖can∞ ≤ ϕ(m) ‖f‖∞. Also, there exists a ring constant cm dependent only on m such that
‖f‖∞ ≤ cm · ‖f‖can∞ . For odd values of m, Damgard, et al. [DPSZ11] demonstrated that c2m = cm.
Moreover, for primes p > 11, cp ≈ 4/π ≈ 1.2732. Finally, we can extend our notions of norm to vectors of

polynomials. In particular, given a vector f = (f1, . . . , fn) ∈ Rn, we define ‖f‖canp = (
∑p

i=1 (‖fi‖can∞)p)
1/p

for p < ∞ and ‖f‖can∞ = max1≤i≤p ‖fi‖can∞ . It follows from the above that given two vectors f ,g ∈ Rn,
‖〈f ,g〉‖can∞ ≤ ‖f‖can∞ ‖g‖

can
1 .

2.3 Distributions over Rq

As part of our construction, we will need to sample elements from various distributions over Rq. We describe
the relevant distributions below. Note that we can uniquely specify a polynomial f ∈ Rq by specifying
its coefficients. Thus, for simplicity, we describe our distributions over Rq in terms of distributions over
ϕ(m)-vectors over Z/qZ. See [GHS12b] for additional information.

• We write DGq(σ2) to denote the discrete Gaussian distribution with mean 0 and variance σ2. We
approximate a sample from DGq(σ2) by drawing ϕ(m) values from the normal distribution N (0, σ2)
and rounding each value to the nearest integer, reduced modulo q.

• We writeHWT (h) to denote the Hamming weight distribution, defined to be the uniform distribution

over the subset of vectors in {0,±1}ϕ(m) with exactly h nonzero coefficients.

• We write ZO(ρ) to denote the distribution over {0,±1}ϕ(m) where each element is −1 or 1, each
with probability ρ/2, and 0 with probability 1− ρ.

3 Scale-Invariant Homomorphic Encryption Scheme

We extend the fully homomorphic encryption scheme described in [Bra12] to work over polynomial rings.
Along with [BGV12], this is one of the more practical variants of homomorphic encryption. Moreover, the
Brakerski system has the advantage in that it does not require modulus switching, and thus, represents a
simpler cryptosystem, both in terms of theory and implementation. More precisely, we base security off
of the ring learning with errors (RLWE) assumption described in [LPR10]. Here, we describe a simplified
version of the RLWE problem that pertains to our implementation. Our presentation is similar to that in
[BGV12, LNV11]. For security parameter λ, let q = q(λ),m = m(λ) be integer functions and let χ = χ(λ)
be a bounded error distribution over R = Z[x]/Φm(x). Specifically, |χ| ≤ B for some bound B with
overwhelming probability. The RLWEm,q,χ problem is to distinguish the following two distributions. In

the first distribution, sample (ai, bi) uniformly from R2
q . In the second distribution, first sample s

$←− Rq.

Then, sample ai
$←− Rq and ei

$←− χ and compute bi = ai · s + ei. The RLWEm,q,χ assumption is that the
RLWEm,q,χ problem is infeasible.

As in [GHS12b, LNV11], we take our noise distribution χ to be a discrete Gaussian distributionDGq(σ2).
Instead of drawing the secret key s uniformly from Rq, we instead use very sparse secret keys drawn from
HWT (h). As noted in [GHS12b], using sparse secret keys should not compromise the security of the
system. However, this does offer substantial performance improvements as described below.

Finally, besides supporting homomorphic addition and multiplication, we also support homomorphic
applications of Frobenius automorphisms. In particular, we can homomorphically map a polynomial f(x) ∈

3

R to a polynomial f (i)(x) , f(xi) (mod Φm(x)). If we let κi denote the transformation κi : f 7→ f (i),
it is well known that the set of transformations {κi | i ∈ (Z/mZ)∗} forms a group under composition and
more specifically, this group is isomorphic to (Z/mZ)∗. [BGV12, GHS12a] demonstrated that if c is a valid
ciphertext encrypting a message m under secret key s, then, κi(c) is a valid ciphertext encrypting κi(m)
with respect to the secret key κi(s). Note that κi(c) and κi(s) denote the component-wise application
of κi to c and s, respectively. With this preparation, we briefly outline our scale-invariant homomorphic
encryption (SI-HE) scheme below. Correctness follows as a direct extension of the scheme in [Bra12] to the
RLWE setting.

• SI-HE.SecretKeygen(1λ): Sample s̃
$←− HWT m(h). Output sk = s = (1, s̃).

• SI-HE.PublicKeygen(s̃): Sample A
$←− Rq and e

$←− DG(σ2). Compute b := [A · s̃ + e]q and set

P := [b‖ −A] ∈ R2
q . Output pk = P.

• SI-HE.Encpk (m): Given a message m ∈ Rp and pk = P, sample r
$←− ZO (0.5) and e

$←− DG2(σ2) and
output the ciphertext

c :=

[
PT r + pe +

⌊
q

p

⌋
m

]
q

∈ R2
q

where m
4
= (m, 0) ∈ R2

p.

• SI-HE.Decsk (c): Given c ∈ R2
q and sk = s = (1, s̃), compute

m :=

[⌊
p ·

[〈c, s〉]q
q

⌉]
p

.

• SI-HE.Add(c1, c2): Given two ciphertexts c1, c2 encrypted under the same key s, output cadd = c1+c2.
Note that if c1 and c2 are encrypted under two different secret keys s1, s2, respectively, we can first
apply the key switching methods defined below to convert c2 to a ciphertext c′2 encrypted under
secret key s1.

• SI-HE.Mult(c1, c2): Given two ciphertexts c1, c2 encrypted under secret keys s1, s2, respectively, out-
put

cmult =

⌊
p

q
· (c1 ⊗ c2)

⌉
. (1)

The product ciphertext cprod is encrypted under the tensored secret key smult = s1 ⊗ s2.

• SI-HE.Scalar-Mult(c, α). Given ciphertext c and α ∈ Rp, output the product ciphertext cscale = α · c.

• SI-HE.Automorph(c, κi): Given ciphertext c encrypted under secret key s, output cauto = κi(c). The
automorphed ciphertext cauto is encrypted under the automorphed secret key sauto = κi(s).

As evidenced above, performing homomorphic operations on ciphertexts will produce ciphertexts encrypted
under different secret keys. In the case of homomorphic multiplication, we see that the dimension of the
ciphertext and its corresponding secret key squares with each operation. Therefore, it is necessary to
provide a method for switching ciphertexts encrypted under one secret key s1 to a ciphertext encrypted
under a different, possibly shorter, secret key s2. To enable key-switching, we first describe methods of
decomposing vectors of ring elements in a way that preserves inner products.

4

• BaseDecompq,b(x): For x ∈ Rnq , let wi ∈ Rnb such that x =
∑dlogb qe−1

i=0 bi ·wi (mod q). Output the
vector (

w0, . . . ,wdlogb qe−1
)
∈ Rn·dlogb qeb .

• Powersq,b(y): For y ∈ Rnq , output[(
y, b · y, . . . , bdlogb qe−1 · y

)]
q
∈ Rn·dlogb qeq .

