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Abstract

A functional commitment allows a user to commit to an input x ∈ {0, 1}ℓ and later open up the commitment to

a value ~ = 5 (x) with respect to some function 5 . In this work, we focus on schemes that support fast veri�cation.

Speci�cally, after a preprocessing step that depends only on 5 , the veri�cation time as well as the size of the com-

mitment and opening should be sublinear in the input length ℓ , We also consider the dual setting where the user

commits to the function 5 and later, opens up the commitment at an input x.

In this work, we develop two (non-interactive) functional commitments that support fast veri�cation. The �rst

construction supports openings to constant-degree polynomials and has a shorter CRS for a broad range of set-

tings compared to previous constructions. Our second construction is a dual functional commitment for arbitrary

bounded-depth Boolean circuits. Both schemes are lattice-based and avoid non-black-box use of cryptographic prim-

itives or lattice sampling algorithms. Security of both constructions rely on the ℓ-succinct short integer solutions

(SIS) assumption, a falsi�able @-type generalization of the SIS assumption (Preprint 2023).

In addition, we study the challenges of extending lattice-based functional commitments to extractable func-

tional commitments, a notion that is equivalent to succinct non-interactive arguments (when considering open-

ings to quadratic relations). We describe a general methodology that heuristically breaks the extractability of our

construction and provides evidence for the implausibility of the knowledge :-'-ISIS assumption of Albrecht et al.

(CRYPTO 2022) that was used in several constructions of lattice-based succinct arguments. If we additionally assume

hardness of the standard inhomogeneous SIS assumption, we obtain a direct attack on a variant of the extractable

linear functional commitment of Albrecht et al.

1 Introduction
In a functional commitment scheme [IKO07, BC12, LRY16], a user can commit to a vector x and at a later point

in time, provide a short opening to a value ~ = 5 (x) with respect to an (arbitrary) function 5 . We also consider a

dual notion where a user commits to the function 5 and opens to an evaluation at a point x [BNO21, dCP23]. The

e�ciency requirement on a functional commitment is both the commitment and the openings are short (i.e., have

size that is sublinear or polylogarithmic in the length of x and the size of the function 5 ). The security requirement

is that an adversary cannot open up a commitment f to two distinct values ~0 ≠ ~1 with respect to any function

5 (or in the dual formulation, with respect to an input x). In this work, we focus exclusively on non-interactive
functional commitments [LRY16, LP20, PPS21, BNO21, ACL

+
22, BCFL23, dCP23, WW23] in the standard model (with

a common reference string). Functional commitments generalize notions like vector commitments [LY10, CF13] and

polynomial commitments [KZG10, PSTY13] and have found numerous applications to cryptography, most notably,

to e�cient constructions of succinct non-interactive arguments (SNARGs).

Functional commitments with fast veri�cation. Our focus in this work is on lattice-based functional com-

mitments for general functions. We are speci�cally interested in constructions that support fast veri�cation in the

preprocessing model. In this setting, we allow for an initial preprocessing stage that can depend only on the function

5 (which operates on inputs of length ℓ) and outputs a short veri�cation key vk5 . Given the preprocessed veri�cation

key vk5 , we then require that the veri�er running time (and by extension, the size of the commitment and opening)
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to be sublinear in the input length ℓ . We can de�ne a similar property in the dual setting where we preprocess the

input x instead of the function 5 . Note that having succinct commitments and openings alone does not imply fast

veri�cation. For instance, the veri�cation time in [WW23] is linear in the size of the function 5 even though the size

of the commitment and the opening only depend on the depth of 5 .

In applications where the function of interest is known in advance, preprocessing can signi�cantly reduce veri-

�cation costs. This is common in settings like delegation and outsourcing computation. Speci�cally, for the closely-

related problem of succinct arguments, working in the “preprocessing” model yields the most succinct construc-

tions [GGPR13, BCI
+
13, PHGR13, Gro16].

Lattice-based functional commitments. Functional commitments from lattice-based assumptions have received

extensive study in the last few years. Several works [PPS21, ACL
+
22, BCFL23, WW23] gave constructions of func-

tional commitments for broad classes of functions from lattice-based assumptions with a structured CRS. De Castro

and Peikert [dCP23] gave a dual functional commitment for all circuits from the standard short integer solutions (SIS)

problem in the uniform random string model. The authors of [KLVW23] consider a closely-related problem of dele-

gation for RAM programs; their techniques can be adapted to obtain a functional commitments scheme for Boolean

circuits from the learning with errors (LWE) assumption in the uniform random string model; see Section 1.3 for

more details. Their construction relies on non-black-box use of cryptographic hash functions (and lattice sampling

algorithms). Our focus in this work is on constructions that only make black-box use of cryptographic algorithms.

If we restrict our attention to lattice-based functional commitments that only make black-box use of cryptography,

the existing constructions with fast veri�cation either support constant-degree polynomials [ACL
+
22] or bounded-

width Boolean circuits [BCFL23]. In the dual setting, we do not have any constructions with fast veri�cation. We

refer to Table 1 for a summary of the current state of the art.

1.1 Our Contributions
In this work, we give two constructions of functional commitments that support fast veri�cation. Security of both

construction rely on the ℓ-succinct SIS assumption, a falsi�able “@-type” generalization of the SIS assumption intro-

duced by Wee [Wee23]. Notably, this is a weaker assumption than the more structured BASISstruct assumption from

[WW23]. Our �rst construction supports constant-degree polynomials. Our second construction is the �rst dual

functional commitment for (bounded-depth) Boolean circuits with fast veri�cation and which only makes black-box

use of cryptographic algorithms. We provide a more detailed comparison to previous constructions in Table 1 and

summarize the main results here.

Functional commitment for constant-degree polynomials. Our �rst construction (Construction 3.2) is a func-

tional commitment for constant-degree polynomials where the size of the CRS scales with ℓ3+1 · poly(_, 3, log ℓ),
where 3 is a bound on the degree of the polynomial, _ is the security parameter, and ℓ is the input length.

For the speci�c case of opening to quadratic polynomials (an important special case for delegating computations

due to the NP-hardness of deciding satis�ability of a system of quadratic functions), our construction has a CRS size

of ℓ3
. Previous approaches required a CRS that scale with ℓ4

[ACL
+
22] or ℓ5

[BCFL23]. More generally, for opening

to polynomials of constant-degree 3 ∈ N, our scheme compares to previous schemes as follows:

• To support degree-3 polynomials, the [ACL
+
22] construction has a CRS of size ℓ23 · poly(_, 3, log ℓ). Our

construction reduces the exponent from 23 to 3 + 1.

• The lattice-based construction from [BCFL23] supports Boolean circuits of width F and depth C with a CRS

of size F5
and openings of size C log

2F . For sparse polynomials where the width F of the circuit computing

the polynomial is roughly the input length ℓ , then the size of the CRS in the [BCFL23] construction is $ (ℓ5),
which is shorter than our construction. Conversely, for dense polynomials with roughly ℓ3 monomials, the

basic instantiation of [BCFL23] would require a CRS of size ℓ53
(corresponding to a Boolean circuit of width

ℓ3 and constant depth 3). Alternatively, we could �rst rebalance the circuit computing the polynomial to have

width ℓ3/C and depth C . This yields a construction with a CRS of size (ℓ3/C)5 and openings of size Ω(C). Note
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Scheme Functions |crs| |f | |c | FV BB Assumption

[KLVW23]
∗

Boolean circuits 1 1 1 3 7 LWE
[BCFL23] width-F , depth-3 circuits F5

1 1 3 3 twin-:-"-ISIS
[WW23] linear functions ℓ2

1 1 3 3 BASISstruct
[WW23] depth-3 Boolean circuits ℓ2

1 1 7 3 BASISstruct
Construction B.1 depth-3 Boolean circuits ℓ2

1 1 7 3 ℓ-succinct SIS

[ACL
+

22] degree-3 polynomials ℓ23
1 1 3 3 :-'-ISIS

[BCFL23] degree-3 polynomials
† (ℓ3/C)5 1 C 3 3 twin-:-"-ISIS

Construction 3.2 degree-3 polynomials ℓ3+1 1 1 3 3 $ (ℓ3 )-succinct SIS

[KLVW23]
∗

Boolean circuits 1 1 1 3 7 LWE
[dCP23] depth-3 Boolean circuits ℓ 1 ℓ 7‡ 3 SIS
Construction 3.19 depth-3 Boolean circuits ℓ2

1 1 3 3 ℓ-succinct SIS
∗
While [KLVW23] construct delegation for RAM programs, their construction can be adapted to obtain a functional commit-

ments for all Boolean circuits. We provide more details in Section 1.3.

†
We consider the general case of a dense polynomial with ℓ3 monomials. We instantiate [BCFL23] with a Boolean circuit of

width ℓ3/C and depth C ≤ ℓ that computes the polynomial. Note that the size of the opening C should be smaller than the

input length ℓ (otherwise, the opening can just be the input itself).

‡
The [dCP23] construction supports fast veri�cation for certain special cases (e.g., vector commitments and polynomial com-

mitments).

Table 1: Summary of succinct lattice-based functional commitments. For each scheme, we report the class of functions

it supports, the size of the common reference string crs, the size of the commitment f , and the size of an opening

c in terms of the associated function class and the input length ℓ . We assume functions with a single output. For

simplicity, we suppress poly(_, 3, log ℓ) terms throughout the comparison (where 3 refers to either the degree of

the polynomial or the depth of the circuit). The �rst set of constructions (above the solid purple line) are standard

functional commitments where one commits to an input x and opens to a function 5 while the second set (below the

solid purple line) are dual functional commitments where one commits to a function 5 and opens to an input x. We

say that a scheme supports “fast veri�cation” (FV) if after an input-independent preprocessing step, the veri�cation

time is sublinear in ℓ and that it is “black-box” (BB) if it only makes black-box use of cryptographic algorithms. Note

that BASISstruct implies ℓ-succinct SIS [Wee23]. In all constructions, the running time of the commitment algorithm

is linear in the input length.

that for the setting to be non-trivial, it should be the case that C ≤ ℓ (otherwise, the opening can just be the

input itself). Thus, if we demand sublinear-size openings, the size of the [BCFL23] CRS for supporting general

dense polynomials is at least ℓ5(3−1)
, which is worse than both [ACL

+
22] and our construction.

• Finally, the [WW23] construction supports (bounded-depth) Boolean circuits with a CRS of size ℓ2
. This has a

shorter CRS than our construction; however, [WW23] does not support fast veri�cation except in the special

case of linear functions.

On the assumption front, the security of Construction 3.2 follows from the !-succinct SIS assumption (with ! =

$ (ℓ3 )), a falsi�able “@-type” generalization of the SIS assumption introduced by [Wee23]. This is a weaker assump-

tion than the BASISstruct assumption used in [WW23] (i.e., is implied by the BASISstruct assumption), and is a less

structured generalizations of SIS compared to the:-'-ISIS and twin-:-"-ISIS assumptions used in [ACL
+
22, BCFL23].

We refer to Section 1.2 and Section 3 for an overview of the assumption and construction.