It is easy to see that for all x,y ∈ Rnq , 〈x,y〉 =
〈
BaseDecompq,b(x),Powersq,b(y)

〉
. Now, let s ∈ Rns

q and
t ∈ Rnt

q be two distinct keys. To switch a ciphertext encrypted under s to one encrypted under t, we apply
the following operations:

• SwitchKeyGenq,b,χ(s, t): Let n̂s = (ns + 1) · dlogb qe denote the dimension of Powersq,b(s). Sample a

uniform matrix As:t
$←− Rn̂s×nt

q and a noise vector e
$←− DGn̂s

q (σ2). Define bs:t to be

bs:t = [As:t · t + es:t + Powersq,b(s)]q ∈ R
n̂s
q

and output
Ps:t = [bs:t‖ −As:t] ∈ Rn̂s×(nt+1)

q .

• SwitchKeyq,b(Ps:t, cs): To switch a ciphertext under secret key s to one under secret key t, compute

ct :=
[
PT

s:t · BaseDecompq,b(cs)
]
q
.

4 Statistical Analysis Using FHE

4.1 Statistical Functions

Mean and Covariance. A simple application of our leveled homomorphic encryption scheme is evaluation
of the mean and variance of a dataset. The authors of [LNV11] demonstrate the feasibility of using a
somewhat homomorphic encryption scheme to compute the mean and variance of small univariate datasets.
Here, we extend the work to the multivariate scenario; specifically, given a set of d-dimensional random
vectors in Zd, we estimate both the mean µ ∈ Qd as well the covariance matrix Σ ∈ Qd×d. By batching
the data (described below), we demonstrate that it is feasible to evaluate the mean and covariance of
large datasets with upwards of 106 elements as well as of datasets with dimension as high as 24 (in which
case the covariance matrix consists of 300 unique entries). In addition to enabling multivariate statistical
estimation, the covariance matrix also captures the relation and correlation between different variables in
the dataset. It also forms the basis of more sophisticated statistical techniques such as principal component
analysis (PCA).

We briefly describe our approach. Consider a dataset D =
{
x(i) | i = 1, . . . , n

}
where each x(i) ∈ Zd.

Specifically each data element is a random vector x(i) =
[
x
(i)
1 , . . . , x

(i)
d

]
T . To compute the mean µ ∈ Qd we

simply compute µ = 1
n

∑n
i=1 x

(i). Note that since our homomorphic encryption scheme does not support
division efficiently, we return the numerator and denominator separately. Next, we consider the covariance.
By definition, the covariance of two random variables X,Y is given by Cov(X,Y) = E[XY] − E[X]E[Y].
Then, letting ΣX denote the covariance matrix of X, we have

(ΣX)ij = Cov(Xi, Xj) = E [XiXj]− E [Xi]E [Xj] =
1

n

n∑
k=1

x
(k)
i x

(k)
j −

1

n2

(
n∑
k=1

x
(k)
i

)(
n∑
k=1

x
(k)
j

)
.

5

We rewrite this as a matrix product. First, define the matrix X ∈ Zn×d where the ith row of X consists of

the ith example
[
x(i)
]T

. Then, it is easy to see that the covariance matrix is just given by

ΣX =
1

n
XTX − 1

n2
(nµ) (nµ)T =

1

n2
(
nXTX − (nµ)(nµ)T

)
. (2)

Note that we can reuse the value of nµ obtained by computing the mean. It is worth noting that both
mean and covariance computations may be performed using circuits with low depth

Linear Regression. In addition to multivariate analysis, we consider another common statistical esti-
mation problem: linear regression. Let D =

{(
x(i), y(i)

)
| i = 1, . . . , n

}
be a dataset with input variables

x(i) ∈ Zd and output variables y(i) ∈ Z. In linear regression, our goal is to approximate y as a linear
function hθ(x) = θTx of x where θ ∈ Qd is a set of parameters. We choose the parameters θ so as to
minimize the least-squares regression error; specifically, we compute

θ? =
(
XTX

)−1
XT y, (3)

where X is the design matrix and y is the vector of response variables:

X =


−−−−

(
x(1)

)T −−−−
−−−−

(
x(2)

)T −−−−
...

−−−−
(
x(n)

)T −−−−

 y =


y(1)

y(2)

...

y(n)

 .
Thus, we can easily perform linear regression using a series of matrix-matrix products and matrix-vector
products. The only complication is the computation of the matrix inverse. For small dimension d, we
leverage Cramer’s rule. More precisely, we have that(

XTX
)−1

=
1

det (XTX)
Adj

(
XTX

)
where Adj (M) denotes the adjugate of matrix M . As before, we separately compute the numerator and
denominator of θ?.

4.2 Data Representation and Batching

The efficiency of homomorphic evaluation of arithmetic circuits depends significantly on our choice of
message encoding. Lauter, et al. [LNV11] describe two methods of encoding integers in Rp. The first
and most natural method is to encode the integers as constant polynomials in Rp. However, given that
elements of Rp are polynomials of degree ϕ(m), this is not an efficient encoding scheme. An alternative
encoding scheme is to use a bitwise encoding of each integer. For example, if we let b0, b1, . . . , bk be
the bitwise representation of m ∈ Z, then we can represent m with the polynomial

∑k
i=0 bix

i. Addition
and multiplication of two integers encoded in this manner translates to just polynomial addition and
multiplication in Rp. As long as the coefficients of the resulting polynomials do not exceed p and their
degrees do not exceed ϕ(m), correctness is ensured and we can we can recover the message by evaluating
the polynomial at x = 2. These constraints, however, render this scheme impractical for even circuits of
moderate depth. To support computations involving many large integers, we would require prohibitively
large values of m and p under this representation.

To construct a scheme that supports computations over Z/pZ for some large value p, we leverage the
Chinese Remainder Theorem (CRT). In our case, we take p > 2128 so our scheme supports at least 128-
bit computation. More precisely, we take p to be a product of many small prime factors: p =

∏k
i=1 pi

6

where p1, . . . , pk are distinct primes. To evaluate an arithmetic circuit over the elements of Z/pZ, we
evaluate the circuit over the values modulo each prime p1, . . . , pk. Using the results from our evaluation
over Z/p1Z, . . . ,Z/pkZ, we recover the result over Z/pZ by application of the CRT. By varying k, we can
restrict our computations to smaller moduli at the expense of having to perform more computations. In
our experiments, we generally take k ≈ 10, in which case we have pi ≈ 212 for i = 1, . . . , k.