Dual functional commitment for Boolean circuits. Our second construction is a dual functional commitment

for arbitrary (bounded-depth) Boolean circuits (Construction 3.19). This is the �rst dual functional commitment

scheme based on falsi�able assumptions that supports succinct openings, fast veri�cation, and which does not make

non-black-box use of cryptography. Previously, [dCP23] constructed a dual functional commitment from the stan-

dard SIS assumption with short commitments but long openings and thus, slow veri�cation. Speci�cally, in their

scheme, the size of the opening and the running time of the veri�cation algorithm scale linearly with the input
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length ℓ . In our construction, the size of the opening is polylogarithmic in the input length, as is veri�cation (after

an initial preprocessing step). On the �ip side, the [dCP23] construction has a transparent CRS whose size scales lin-

early with ℓ while our construction has a structured CRS whose size scales quadratically with ℓ . The structured CRS

is used to “compress” the openings (see Section 1.2 and Construction 3.19). Similar to our functional commitment

scheme for constant-degree polynomials, security of our dual functional commitment also relies on the ℓ-succinct

SIS assumption.

Extractable commitments and cryptanalysis. The authors of [ACL
+
22] showed that if the binding property

on a functional commitment for quadratic functions was replaced by a stronger extractability property, then it can

be used to obtain a succinct non-interactive argument for NP. A functional commitment is extractable if for any

e�cient adversary that outputs a commitment f and an opening c to the value ~ with respect to a function 5 , there

exists an extractor that outputs an input G such that 5 (G) = ~. Extractable functional commitments for quadratic

functions can be used to obtain a succinct non-interactive argument (SNARG) for NP (using the fact that satis�a-

bility of quadratic systems is NP-complete). In this work, we describe a general methodology for cryptanalyzing

existing approaches for constructing extractable functional commitments. Notably, we show heuristically that our

functional commitment for constant-degree polynomials is unlikely to satisfy extractability. We then describe a

similar attack on an adaptation of the [ACL
+
22] functional commitment for linear functions. Here, we show that

assuming (non-uniform) hardness of the standard inhomogeneous SIS problem, the variant of [ACL
+
22] we consider

is not extractable. Along the way, we also give an oblivious sampling algorithm on a matrix version of the :-'-ISIS

knowledge assumption from [ACL
+
22]. We provide an overview in Section 1.2 and the details in Section 4.

1.2 Technical Overview
In this section, we provide a high-level overview of our approach for constructing functional commitments with

fast veri�cation in the preprocessing model as well as the challenges in extending these constructions to satisfy the

stronger extractability notion needed to construct preprocessing succinct non-interactive arguments.

Notation. We start with some basic notation. For a matrix A ∈ Z=×<@ and a target vector t ∈ Z=@ , we write A−1 (t)
to denote a random variable x ∈ Z<@ whose entries are distributed according to a discrete Gaussian distribution

conditioned on Ax = t. We can e�ciently sample from A−1 (t) given a trapdoor for the matrix A. We write I= to

denote the identity matrix of dimension =. We let G ∈ Z=×<@ denote the standard gadget matrix (i.e., G = I= ⊗ gT
,

where gT = [1, 2, . . . , 2 blog@c]) [MP12], and G−1 (·) : Z=@ → Z<@ denote the usual binary-decomposition operator.

The ℓ-succinct SIS assumption. Our constructions rely on the ℓ-succinct short integer solutions (SIS) assump-

tion [Wee23]. For a matrix A r← Z=×<@ , the standard SIS problem [Ajt96] is to �nd a short non-zero solution x ∈ Z<@
such that Ax = 0. The ℓ-succinct SIS assumption states that SIS is hard with respect to A even given a trapdoor for

[Iℓ ⊗ A | W] where W r← Zℓ=×<@ is a random narrow matrix. Note that if W ∈ Zℓ=×ℓ<@ is wide, then hardness of

ℓ-succinct SIS can be reduced to the hardness of SIS using lattice trapdoor extension techniques [Wee23].

The ℓ-succinct SIS assumption is aweaker assumption that the structuredBASISstruct assumption used in [WW23]

for constructing functional commitments; notably, the BASISstruct assumption from [WW23] is an instance of the

ℓ-succinct SIS assumption with a structured W. While ℓ-succinct SIS is a new and non-standard assumption, it is a

falsi�able assumption, and can be viewed as a “@-type” analog of the SIS assumption. We note that it is also implied

by the “evasive LWE” assumption [Wee22, Tsa22], which is an assumption that has been used successfully in several

other recent works [WWW22, VWW22].

1.2.1 A Functional Commitment Scheme for Quadratic Polynomials

Here, we describe our approach for constructing a functional commitment for constant-degree polynomials on ℓ-

dimensional inputs. Speci�cally, the committer should be able to commit to an input x ∈ Zℓ@ and then subsequently

open up the commitment to 5 (x) where 5 is a constant-degree polynomial. For simplicity of exposition, we will

focus on the case of quadratic polynomials, and defer the generalization to higher-degree polynomials to Section 3.
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TheWee-Wu scheme. We start with a quick recap of the functional commitment for circuits from [WW23] based

on the BASISstruct assumption (c.f., [WW23, Remark 4.13]), adapted to the ℓ-succinct SIS assumption.
1

As we explain

below, although the [WW23] construction shares a similar veri�cation relation as our construction, it does not appear

to support fast veri�cation. To describe the construction, we �rst parse the matrix W ∈ Zℓ=×<@ from the ℓ-succinct

SIS assumption as the vertical concatenation of matrices W(1) , . . . ,W(ℓ) ∈ Z=×<@ . A commitment to a (short) input

vector x ∈ Zℓ@ consists of a short matrix C ∈ Z<×< along with short matrices V8 satisfying the following relation:

W(8)C = G8G − AV8

Then, for all 8, 9 ∈ [ℓ],

(W(8)C) · G−1 (W( 9)C) = G8W( 9)C − AV8G−1 (W( 9)C)
= G8G 9 · G − A · (G8V9 + V8G−1 (W( 9)C)︸                      ︷︷                      ︸

Ṽ8 9

)

Observe that Ṽ8, 9 = G8V9 + V8G−1 (W( 9)C) is small since G8 , V8 , and V9 are all small. We now view Ṽ8 9 as the opening

for C to the quadratic relation G8G 9 . Furthermore, this extends readily to circuits following [BGG
+
14, GVW15b].