To enable computations over large amounts of data, we pack multiple plaintext messages into one
ciphertext block. Specifically, as observed by Smart and Vercauteren [SV11], the plaintext space Rp can be
broken up into a vector of “plaintext slots” by application of the polynomial CRT. While the ring modulus
Φm(x) is irreducible over Z, it might be reducible over Z/pZ for some p. Then, Φm(x) =

∏`
i=1 Fi(x)

(mod p), where each of the Fi(x) is an irreducible polynomial modulo p. Each factor in this decomposition
has equal degree d where d is the smallest value such that pd = 1 (mod m). Since Φm(x) has degree
ϕ(m), we have that ` · d = ϕ(m). Finally, note that when p ≡ 1 (mod m), we automatically have
d = 1 and so Φm(x) splits into ϕ(m) linear factors. When Φm(x) reduces modulo p, the plaintext space
decomposes according to Rp =

⊗`
i=1Rpi where pi is the ideal in R generated by p and Fi(x). Thus, by

the polynomial CRT, the plaintext space decomposes into ` non-interacting slots. Then, given ` messages
m1 ∈ Rp1 , . . . ,m` ∈ Rp` , we can pack them into a single message m ∈ Rp. If we have two packed vectors
m,m′ corresponding to messages m1, . . . ,m` and m′1, . . . ,m

′
`, respectively, computing the product m ·m′

yields a packed plaintext with messages m1 ·m′1 ∈ Rp1 , . . . ,m` ·m′` ∈ Rp` . Similarly, m+m′ translates to
an element-wise sum. Hence, by batching ` messages into a single plaintext block, it becomes possible to
perform ` additions or multiplications at the cost of just a single operation.

Both linear regression and covariance computation can be performed using a series of matrix products,
which in turn reduces to computing a series of inner products. Consider two vectors u,v ∈ Zn. To compute
〈u,v〉, we compute 〈u,v〉 =

∑n
i=1 uivi. Notice that if we pack the elements of u into one plaintext block

ũ and the elements of v into another plaintext block ṽ, we can evaluate all n products uivi using a single
homomorphic multiply. When the batch size is large, this significantly reduces the number of multiplications
we need to evaluate, which by corollary, enables support for computation over significantly larger datasets.
The problem, however, is evaluating the sum of the elements within the packed ciphertext block. Here, we
leverage the observation made in [BGV12, GHS12a], who showed that it was possible to rotate or permute
the underlying plaintext slots in a batched vector by applying automorphisms associated with the ring R.
First, consider an automorphism κ which simply rotates the plaintext slots in a message m. Specifically,
if m is a block with ` slots denoted (m1,m2, . . . ,m`), then κ(m) would correspond to the block with slots

(m2,m3, . . . ,m`,m1). Let k = blog `c. We can compute
∑2k

i=1mi using k rotations as follows:

1. Set m′ ← m.

2. For i = 0, . . . , k = blog `c ,
(a) Set m′ ← m′ + κ2

i
(m′).

3. Return m′. The element in the first slot m′1 is the desired sum
∑2k

i=1mi.

It is not difficult to see that this method computes the desired value of m′. When ` is not an even
power of two, we note that the messages in the remaining slots leak information about the values in m.
To address this problem, we add a uniformly random value in Z/pZ to all but the first slot. In doing
so, we ensure that the values in the remaining slots are uniformly random and thus, leak no additional
information about the original values in m. Using, this method, we are able to evaluate dot products over
batched vectors.

From the above discussion, we see that as long as there exists an automorphism κ that rotates the
plaintext slots, we can evaluate the sum of the first 2k elements in a given block. In fact, it suffices

7

that there exists κ that permutes the slots according to some permutation π such that π has exactly
one cycle. As noted in [GHS12a], it is then possible to reorder the slots (i.e., the CRT factors Fi(x))
such that κ produces a rotation of the slots. In particular, we fix a value for the first factor F1(x) and
then reorder the remaining factors Fi(x) according to πi−1(1). We consider conditions under which such
an automorphism exists. Recall that the set of transformations {κi | i ∈ (Z/mZ)∗} under composition
is the Galois group Gal (Q(ζm)/Q) where Q(ζm) denotes the mth cyclotomic number field. Moreover,
Gal (Q(ζm)/Q) is isomorphic to (Z/mZ)∗. We know that (Z/mZ∗) is cyclic if m = pk or m = 2pk for odd
primes p and k > 0. Let g be a generator for (Z/mZ)∗. Because (Z/mZ)∗ is isomorphic to Gal (Q(ζm)/Q),
the automorphism κg will produce a cyclic permutation of the plaintext slots. In our implementation, we
choose m = 2p for some prime p.

We conclude by illustrating how this representation significantly reduces the computational cost of
evaluating matrix products. Consider the design matrix X ∈ Zn×d from linear regression where n is the
number of examples and d is the dimension of each example. Let ` denote the number of plaintext messages
we can pack into a single ciphertext. In our batched matrix representation, we break each column of X into⌈
n
`

⌉
individual blocks, with each block containing at most ` elements. Each block of data maps to a single

ciphertext; specifically, the block matrix has dimension
⌈
n
`

⌉
× d. Thus, when we compute the product of

two matrices, we perform block matrix multiplication rather than standard matrix multiplication. It is
worth noting, however, that the cost of multiplying two ciphertext blocks is independent of the number
of plaintext elements within those blocks. Thus, evaluating XTX just requires

⌈
n
`

⌉
d2 multiplications as

opposed to nd2, which is a considerable improvement for large `.

4.3 Implementation Details

As described earlier, our implementation is based on the RLWE variant of the scale-invariant leveled ho-
momorphic scheme described in [Bra12]. We consider two possible ways of representing polynomials in Rq.
The most intuitive way of representing a polynomial f(x) ∈ Rq is through a vector of ϕ(m) coefficients.

Specifically, if f(x) =
∑ϕ(m)−1

i=0 aix
i with ai ∈ Z/qZ, then the coefficient representation of f is simply the

vector (a0, . . . , aϕ(m)−1) ∈ (Z/qZ)ϕ(m). An alternative representation is to take the values of the polyno-

mial at the primitive mth roots of unity modulo q. Supposing that q contains a primitive mth root of unity
ζ ∈ Z/qZ, the primitive mth roots of unity modulo q are simply the elements of the set

{
ζi | i ∈ (Z/qZ)∗

}
.

Thus, the evaluation representation of f is a vector of ϕ(m) components, each corresponding to f(ζi) for
some i ∈ (Z/qZ)∗. Finally, we note that if q is composite, we can leverage the CRT and represent each of
the evaluations relative to the factors of q. Following the convention and definitions in [GHS12b], we refer
to this as the double CRT representation.

We briefly consider the tradeoffs between the two representations. Multiplying two degree d poly-
nomials requires time O(d2) when the polynomials are in coefficient representation, but just time O(d)
when they are in evaluation representation. We can convert between the coefficient and evaluation rep-
resentations by leveraging the Fast Fourier Transform (FFT) and inverse FFT algorithms which require
time O(d log d). Thus, in virtually all cases, it is advantageous to convert from coefficient representation
to evaluation representation to carry out the polynomial multiplications. In fact, Gentry et al. [GHS12b]
keep their polynomials in double CRT representation throughout the homomorphic evaluation process,
only converting back to coefficient representation if absolutely critical. In the case of Brakerski’s scale-
invariant system [Bra12], this does not appear to be a viable option. The complication arises from the
scale invariant nature of the scheme. Then, when we multiply two ciphertexts as prescribed by Equation
(1), it is necessary to rescale the tensored ciphertext; this procedure requires that we round each coefficient
in the polynomial to the nearest integer. At this time, we are not aware of a way to round polynomials in

8

evaluation representation and as such, we perform the rounding steps in coefficient representation.1 Thus,
in contrast to the BGV-based implementation in [GHS12b], our implementation will require explicit con-
versions between coefficient representation and evaluation representations. Since performing many FFT
and inverse FFTs are expensive operations and can quickly dominate the cost of homomorphic evaluation,
we try to minimize the number of times we need to convert between the two representations.