For the speci�c case of a general quadratic polynomial 5 (x) = ∑
8, 9 ∈[ℓ ] W8 9G8G 9 , the left-hand side of the veri�cation

relation becomes ∑
8, 9 ∈[ℓ ]

W8 9 (W(8)C) · G−1 (W( 9)C).

We do not know how to decompose this computation into a slow preprocessing phase that is independent of C, fol-

lowed by a fast computation on C. The analogous expression in the functional commitment scheme of [ACL
+
22]

is given by

∑
8, 9 ∈[ℓ ] W8 9F

(8)2 · F ( 9)2 where F (8) ,F ( 9) , 2 are ring elements. Since ring multiplication is commuta-

tive (unlike matrix multiplication), this can be rewritten as (∑W8, 9 ∈[ℓ ]F
(8)F ( 9) ) · 22

. By precomputing the quantity

(∑W8, 9 ∈[ℓ ]F
(8)F ( 9) ), which is independent of the commitment, the [ACL

+
22] construction supports fast veri�cation

in the preprocessing model.

Our approach. To construct a functional commitment scheme that supports fast veri�cation (with preprocessing),

we introduce additional structure. For the case of quadratic functions, we rely on the (ℓ+ℓ2)-succinct SIS assumption;

contrast this with the [WW23] construction described above which can rely on the smaller ℓ-succinct SIS assumption.

We parse the matrix W ∈ Z(ℓ+ℓ
2)=×<

@ from the (ℓ + ℓ2)-succinct SIS assumption as

W =

[
W1

W2

]
where W1 =


W(1)

1

...

W(ℓ)
1

 ∈ Z
=ℓ×<
@ and W2 =


W(1,1)

2

...

W(ℓ,ℓ)
1

 ∈ Z
=ℓ2×<
@ ,

where W(8)
1
,W(8, 9)

2
∈ Z=×<@ . A commitment to a (short) input vector x ∈ Zℓ@ consists of a short matrix C ∈ Z<×<

along with short matrices V8 ,V8 9 ∈ Z<×<@ satisfying the following relation:

W(8)
1
C = G8G − AV8 (1.1)

W(8, 9)
2

C = G8W
( 9)
1
− AV8 9 (1.2)

Then, for all 8, 9 ∈ [ℓ],

W(8, 9)
2

C2 = G8W
( 9)
1

C − AV8 9C
= G8G 9 · G − A · (G8V9 + V8 9C︸        ︷︷        ︸

Ṽ8 9

).

1
In Appendix B, we provide the formal description and analysis of [WW23] using the ℓ-succinct SIS assumption.
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Observe that Ṽ8, 9 = G8V9 +V8 9C is small since x, V9 , V8 9 , and C are all small. We now take Ṽ8 9 to be the opening for C
to the quadratic relation G8G 9 . More generally, an opening for a general quadratic polynomial 5 (x) = ∑

8, 9 ∈[ℓ ] W8 9G8G 9
to the value ~ = 5 (x) is a short matrix Ṽ where

©­«
∑
8, 9 ∈[ℓ ]

W8 9W
(8, 9)
2

ª®¬︸               ︷︷               ︸
W5

·C2 = ~ · G − A · Ṽ. (1.3)

Our scheme. To complete the description, we publish the following components in the CRS:[
Topen
Tcom

]
←

[
Iℓ ⊗ A W1

Iℓ2 ⊗ A W2

]−1
( [

Iℓ ⊗ G
Iℓ ⊗W1

] )
, (1.4)

where Topen ∈ Z(ℓ+ℓ
2)<×<ℓ

@ and Tcom ∈ Z<×<ℓ@ . Note that the CRS has size $ (ℓ3), improving upon the $ (ℓ4)-sized

CRS in [ACL
+
22].

To commit to a short x ∈ Zℓ@ , the committer computes C← Tcom (x ⊗ I<). By construction this means that

W1C = W1Tcom (x ⊗ I<) = (Iℓ ⊗ G) (x ⊗ I<) − (Iℓ ⊗ A)Topen (x ⊗ I<)
= x ⊗ G − (Iℓ ⊗ A)Topen (x ⊗ I<)

W2C = W2Tcom (x ⊗ I<) = (Iℓ ⊗W1) (x ⊗ I<) − (Iℓ2 ⊗ A)Topen (x ⊗ I<)
= x ⊗W1 − (Iℓ2 ⊗ A)Topen (x ⊗ I<).

Observe that taking V8 and V8 9 to be the blocks of Topen (x⊗ I<), we satisfy Eqs. (1.1) and (1.2). To argue binding from

the (ℓ2 + ℓ)-succinct SIS assumption, observe that Topen and Tcom can be sampled using the trapdoor provided by

the (ℓ2 + ℓ)-succinct SIS assumption. Suppose now that an adversary outputs two possible openings Ṽ0, Ṽ1 to values

~0, ~1 ∈ Z@ with respect to the same quadratic function 5 . From Eq. (1.3), this means that

W5 C2 = ~0G − AṼ0 = ~1G − AṼ1,

or equivalently, that A(Ṽ1 − Ṽ0) = (~1 −~0)G. When ~1 ≠ ~0 and @ is prime (so that ~1 −~0 is invertible), this yields

a gadget trapdoor [MP12] for A, which the reduction can use to sample a short non-zero SIS solution from A−1 (0).
We provide the full details (and extension to higher-degree polynomials) in Section 3.

Fast veri�cation with preprocessing. It is easy to see that the above construction supports fast veri�cation

given preprocessing. For instance, consider the veri�cation relation in Eq. (1.3). If the function 5 is known in

advance, we can precompute the matrix W5 =
∑
8, 9 ∈[ℓ ] W8 9W

(8, 9)
2

. If we do so, then the veri�cation relation simply

checks W5 C2 = 5 (x) · G − AṼ, which can be computed in time that depends only polylogarithmically on ℓ .

Extending tomultiple outputs. Using a similar technique as [WW23], we can also extend our construction above

to functions with multiple outputs. To illustrate, suppose we have a commitment C and a collection of ) openings

Ṽ1, . . . , Ṽ) to values ~1, . . . , ~) and with respect to functions 51, . . . , 5) . Then, for all 8 ∈ [) ], we have from Eq. (1.3)

that W58C
2 = ~8G − AṼ8 . To support openings to multiple outputs, we publish random vectors u1, . . . , u)

r← Z=@ in

the CRS, and de�ne the “multi-output” veri�cation relation to be∑
8∈[) ]

W58C
2G−1 (u8 )

?

=
∑
8∈[) ]

~8u8 −
∑
8∈[) ]

AṼ8G−1 (u8 ).

The new opening is now

∑
8∈[) ] Ṽ8G−1 (u8 ) which remains short. Moreover, the multi-output scheme still supports

preprocessing. This is because the left-hand-side of the veri�cation relation is still a linear function in C2
and can
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be preprocessed; formally, this is done by “vectorizing” the veri�cation relation (see Remark 3.10). In this case, the

veri�cation time with preprocessing is independent of the input length ℓ , but still dependent on the output dimen-

sion ) (this is anyhow necessary since the veri�cation algorithm needs to read the opened values). In the setting

where the target values ~1, . . . , ~) are also known in advance, we can also precompute the target value

∑
8∈[) ] ~8u8 .

When both the functions and the outputs are preprocessed, the running time of the veri�cation algorithm is poly-

logarithmic in both the input length ℓ and the output dimension ) . Finally, security of the multi-output version still

reduces to (ℓ2 + ℓ)-succinct SIS. We provide the full details in Section 3.1. Taken together, we obtain a functional

commitment for constant-degree polynomials of degree 3 where the size of the CRS is ℓ3+1 · poly(_, 3, log ℓ, log) )
and the proof/opening sizes are poly(_, 3, log ℓ, log) ). Compared to [ACL

+
22], our construction achieves a shorter

CRS (reducing from ℓ23
to ℓ3+1) and relies on a less-structured assumption.

Generalizing tomodule lattices. Our functional commitment scheme described here generalizes directly to mod-

ule lattices and ideal lattices. Security in turn relies on the hardness of ℓ-succinct SIS assumption over module lattices

(as opposed to integer lattices). We describe the generalization in Appendix A. For a security parameter _ and using

module lattices (along with a I-ary gadget matrix where I ≥ @1/2
for some constant 2 ∈ N), we obtain a func-

tional commitment scheme for constant-degree polynomials where the commitment and the opening for an input of

length ℓ (and single output) is $̃ (_ log ℓ); this relies on 2
Ω̃ (_)

hardness of $ (ℓ3 )-succinct module SIS. This matches

the commitment size and the opening size of the functional commitment from [ACL
+
22] which relies on ideal lat-

tices. As noted above, compared to [ACL
+
22], our construction reduces the CRS size from ℓ23 · poly(_, 3, log ℓ) to

ℓ3+1 · poly(_, 3, log ℓ).

1.2.2 A Dual Functional Commitment for Boolean Circuits

Next, we turn our attention to the dual setting where the user commits to a function 5 and opens to an input x.

This is the setting studied in [BNO21, dCP23]. While a functional commitment that supports general functions

(e.g., [WW23, BCFL23]) can be used to obtain a dual functional commitment for general functions through the use of

universal circuits, the generic transformation necessarily both imposes an a priori bound on the size (or description

length) of the function. Here, we opt for a more direct construction that avoids the need for universal circuits.

Our approach is essentially a hybrid of the dual functional commitment for bounded-depth Boolean circuits from

[dCP23] (which has short commitments but openings whose size scales with the input length) and the succinct

attribute-based encryption (ABE) scheme from [Wee23]. We show how to combine these techniques to obtain a dual

functional commitment for bounded-depth Boolean circuits with short commitments and openings. As before, our

starting point is the ℓ-succinct SIS assumption, where we are given a trapdoor T satisfying

[Iℓ ⊗ A | W] · T = Iℓ ⊗ G. (1.5)

We again parse the trapdoor T as T =

[
Topen
Tcom

]
where Topen ∈ Zℓ<×ℓ<@ and Tcom ∈ Z<×ℓ<@ . If we use the fact that

(xT ⊗ I=) (Iℓ ⊗ A) = (1 ⊗ A) (xT ⊗ I<) = A(xT ⊗ I<), we obtain

xT ⊗ G = (xT ⊗ I=) (Iℓ ⊗ G) = (xT ⊗ I=) [Iℓ ⊗ A | W] · T = [A(xT ⊗ I<) | (xT ⊗ I=)W] ·
[
Topen
Tcom

]
.

Take any matrix W0 ∈ Z=×<@ . Then, we can write

[A | W0 + (xT ⊗ I=)W] ·
[
−(xT ⊗ I<)Topen
−Tcom

]
= −W0Tcom − xT ⊗ G. (1.6)

Let us de�ne B := −W0Tcom ∈ Z=×ℓ<@ . The CRS will contain the elements (A,W,Tcom,Topen,W0,B). Now, Eq. (1.6)

essentially says we can “recode” the matrix [A | W0 + (xT ⊗ I=)W] to B− xT ⊗G. Following [dCP23], we now de�ne

the commitment to a function 5 : {0, 1}ℓ → {0, 1} as the matrix B5 obtained by homomorphically evaluating 5 on

B using the lattice-based homomorphic evaluation machinery from [GSW13, BGG
+
14].