Since we perform rounding in coefficient representation, we use coefficient representation as the base
representation of our polynomials. To simplify the arithmetic involved in division and rounding, we take
our modulus q to be a power of two. In this case, we can divide and round using simple bitwise operations.
When forming the tensor product between two ciphertexts, we first convert the polynomials to double CRT
representation over a sufficiently large modulus. Specifically, we note that the tensoring operation c1 ⊗ c2
in Equation (1) is done over R and not Rq. As such, we can construct a lower bound on the size of the
necessary double CRT modulus. Given two polynomials f, g ∈ Rq,

‖fg‖∞ ≤ cm ‖fg‖
can
∞ ≤ cm ‖f‖can∞ ‖g‖

can
∞ ≤ cmϕ(m) ‖f‖∞ ϕ(m) ‖g‖∞ ≤ cmϕ

2(m)q2.

To compute p(c1⊗c2) without overflow, we thus take our double CRT modulus to be at least cmpq
2ϕ2(m)

when evaluating the tensor. Upon forming the tensor, we convert back to coefficient representation, divide,
and round accordingly.

We now describe some optimizations specific to evaluating matrix products that reduces the number of
times we need to convert between coefficient and evaluation representations and the number of times we
have to key switch. Let c = (c1, . . . , cξ) and c′ = (c′1, . . . , c

′
ξ) be two vectors of ciphertexts, each encrypted

under s. For instance, these may correspond to the encryption of two rows of a matrix. Consider computing
the dot product of c and c′. Naively applying Equation (1) and key switching after each multiplication,
this translates to computing

〈
c, c′

〉
=

ξ∑
i=1

SwitchKeyq,b

(
Ps⊗s:s,

⌊
p

q
·
(
ci ⊗ c′i

)⌉)
.

First, we note that there is no need to key switch after computing ci ⊗ c′i. Since the cost of adding two
tensored ciphertexts is much less than the cost of key switching, it is more efficient to add the tensored
ciphertexts and apply the key switch to the final result. Furthermore, we note that though we need to
compute ξ pairwise products, there is no reason to convert back to coefficient representation and round
after each product. Instead, we compute the sum of the tensored ciphertexts and rescale and round only
once. Thus, to compute the dot product more efficiently, we instead evaluate

〈
c, c′

〉
= SwitchKeyq,b

(
Ps⊗s:s,

⌊
p

q

ξ∑
i=1

(
ci ⊗ c′i

)⌉)
.

Finally, as noted above, we ensure that the double CRT modulus does not wrap around by setting the
modulus to be at least cmξpϕ

2(m)q2.
Last, we make a brief note regarding our choice of values for the plaintext modulus p. Recall that

we want p = 1 (mod m) so Φm(x) splits into linear factors modulo p. Furthermore, in order to perform
rotations of the plaintext slots, we require that m = qk or m = 2qk for some prime q and k > 0. A natural
choice then is to let p be a safe prime (i.e., p = 2q+ 1 for some prime q) and take m = p− 1 = 2q. Clearly,
this choice of m and p trivially satisfies our conditions. As discussed in Section 2.2, this particular choice of
m has the added benefit that the ring constant cm is bounded by a small constant, namely 4/π ≈ 1.2731.

1 It might be possible to reduce the number of FFTs we perform by using the Scale function described in [GHS12b]. However,
in this case, we cannot choose our ciphertext modulus q to be a power of two, which complicates the scaling and rounding
procedures. We did not test this alternative implementation.

9

5 Security Analysis and Parameter Settings

5.1 Canonical Embedding Norm for Distributions

Following the discussion in [GHS12b], we bound the canonical embedding of polynomials sampled from
our various distributions. Let f(x) ∈ R be a polynomial sampled from some distribution over R. Suppose
further that each coefficient in f is drawn iid from some distribution with mean 0 and variance σ2f (this

assumption holds for all of the distributions we are considering). Then, if we denote f(x) =
∑ϕ(m)−1

i=0 aix
i,

we have that f(ζ) =
∑ϕ(m)−1

i=0 aiζ
i, which is a sum of random variables. Since the coefficients ai are iid

with mean 0 and variance σ2, the mean E[f(ζ)] and variance Var[f(ζ)] are given by

E[f(ζ)] =

ϕ(m)−1∑
i=0

ζiE[ai] = 0

Var[f(ζ)] =

ϕ(m)−1∑
i=0

(
ζi
)2

Var[ai] = σ2f

ϕ(m)−1∑
i=0

(
ζi
)2

= σ2fϕ(m).

Finally, we note that f(ζ) is the sum of many iid random variables and so, by the Central Limit Theorem,
f(ζ) is approximately normally distributed with mean 0 and variance σ2fϕ(m). As in [GHS12b], we use
6σ as a high probability bound on the magnitude of f(ζ). Now, we consider our particular distributions.
If f ∼ DG(σ2), then σ2f = σ2, so we have ‖f‖can∞ ≤ 6σ

√
ϕ(m). If f ∼ ZO(ρ), σ2f = ρ, which yields

‖f‖can∞ ≤ 6
√
ρϕ(m). Finally, if f ∼ HWT (h), f has only h nonzero components so Var[f(ζ)] = h.

Moreover, ‖f‖can∞ ≤ 6
√
h. There will also be cases where we have to bound the canonical embedding norm

of the product of two randomly sampled polynomials f, g. In this case, we need to bound the magnitude
of the product of two random variables. If the coefficients of f, g have variances σ2f and σ2g , respectively,
then we use 16σfσg as our bound for ‖fg‖can∞ as in [GHS12b].

5.2 Error Bounds for Homomorphic Operations

Given the above preparation, we can analyze the amount of noise introduced by each of our operations.
Consider a ciphertext c encrypting a message m under secret key s = (1, s̃). Note also that m = (m, 0)
and e = (e0, e1). By construction,

〈c, s〉 =

⌊
q

p

⌋
m+

(
rTP + pe

)
· (1, s̃) (mod q)

=

⌊
q

p

⌋
m+ r · b− r ·As̃ + pe0 + pe1s̃ (mod q)

=

⌊
q

p

⌋
m+ r · e + p (e0 + e1s̃)︸ ︷︷ ︸

E

(mod q). (4)

where E denotes the noise in the ciphertext. By construction of the decryption function, decryption will
succeed if ‖E‖∞ < bq/2c /p. Since ‖E‖∞ ≤ cm ‖E‖

can
∞ , it is sufficient to require that

‖E‖can∞ ≤ bq/2c
cm · p

. (5)

Thus, we consider c to be a valid encryption of a message m if both (4) and (5) hold. Now, consider the
noise from a fresh encryption. From the bounds we computed above for randomly sampled polynomials,

10

we have that the norm of the initial noise Eclean = r · e + p(e0 + e1s̃) is bounded by

‖Eclean‖can∞ ≤ ‖r · e‖can∞ + p ‖e0‖can∞ + p ‖e1s̃‖can∞
≤ 8
√

2σϕ(m) + 6σp
√
ϕ(m) + 16σp

√
h · ϕ(m). (6)

Now, we proceed to analyze the amount of noise generated by each of our operations.