2
To recall, for every matrix

2
In the ABE scheme from [Wee23], the ciphertext is essentially sT [A | W0 + (x ⊗ I=)W] + error and the secret key is a short Gaussian pre-image

of [A | B5 ] where B5 is derived from B via homomorphic evaluation [GSW13, BGG
+
14] of 5 on B.
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B ∈ Z=×ℓ<@ , every function 5 : {0, 1}ℓ → {0, 1}, and every input x ∈ {0, 1}ℓ , there exist a matrix B5 ∈ Z=×<@ that

depends only on B and 5 , and a short matrix HB,5 ,x ∈ Zℓ<×<@ such that

(B − xT ⊗ G) · HB,5 ,x = B5 − 5 (x) · G ∈ Z=×<@ .

To open at a point x ∈ {0, 1}ℓ to the value I = 5 (x), the committer then computes

V =

[
−(x ⊗ I<)Topen
−Tcom

]
· HB,5 ,x ∈ Z2<×<

@ .

Observe that the size of the opening is essentially independent of the input length ℓ .3 In [dCP23], the opening is the

full matrix HB,5 ,x. Here, the trapdoor T from the ℓ-succinct SIS assumption allows us to “compress” the opening. The

veri�cation relation is then

B5 − IG
?

= [A | W0 + (x ⊗ I=)W]V. (1.7)

From Eq. (1.6), we see that

[A |W0 + (xT ⊗ I=)W]V = [A |W0 + (xT ⊗ I=)W]
[
−(xT ⊗ I<)Topen
−Tcom

]
· HB,5 ,x

= (−W0Tcom − xT ⊗ G) · HB,5 ,x

= (B − xT ⊗ G) · HB,5 ,x

= B5 − 5 (x) · G.

This yields a dual functional commitment for all (bounded-depth) Boolean circuits with inputs of length ℓ where

the size of the commitment and the opening are both poly(_, 31/Y , log ℓ), where 3 is the bound on the depth of the

function and Y > 0 is a constant (see below). The CRS in our construction has size ℓ2 · poly(_, 31/Y , log ℓ). This

construction also supports preprocessing; namely, if the input x is known in advance, we can precompute the matrix

[A | W0 + (x ⊗ I=)W] in Eq. (1.7). Security relies on the ℓ-succinct SIS with a sub-exponential noise bound 2
$̃ (=Y )

,

where Y > 0 is a constant and = is the lattice dimension. We refer to Section 3.2 for the full construction and analysis.

1.2.3 Knowledge Assumptions, Extractable Functional Commitments, and Cryptanalysis

The authors of [ACL
+
22] showed that if we strengthen the binding property on a functional commitment for quadratic

functions to an extractability property, then it can be used to obtain a succinct non-interactive argument (SNARG)

for NP. More speci�cally, in an extractable functional commitment, the binding property is replaced by a stronger

extractability requirement which roughly says that for any e�cient adversary that outputs a commitment f and an

opening c to the value ~ with respect to a function 5 , there exists an extractor that outputs an input G such that

5 (G) = ~. Extractable functional commitments for quadratic functions can be used to obtain a SNARG for NP (using

the fact that satis�ability of quadratic systems is NP-complete).

In Section 4, we highlight some of the di�culties in constructing extractable functional commitments from lat-

tices, and more generally, the challenges of formulating lattice-based knowledge assumptions. The di�culties stem

from the following fundamental phenomenon about lattices, which has no analog in the pairing world: given su�-

ciently many independent short vectors in the kernel of a lattice A, we can recover a trapdoor for A and e�ciently

sample short pre-images for any coset of A. (The pairing analogue would be recovering a trapdoor that allows

computing discrete logs). In our attacks, we invoke this basic fact for a carefully crafted matrix A derived from the

veri�cation equation of the functional commitment scheme.

Attack on knowledge :-'-ISIS. As a warm-up, we describe a candidate attack on a matrix variant of the knowl-

edge :-'-ISIS assumption from [ACL
+
22].

4
Here, the adversary is given

A r← ZC×<@ , D r← ZC×=@ , ∀8 ∈ [ℓ] : t8
r← Z=@ , z8 ← A−1 (Dt8 )

3
Technically, there is a polylogarithmic dependence on ℓ since log@ scales with poly(log ℓ) .

4
After communicating the attack to the authors of [ACL

+
22], Albrecht implemented and con�rmed the attack [Alb23].
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where ℓ �< += and C ≥ = + 1. The goal of the adversary is to sample c ∈ ZC@ along with a low-norm v ∈ Z< so that

Av = Dc.

One way to do this is to sample small integersG8 , and then compute v =
∑
8∈[ℓ ] G8z8 and c =

∑
8∈[ℓ ] G8 t8 . The knowledge

assumption basically asserts that this is the only way to sample (c, v). In particular, if an adversary samples a random
low-norm v, then Av will lie outside the column span of D with high probability.

Our candidate attack uses Babai’s rounding algorithm to sample small fractional G8 ∈ Q such that v =
∑
8∈[ℓ ] G8z8 ∈

Z< and c =
∑
8∈[ℓ ] G8 t8 ∈ ZC@ and satis�es Av = Dc. It is a candidate attack in the sense that we do not know how to

rule out an extractor that outputs the same distribution for v, c using small integer G8 ’s. The attack is fairly simple

(in hindsight): we �rst construct a basis for the lattice B = [A | DG] as follows:

[A | DG] ·
[

z1 · · · zℓ
−G−1 (t1) · · · −G−1 (tℓ )

]
︸                                   ︷︷                                   ︸

T

= 0 mod @.