Key Switching. For ciphertext cs and ct encrypted under secret keys s = (1, s̃) and t = (1, t̃) re-
spectively, we have that

〈ct, t〉 = 〈cs, s〉+
〈
BaseDecompq,b(cs), es:t

〉
(mod q).

The additive noise introduced by key-switching is given by∥∥〈BaseDecompq,b(cs), es:t
〉∥∥can
∞ ≤

∥∥BaseDecompq,b(cs)
∥∥can
∞ ‖es:t‖

can
1

≤ [bϕ(m)] ·
[
(ns + 1) dlogb qe · 6σ

√
ϕ(m)

]
= 6σb(ns + 1) dlogb qeϕ3/2(m)

where ns is the dimension of s (ns = 2 if we are switching from automorphed keys and ns = 4 if we are
switching from tensored keys). With this preparation, we are ready to compute the noise introduced by
each of the homomorphic operations. Let c1 and c2 be two ciphertexts encrypting messages m1 and m2

under the same secret key s. Denote the noise in the encryptions by E1 and E2, respectively.

Addition. For addition, we have,

〈cadd, s〉 = 〈c1, s〉+ 〈c2, s〉 =

⌊
q

p

⌋
· (m1 +m2) + E1 + E2

so the error terms simply add.

Multiplication. Now, consider the case of multiplication. First, we consider the error δ1 introduced
by rounding. To facilitate the analysis, define

c′ ,

⌊
p

q
(c1 ⊗ c2)

⌉
− p

q
(c1 ⊗ c2) .

The error δ1 introduced by rounding is then

δ1 ,

〈⌊
p

q
· (c1 ⊗ c2)

⌉
, s⊗ s

〉
−
〈
p

q
(c1 ⊗ c2) , s⊗ s

〉
=
〈
c′, s⊗ s

〉
.

By construction, we see that ‖c′‖∞ ≤
1
2 and so ‖c′‖can∞ ≤ ϕ(m)

2 . Next, noting that s̃ ∼ DGm(h), we have

that ‖s̃‖can∞ ≤ 6
√
h and

∥∥s̃2∥∥can∞ ≤ 16h and so

‖s⊗ s‖can1 ≤ ‖1‖can∞ + 2 ‖s̃‖can∞ +
∥∥s̃2∥∥can∞ = 1 + 12

√
h+ 16h

Thus, we can bound ‖δ1‖can∞ with

‖δ1‖can∞ ≤
∥∥c′∥∥can∞ ‖s⊗ s‖can1 ≤ 1

2
ϕ(m)

(
1 + 12

√
h+ 16h

)
.

11

Now, let I1, I2 ∈ R be such that

〈c1, s〉 =

⌊
q

p

⌋
·m1 + E1 + q · I1

〈c2, s〉 =

⌊
q

p

⌋
·m2 + E2 + q · I2.

We begin by bounding the canonical norm of I1 (clearly, the same bound holds for I2):

‖I1‖can∞ =

∥∥∥〈c1, s〉 − ⌊ qp⌋ ·m1 − E1

∥∥∥can
∞

q

≤
‖〈c1, s〉‖can∞

q
+

∥∥∥⌊ qp⌋m1

∥∥∥can
∞

q
+
‖E1‖can∞

q

≤
‖c1‖can∞ ‖s‖

can
1

q
+ ϕ(m)

∥∥∥∥∥∥
⌊
q
p

⌋
m1

q

∥∥∥∥∥∥
∞

+ ϕ(m)

∥∥∥∥E1

q

∥∥∥∥
∞

≤
ϕ(m) ‖c1‖∞ (1 + 6

√
h)

q
+ ϕ(m) + ϕ(m)

≤ q(1 + 6
√
h)

q
ϕ(m) + 2ϕ(m)

= (6
√
h+ 3)ϕ(m).

Then,

〈cmult, s⊗ s〉 − δ1 =
p

q

(⌊
q

p

⌋
·m1 + E1 + q · I1

)(⌊
q

p

⌋
·m2 + E2 + q · I2

)
=

⌊
q

p

⌋
m1m2 + δ2 + q (m1I2 +m2I1 + pI1I2)

where δ2 is defined as

δ2 , (pE2 − rm2)I1 + (pE1 − rm1)I2 +
q − r
q

(E1m2 + E2m1) +
p

q
E1E2 −

rm1m2

pq
(q − r),

and r = [q]p. Let E = max {‖E1‖can∞ , ‖E2‖can∞ }. Thus, we can bound ‖δ2‖can∞ by

‖δ2‖can∞ ≤ 2(pE + p2ϕ(m))(6
√
h+ 3)ϕ(m) + 2pϕ(m)E +

pE2

q
+ p2ϕ2(m)

≤ p
[
2ϕ(m)(6

√
h+ 4) + 1

]
E + p2ϕ2(m)

[
2(6
√
h+ 3) + 1

]
.

Summarizing results, we have

〈cmult, s⊗ s〉 =

⌊
q

p

⌋
m1m2 + δ1 + δ2 (mod q)

≤
⌊
q

p

⌋
m1m2 + p

[
2ϕ(m)(6

√
h+ 4) + 1

]
E

+

[
1

2
ϕ(m)

(
1 + 12

√
h+ 16h

)
+ p2ϕ2(m)

[
2(6
√
h+ 3) + 1

]]
(mod q)

12

where E is a bound on the initial amount of noise in c1 or c2.

Scalar Multiplication. When we multiply a ciphertext c (with error E) by a scalar α ∈ Rp, we have,

〈cscale, s〉 = 〈αc, s〉 = α 〈c, s〉 =

⌊
q

p

⌋
αm+ αE.

Since α ∈ Rp, we have that ‖α‖can∞ ≤ ϕ(m) ‖α‖∞ ≤ ϕ(m) · p. In general, the error increases by a multiple
of ϕ(m) · p. Naturally, we can get a better bound based on the value of α. For example, if α = k ∈ Z/pZ
(i.e., a constant polynomial), then the noise will only increase by a factor of |k|.

Automorphism. As noted in [GHS12a, GHS12b], the canonical embeddings of a polynomial f ∈ Rq
and κi(f) for i ∈ (Z/mZ)∗ are just permutations of each other. In other words, applying an automorphism
does not change the canonical embedding norm of the underlying polynomial.

5.3 Security Analysis and Parameter Selection

Following the analysis presented in [GHS12b], to ensure a time/advantage ratio of at least 2k, we need to
set the size N = ϕ(m) of our RLWE instance to be at least

ϕ(m) = N ≥ log(q/σ)(k + 110)

7.2
. (7)

Targeting a 128-bit security level, we require ϕ(m) ≥ log(q/σ) ·33.1. Using these expressions, we can derive
a bound on N . Following the conventions in [GHS12b], we take σ = 3.2 and h = 64. Recall that to achieve
128-bit precision, we perform the computation with respect to primes p1, . . . , pn such that

∏n
i=1 pi ≥ 2128.

As noted in Section 4.3, we take our primes p1, . . . , pn to be safe primes with mi = pi−1 for all i = 1, . . . , n.

Linear Regression. We proceed to compute the parameters necessary to run linear regression for a given
dimensionality z. Let ξ denote the number of ciphertext blocks in the data (recall that each block contains
many packed plaintext elements). Substituting σ = 3.2, h = 64, b = 224, and pi = 2ϕ(mi) + 3 = 2N + 3
into (6),

Eclean ≤ 8
√

2σϕ(m) + 6σp
√
ϕ(m) + 16σp

√
h · ϕ(m) ≈ 1287

√
N + 37N + 858N3/2 ≤ 210N3/2,

where the last inequality holds if N ≥ 9. First, we consider the noise added at each level of the computation.
First, we perform a multiply, followed by a sum of ξ elements or blocks. This introduces an error E1 bounded
by

E1 = ξ
(
p
[
2N(6

√
h+ 4) + 1

]
E + p2N2

[
2(6
√
h+ 3) + 1

])
≤ ξ

[
E (2N + 3)

(
26.8N

)
+ 26.7(2N + 3)2N2

]
≤ ξ

[
E
(
28.4N + 27.9N2

)
+ 29.9N2 + 210.3N3 + 28.7N4

]
.

Next, we round the result of the multiplication and apply a key switch from the tensored key to the base
key. This introduces a noise E2 bounded by

E2 =
1

2
N
(

1 + 12
√
h+ 16h

)
+ 6σb(4 + 1) dlogb qeN3/2 ≤ 29.2N + 230.6 dlogb qeN3/2.

To simplify the bound, we restrict our attention to solutions where dlogb qe ≤ 128. From an implementation
perspective, we are interested in choosing the smallest parameters N and q such that the security and

13

correctness bounds hold. Thus, imposing some reasonable upper bounds on the size of the parameters
is not wholly unjustified. In this case, we are requiring that q < 23072, which is easily satisfied by our
solutions. With this in mind, the total amount of noise introduced in a single level of computation is
bounded by

E1 + E2 = ξ
[
E
(
28.4N + 27.9N2

)
+ 29.9N2 + 210.3N3 + 28.7N4

]
+ 29.2N + 237.6N3/2.

We can simplify this bound by placing some small restrictions on N . For N ≥ 20, we have that 28N2 ≥
28.4N + 27.9N2. Similarly, for ξ ≥ 1 and 223 ≥ N ≥ 450, we have

ξ
[
29.9N2 + 210.3N3 + 28.7N4

]
+ 29.2N + 229.6N3/2 ≤ ξ

[
29.9N2 + 210.3N3 + 28.7N4 + 29.2N + 237.6N3/2

]
≤ ξ

[
220N7/2

]
= ξ

[
210N2Eclean

]
.

Finally, we note that Eclean is a lower bound on the noise (no operation can decrease the noise) and so we
have

E1 + E2 ≤ ξ
[
28N2E + 22N2Eclean

]
≤ ξN2E

[
28 + 210

]
= 1280N2ξE.

Thus, performing one multiplication followed by ξ additions and a key switch increases the error by at
most a factor of 1280N2ξ. Now, when we compute ATA and AT y, we also need to evaluate the sum of the
elements within the block. As described in Section 4.2, this step requires a series of automorphisms and
summations. Assuming a batch size of 2blogNc, we need to perform a series of blogNc automorphisms. In
order to sum up the results, we perform a key switch after each automorphism, which introduces an error
Eauto given by

Eauto =
1

2
N
(

1 + 12
√
h+ 16h

)
+ 6σb(2 + 1) dlogb qeN3/2 ≤ 29.2N + 236.9N3/2

≤ 237N3/2

To evaluate the sum, we note that the additions and automorphisms are nested. Consequently, each sum
doubles the error. Given blogNc automorphisms, the error increases by a multiple of 2blogNc ≤ N . Letting
E denote the error in the ciphertext block at the beginning of this operation, computing the sum increases
the error by at most N

(
E + 237N3/2

)
.

Thus, to evaluate the linear regression circuit over data with dimension z, we first form ATA and AT y.
Given a clean encryption with noise Eclean, these products will have an error of at most

N
(

1280N2ξEclean + 237N3/2
)
.

Evaluating the remainder of the circuit requires max {1, z − 1} additional multiplications, which yields an
error of

N
(

1280N2Eclean + 237N3/2
) (

1280N2ξ
)max{1,z−1} ≤ N3/2

(
220.4N2 + 237

) (
1280N2ξ

)max{1,z−1}

≤ N3/2
(
221N2

) (
1280N2ξ

)max{1,z−1}

≤ 221N7/2
(
1280N2ξ

)max{1,z−1}

where the second line follows for N ≥ 440. Finally, as described in Section 4.2, we need to introduce
randomness into the second through last plaintext slots. For each ciphertext c that we need to introduce
randomness, we construct an encryption crand of a batched plaintext with uniformly random values in the
second through last slot and zero in the first slot. We then compute c+ crand. Upon decryption, the value

14

in the first slot will be preserved while the values in the remaining slots will be uniformly random. Since
crand is a fresh encryption of a polynomial in Rp , this addition introduces an additive error of Eclean. Thus,
after performing the necessary computations, the error in the resulting ciphertexts is bounded by

221N7/2
(
1280N2ξ

)max{1,z−1}
+ Eclean = 221N7/2

(
1280N2ξ

)max{1,z−1}
+ 210N3/2

≤ 221.1N7/2
(
1280N2ξ

)max{1,z−1}

For decryption to succeed, we require that

221.1N7/2
(
1280N2ξ

)max{1,z−1} ≤ bq/2c
cm · p

≤ q

2 · cm · (2N + 3)
.

This yields

q ≥ 222.1cmN
7/2(1280N2ξ)max{1,z−1}(2N + 3)

For our choices of m, cm ≤ 2. Furthermore, 3N ≥ 2N + 3 for N ≥ 3. Thus, it is sufficient to satisfy

q ≥ 224.7N9/2(1280N2ξ)max{1,z−1} (8)

We can now use Equations (7) and (8) to obtain values of q and N that ensure security and correctness.
Approximate values that satisfy these conditions for different values of z and with ξ = 256 are presented
in Table 1.

Mean and Covariance. We also consider the parameters needed to estimate data-covariance matri-
ces. Again, let z denote the dimension of the data. To compute the covariance matrix, we evaluate
Equation 2. Clearly, computing nXTX (two levels of multiplication with an automorph-sum operation)
dominates the cost of the evaluation. Now, we note that computing nXTX is analogous to evaluating the
linear regression circuit with z = 2. Thus, we simply cite the result from above:

q ≥ 2 · 224.7N9/21280N2ξ ≈ 236.1N13/2ξ.

Note that the extra factor of 2 is due to the extra addition that we perform. For ξ = 256 and ensuring
128-bit security, we require N ≥ 3977.