Since the z8 ’s are independent Gaussians and the t8 ’s are uniformly random, we (heuristically) assume that T ∈
Z(<+=)×ℓ is full rank over the reals.5 Now, an adversary can start with an arbitrary (non-zero) solution y ∈ Z<+=
where By = 0 mod @, solves for the unique z ∈ Q<+= where Tz = y ∈ Q<+= , and then outputs the integer vector

y∗ = y − T · bze. By construction By∗ = 0 mod @ and moreover, ‖y∗‖ ≤ ‖T(z − bze)‖, which is small. From y∗, we

can compute v, c as desired.

Attacks on extractable functional commitments. Using a similar methodology, we obtain heuristic attacks on

the extractability of our functional commitment for constant-degree polynomials described above as well as on a ver-

sion of the [ACL
+
22] functional commitment for the particular case of linear functions. We note that [ACL

+
22] de�ne

their commitment over module and ideal lattices, so when describing our attack, we consider a speci�c translation

of their scheme to the integer case. Our methodology for analyzing the extractability of functional commitments

follows the general blueprint:

1. We start by writing down the key veri�cation relation. In all lattice-based functional commitment construc-

tions [ACL
+
22, WW23, dCP23, BCFL23], the veri�cation relation consists of checking that the opening is a

short solution to a linear system. We re-express the veri�cation relation as �nding a short non-zero vector in

the kernel of some related lattice.

2. Using the components published in the CRS, we derive a basis for this related lattice. We now use the basis to

jointly sample a (possibly short) commitment and a (short) opening that satis�es the main veri�cation relation.

Importantly, the commitment and the opening are sampled without explicit knowledge of a speci�c input. We can

apply this strategy both to our functional commitment for constant-degree polynomials as well as to an integer

variant of the [ACL
+
22] construction:

• In the case of our functional commitment for quadratic functions, we can use the above procedure to sample a

commitment and a set of valid openings that correspond to an unsatis�able constraint system. For instance, we

show that the attacker can e�ciently come up with a commitment C together with valid openings asserting

that G2

1
= 0 and G1G2 = 1.

• When applied to our integer-variant of the [ACL
+
22] functional commitment for linear functions, we can use

this strategy to e�ciently sample a commitment together with an opening for an arbitrary linear function

to an arbitrary vector y. In other words, for any (short) matrix M, we can construct an e�cient algorithm

that samples a commitment C and an opening V to any target vector y under the linear function x ↦→ Mx.

Note that this sampler does not need an explicit x to sample (C,V). If the commitment scheme is extractable,

then there would exist an extractor that can output a short x such that Mx = y. But this is precisely solving

5
Note that T does not (and cannot) have full rank over Z@ .
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the inhomogeneous SIS problem (with respect to a short matrix M; hardness of inhomogeneous SIS with low-

norm matrices follows from the standard setting with uniform M via the mapping M ↦→ G−1 (M)). Thus, our

attacks demonstrates that assuming (non-uniform) hardness of the standard inhomogeneous SIS assumption,

the variant of [ACL
+
22] de�ned over the integers does not satisfy extractability (i.e., the existence of an e�cient

extractor for our adversarial strategy implies a non-uniform polynomial-time algorithm for inhomogeneous

SIS). Note that due to the way we construct the basis for the related lattice, our approach can be used to

(heuristically) break inhomogeneous SIS, but not necessarily SIS. We refer to Section 4.2 for more details.

We describe our methodology and attack algorithms in Section 4. We stress that our oblivious sampling attacks only

apply to the extractability of lattice-based functional commitments. All of the aforementioned schemes still plausibly

satisfy the standard notion of binding security for functional commitments. We hope that our techniques will en-

courage further cryptanalysis of lattice-based knowledge assumptions (and also of the new falsi�able assumptions

such as ℓ-succinct SIS) that underlie succinct commitments and arguments from lattices.

1.3 Related Work
Interactive functional commitments were �rst introduced in [IKO07] (for linear functions) and extended to general

functions in [BC12] for realizing (interactive) succinct arguments without relying on traditional probabilistically-

checkable proofs. In the interactive setting, we can also obtain a functional commitment from any collision-resistant

hash function via Kilian’s interactive succinct argument [Kil92]. This can be made non-interactive in the random

oracle model [Mic00] through the Fiat-Shamir heuristic. Functional commitments are also generically implied by

succinct non-interactive arguments of knowledge (SNARKs) for NP and collision-resistant hash functions [LRY16],

but all existing constructions of SNARKs for NP either rely on strong non-falsi�able assumptions or rely on idealized

models (e.g., the random oracle model or the generic group model). Our focus in this work is on non-interactive

functional commitments in the plain model from falsi�able assumptions.

There have also been numerous constructions of functional commitments (and its specialization to vector and

polynomial commitments) from standard pairing-based assumptions [LY10, KZG10, CF13, LRY16, LM19, TAB
+
20,

GRWZ20, BCFL23] as well as assumptions over groups of unknown order such as RSA groups or class groups [CF13,

LM19, CFG
+
20, AR20, TXN20]. We refer to [Nit21] for a survey of recent constructions. Our focus in this work is on

functional commitments from lattice assumptions (similar to [PPS21, ACL
+
22, BCFL23, dCP23, WW23]). The work

of [GVW15b] construct non-succinct functional commitments for arbitrary functions and fast veri�cation from SIS;

non-succinct functional commitments are often referred to as homomorphic commitments.