6 Experiments and Conclusion

In this section, we describe the experiments we conducted using the above described scheme. Similar
to [GHS12b], our implementation was based on the NTL C++ library. For all experiments, we used a
machine with a 24-core AMD Opteron processor running at 2.1 GHz and 512 KB of cache and 96 GB of
available memory. Note that because NTL is not thread-safe, we ran all of our tests in a single-threaded
environment. Furthermore, the peak memory usage throughout our tests was on the order of 20-40 GB for
the largest experiments.

As described in in Section 4.2, to achieve 128-bit precision in the output, we perform the computation
with respect to many small primes and then apply CRT to obtain the final output. In our experiments,
we first determine the necessary parameters needed for security and correctness according to the analysis
in Section 5.3. Once we have determined the minimum values for m and q, we compute the smallest
p1, . . . , pk such that p =

∏k
i=1 pi > 2128 and m1 = p1 − 1, . . . ,mk = pk − 1 satisfy the necessary bounds.

For our experiments, we measured the time necessary to perform the computation with respect to one of

15

Dimension of Data N = ϕ(m) log q p1 pn Batch Size
1 3933 120.7 8423† 9743 4096
2 3933 120.7 8423† 9743 4096
3 5461 166.9 11003 12263 4096
4 7013 213.9 14087 15083 4096
5 8583 261.4 17327 18743 8192

† We used slightly larger primes than necessary in order to take advan-
tage of increased batching. In particular, we took N ≥ 4096 in these
experiments.

Table 1: Parameters for linear regression, computed to satisfy security (7) and correctness (8) in the RLWE-
based scale-invariant FHE scheme . The listed values for N and log q are the smallest such values that are
correct and secure. The listed values for p1 and pn indicate the smallest and largest primes, respectively,
we use in our implementation to obtain 128 bit precision in the computation. Note that for each prime,
we perform the computation with respect to a different N = ϕ(m). Thus, we make small adjustments to
the value of q so Equations (7) and (8) still hold. The values here are computed taking ξ = 256.

Time for each Step (minutes)
Dataset Size Key Generation Batching Encryption Regression Decryption Total

1024 1.74 0.03 0.06 5.01 0.18 7.02
4096 1.73 0.13 0.06 5.01 0.18 7.12
8192 1.74 0.25 0.12 5.05 0.18 7.35
16384 1.74 0.51 0.24 5.04 0.18 7.71
65536 1.73 2.05 0.96 5.66 0.19 10.60
262144 2.27 8.10 4.30 9.38 0.19 24.23
1048576 2.13 32.96 16.20 18.39 0.18 69.87
4194304 2.15 132.27 64.77 56.71 0.19 256.08

Table 2: Linear regression run time as a function of dataset size. All timing experiments were performed
over 2-dimensional data with plaintext modulus p = 9743. The batch size across all experiments was 4096.

the primes in the chain (generally, the largest or close to largest one); thus, the reported times should serve
as an approximate upper bound on the time needed to perform one such iteration of this procedure. In
practice, we can perform all k computations in parallel since the individual computations are independent.
For small k, this is certainly feasible using multicore or distributed systems.

Linear Regression. We consider two sets of experiments. In the first experiment, we measure the sys-
tem’s run time as we increase the number of data points in our regression example and in the second, we
measure the run time as we increase the dimensionality of the data. In particular, we consider a maximum
data dimension of 5 as well as datasets consisting of around four million (222) elements. These results are
summarized in Tables 2 and 3.

Mean and Covariance. Similarly, we measure the system’s run time as we increase the number of
data points in the dataset as well as the dimensionality of the data. In this case, we consider a maximum
dimension of 24 and datasets consisting of over a million (220) elements. We present results from these
experiments in Tables 4 and 5.

By batching multiple plaintext values into a single ciphertext block, we are able to significantly reduce
the number of operations needed to compute inner products and correspondingly, matrix products. In
doing so, it becomes possible to significantly scale up the number of data elements we can feasibly process

16

Time for each Step (minutes)
Dataset Size Dimension Key Generation Batching Encryption Regression Decryption Total

4096 1 1.83 0.09 0.04 1.57 0.12 3.65
2 1.74 0.13 0.06 5.00 0.18 7.10
3 3.58 0.22 0.12 18.79 0.34 23.05
4 5.42 0.33 0.18 54.79 0.55 61.27
5 16.48 0.50 0.49 412.61 1.66 431.75

65536 1 1.73 1.35 0.64 1.76 0.12 5.59
2 1.74 2.03 0.96 5.64 0.18 10.55
3 3.51 3.43 1.90 20.25 0.35 29.44
4 5.86 5.28 3.16 64.02 0.56 78.88
5 16.08 7.91 4.06 410.98 1.67 440.71

262144 1 2.13 5.40 2.70 2.93 0.12 13.28
2 2.22 8.13 4.21 9.14 0.19 23.89
3 3.43 13.68 7.52 25.99 0.35 50.98
4 5.96 20.96 12.85 76.27 0.57 116.60
5 16.66 32.20 17.10 449.60 1.68 517.24

Table 3: Linear regression run time as a function of data dimension. The plaintext modulus and batch size
for each dimension are as given in Table 1. Specifically, we performed the experiment with respect to the
largest plaintext modulus pn needed to achieve 128-bit precision.

Time for each Step (minutes)
Dimension Dataset Size Key Generation Batching Encryption Computation Decryption Total

4 4096 1.74 0.17 0.10 12.94 0.89 15.84
8192 1.87 0.34 0.21 14.01 0.92 17.35
16384 1.81 0.68 0.42 13.66 0.90 17.48
65536 1.75 2.75 1.62 14.53 0.92 21.57
262144 2.17 11.11 6.81 21.28 0.92 42.30
1048576 2.17 44.47 27.09 40.89 0.91 115.53

8 4096 1.78 0.34 0.18 42.20 2.83 47.33
8192 1.75 0.68 0.35 41.88 2.88 47.54
16384 1.75 1.36 0.72 42.63 2.87 49.34
65536 1.76 5.44 2.90 46.90 2.83 59.83
262144 2.14 21.77 12.07 70.09 2.93 109.01
1048576 2.22 87.41 49.24 142.80 2.91 284.57

Table 4: Mean and covariance computation run time as a function of the dataset size. In all experiments,
the plaintext modulus was taken to be p = 9743 and the batch size was taken to be 4096.

Time for each Step (minutes)
Dimension Key Generation Batching Encryption Computation Decryption Total

1 1.85 0.04 0.04 1.89 0.15 3.97
2 1.77 0.09 0.06 4.62 0.34 6.87
4 1.84 0.17 0.10 13.57 0.90 16.58
8 1.77 0.34 0.18 42.24 2.88 47.40
12 1.74 0.51 0.26 85.33 5.90 93.75
16 1.82 0.68 0.35 152.22 10.23 165.30
20 2.15 0.86 0.44 254.24 16.35 274.04
24 2.27 1.02 0.56 377.81 24.26 405.92

Table 5: Mean and covariance computation run time as a function of data dimension. All experiments
were conducted over datasets with 4096 data points. The plaintext modulus was fixed at p = 9743 and the
batch size at 4096.

17

Dimension Batch Size Batching Time Per Element (ms) Encryption Time Per Block (s)
1 4096 1.24 2.53
2 4096 1.86 3.94
3 4096 3.13 7.05
4 8192 4.80 12.05
5 8192 7.37 32.06

Table 6: Per block and per element computation time for batching and encryption. Numbers based upon
parameters for running regression over 218 data points. Note that we do not adjust for the dimensionality
of the data. For instance, one “block” of 5-dimensional data is equivalent to 5 blocks of 1-dimensional data
and correspondingly for elements.

using a leveled homomorphic encryption scheme. Specifically, we are able to perform 2-dimensional linear
regression over four million elements in just over five hours. Furthermore, we note that most of the time
in this particular case is dominated by the batching and encryption time. In an actual implementation of
this scheme, we would have a large number of data providers, each supplying a few batches of data to the
central server. In the case of batching, the actual quantity of interest is the amount of time batching takes
per element. Although it is most efficient if each data provider submits a complete batch of data rather
than multiple incomplete batches, this is by no means necessary. In the case of encryption, each provider
always encrypts an integral number of blocks, so the metric of interest is the time needed to encrypt a
single block of data. Observe that this is independent of the number of data elements packed within the
block. Table 6 gives the cost of batching on a per-element basis and the cost of encryption on a per-block
basis. We can easily see that even for five-dimensional data, the work needed to be done by each data
provider is relatively low: on the order of a few minutes to batch and encrypt a sizable quantity of data.

As expected, our regression scheme only works well for relatively low dimension data. This is due
directly to the high cost of using Cramer’s rule for matrix inversion. In particular, computing the adjugate
and determinant of the matrix scales as O(d!) where d is the dimension of the data. Thus, this particular
method of matrix inversion is not well-suited for higher dimension data. Using alternative methods for
matrix inversion will be essential to a system that works for higher dimensional data.

In the case of mean and covariance computation, the cost is dominated by the cost of computing the
covariance matrix. Because the complexity of the computation is quadratic in both the dimension as well
as the size of the dataset, it is possible to scale these computations up more substantially. In particular,
we are able to compute the covariance matrix of 4096 elements, each with dimension 24, in just under 17
hours. We also note that computing the matrix products can easily be parallelized. As such, by leveraging
parallel programming, we can further scale up the covariance computation.

For our final set of experiments, we evaluated how the running time scales as we vary the security level.
In particular, we consider the running time of linear regression assuming as low as 80-bit security to as high
as 1024-bit security. Increasing security directly translates to using larger RLWE instances, and thus, larger
parameters. Table 7 summarizes our experiments with running linear regression over 2 and 3-dimensional
datasets with 16384 elements. It is interesting to note that the jumps in run time occur when the batch
size increases; this is indicative of the fact that the series of key-switches we perform to sum up the element
within blocks dominates when the number of block multiplications is relatively small. We also note that
the rate of increase in the size N = ϕ(m) of the RLWE-instances as well as the modulus p is effectively
linear in the security parameter. For low dimensional cases with just a few blocks of data, the run time
scales roughly linear as well. For higher dimensional problems with more blocks, there will be many more
multiplications that need to be performed, so the run time would be expected to scale super-linearly, most
likely quadratically, with the security parameter. Nonetheless, it is reassuring to observe that even with
1024-bit security, it is still possible to regress on more than 10000 data points in an hour or two.

18

Dimension Security Level log q p Batch Size Regression Time (min) Total Time (min)
2 80 115 6983 2048 2.63 4.17

128 116 8423 4096 4.93 7.46
256 120 12899 4096 5.95 9.11
512 124 21767 8192 15.30 23.07
1024 130 40823 16384 38.14 57.66

3 80 154 9467 4096 15.59 19.84
128 155 10883 4096 18.32 23.32
256 161 17903 8192 40.05 50.52
512 166 28607 8192 48.44 61.73
1024 174 54959 16384 123.68 159.97

Table 7: Timing tests as a function of the security parameter. In all experiments, we performed linear
regression on datasets consisting of 16384 elements. The parameters were chosen based on our choice of
dataset size.

In this paper, we have demonstrated a viable method of using fully homomorphic encryption for large
scale statistical analysis. We note that such a scheme is particularly well-suited in scenarios where we have
multiple sources of data (i.e., many sensors in the field) that need to be aggregated and analyzed. In this
massively distributed setting, the cost of batching and encryption on a per-element and per-block basis is
relatively inexpensive. On the server-side, we have demonstrated that by taking advantage of batching and
using a CRT-based message encoding, it becomes feasible to process both significantly larger datasets and
higher dimensional data, particularly in comparison to prior work. In turn, we have conducted experiments
involving datasets with more than four million elements as well as data with more than 20 dimensions.

References

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
TCC, pages 325–341, 2005.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption
without bootstrapping. In ITCS, 2012.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. Cryptology ePrint Archive, Report 2012/078, 2012. http://eprint.iacr.org/2012/
078.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) LWE. Cryptology ePrint Archive, Report 2011/344, 2011. http://eprint.iacr.org/

2011/344.

[DPSZ11] I. Damgard, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat
homomorphic encryption. Cryptology ePrint Archive, Report 2011/535, 2011. http://eprint.
iacr.org/2011/535.

[EG85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In Crypto, pages 10–18, 1985.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

19

http://eprint.iacr.org/2012/078
http://eprint.iacr.org/2012/078
http://eprint.iacr.org/2011/344
http://eprint.iacr.org/2011/344
http://eprint.iacr.org/2011/535
http://eprint.iacr.org/2011/535
crypto.stanford.edu/craig

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog
overhead. In Eurocrypt, pages 465–482, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
Cryptology ePrint Archive, Report 2012/099, 2012. http://eprint.iacr.org/2012/099.

[GLN12] Thore Graepel, Kristin Lauter, and Michael Naehrig. Ml confidential: Machine learning on
encrypted data. Cryptology ePrint Archive, Report 2012/323, 2012. http://eprint.iacr.

org/2012/323.

[HFN11] Robert Hall, Stephen Fienberg, and Yuval Nardi. Secure multiparty linear regression based on
homomorphic encryption. In Journal of Official Statistics, pages 669–691, 2011.

[LNV11] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption
be practical? Cryptology ePrint Archive, Report 2011/405, 2011. http://eprint.iacr.org/

2011/405.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. In Eurocrypt, 2010.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Eurocrypt, pages 223–238. Springer-Verlag, 1999.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, Academia Press, pages 169–179, 1978.

[SV11] N.P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Cryptology ePrint
Archive, Report 2011/133, 2011. http://eprint.iacr.org/2011/133.

20

http://eprint.iacr.org/2012/099
http://eprint.iacr.org/2012/323
http://eprint.iacr.org/2012/323
http://eprint.iacr.org/2011/405
http://eprint.iacr.org/2011/405
http://eprint.iacr.org/2011/133

	Introduction
	Background
	Mathematical Notation
	Canonical Embedding Norm
	Distributions over Rq

	Scale-Invariant Homomorphic Encryption Scheme
	Statistical Analysis Using FHE
	Statistical Functions
	Data Representation and Batching
	Implementation Details

	Security Analysis and Parameter Settings
	Canonical Embedding Norm for Distributions
	Error Bounds for Homomorphic Operations
	Security Analysis and Parameter Selection

	Experiments and Conclusion