RAM delegation. A RAM delegation scheme [KP16, BHK17, KPY19, CJJ21, KVZ21, KLVW23] allows a prover to

compute a short digest of an input G and later on, convince the veri�er that" (G) = ~ for an arbitrary RAM program

" with a proof whose size scales with poly(_, log |G |, log) ), where ) is the running time of the RAM computation.

A RAM delegation scheme can be used to obtain a functional commitment for circuits by having the digest be over

the pair (G,�), where G is the input and � is the circuit, and taking " to be the RAM program that evaluates �

gate-by-gate. There is a slight syntactic mismatch here because in a functional commitment scheme, the user should

be able to commit to the input G (resp., in the dual case, the circuit�) separately, and later on, open the commitment

to the circuit� (resp., at the input G ). However, if the underlying digest-computation algorithm has the property that

the digest for the pair (G,�) can be derived from independent digests for G and � separately, then it is possible to

obtain a functional commitment scheme for circuits. In recent RAM delegation schemes [CJJ21, KVZ21, KLVW23],

the digest is just a Merkle hash of the inputs [Mer87], which satis�es this requirement.

Taken together, the RAM delegation schemes from [CJJ21, KVZ21] yields a functional commitments from circuits

that satisfy the weaker notion of target binding security (where binding is only required to hold for honestly-generated
commitments). The construction of Kalai et al. [KLVW23] yields a functional commitment for general circuits sat-

is�es the standard notion of evaluation binding for functional commitments.
6

This yields a functional commitment

scheme for all circuits from the plain LWE assumption. This scheme has a transparent setup and the size of the

common reference string, commitment, and opening scale with poly(_, log |G |, log |� |). While the basic approach

6
The di�erence in target binding vs. evaluation binding is due to the soundness properties of the underlying RAM delegation scheme. We refer

to [KLVW23, Remark 6.1] for more discussion on the di�erent security de�nitions for RAM delegation.
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supports openings to functions with a single output bit, it is straightforward to extend to multiple output bits by

�rst composing with a collision-resistant hash function (i.e., instead of opening to a vector-valued y = � (x), we

open to the bits of the hash output � (y) = � (� (x)); this only incurs poly(_) overhead). The main limitation of the

RAM delegation approaches is their heavy non-black-box use of cryptography. Namely, the constructions require

the circuit description of cryptographic hash functions and lattice sampling algorithms. In this work, we focus on

constructions that only need black-box use of cryptographic algorithms (and lattice sampling algorithms).

Relation to [Wee23]. The ℓ-succinct SIS assumption we rely on in this work was recently introduced by [Wee23],

who showed how to use it (speci�cally, its extension to ℓ-succinct LWE) to construct succinct attribute-based en-

cryption, reusable garbled circuits, and laconic functional encryption. The main technical result there is an attribute-

based encryption scheme that achieves ciphertext overhead and key size poly(_, 3) (independent of both the attribute

length and circuit size) for circuits of depth 3 under the ℓ-succinct LWE assumption. These aforementioned applica-

tions exploit the fact that the trapdoor [Iℓ ⊗ A |W] can be used to “compress” the homomorphic evaluation matrix

HB,5 ,x, which is also the approach we take for compressing our openings in our dual functional commitment scheme.

We refer to [Wee23] for more discussion on the ℓ-succinct SIS and LWE assumptions, including reductions basing

these assumptions on the evasive LWE assumption [Wee22, Tsa22]. In particular, ℓ-succinct SIS is implied by both

the BASISstruct assumption from [WW23] (the latter is in turn implied by matrix variants of :-'-ISIS, as shown in

[WW23, §6]) and the evasive LWE assumption (plus LWE). In other words, ℓ-succinct SIS constitutes the “weakest”

of recent non-standard lattice assumptions used in functional commitments as well as other advanced lattice-based

cryptosystems.

Concurrent work. Concurrent to this work, [FLV23, CLM23] gave new constructions of lattice-based SNARKs

with a linear-size CRS based on the knowledge :-'-ISIS assumption from [ACL
+
22]. The construction of [FLV23]

leverage the :-'-ISIS assumption to construct a polynomial commitment with a linear-size CRS; in conjunction with

the knowledge variant of the :-'-ISIS assumption, they obtain a lattice-based preprocessing SNARK for NP with a

linear-size CRS and quasilinear prover complexity. The work of [CLM23] introduces the vanishing SIS problem and

uses it to construct functional commitments for quadratic functions (and correspondingly, a preprocessing SNARK

for NP). They provide two ways to instantiate their SNARK: in the plain model under the knowledge variant of the

:-'-ISIS assumption, or in the random oracle model under the new, but falsi�able, vanishing SIS assumption. The

results we show in this work provide strong evidence against the plausibility of the knowledge :-'-ISIS assumption,

but they do not appear to directly break soundness of the SNARKs themselves. It is an interesting question to study

whether our approach can be extended to break soundness of these new SNARK candidates.

2 Preliminaries
We write _ to denote the security parameter. For a positive integer = ∈ N, we write [=] to denote the set {1, . . . , =}.
For a positive integer @ ∈ N, we write Z@ to denote the integers modulo @. We use bold uppercase letters to denote

matrices (e.g., A,B) and bold lowercase letters to denote vectors (e.g., u, v). We use non-boldface letters to refer to

their components: v = (E1, . . . , E=).
We write poly(_) to denote a �xed function that is$ (_2 ) for some 2 ∈ N and negl(_) to denote a function that is

> (_−2 ) for all 2 ∈ N. For functions 5 = 5 (_), 6 = 6(_), we write 6 ≥ $ (5 ) to denote that there exists a �xed function

5 ′(_) = $ (5 ) such that 6(_) > 5 ′(_) for all _ ∈ N. We say an event occurs with overwhelming probability if its

complement occurs with negligible probability. An algorithm is e�cient if it runs in probabilistic polynomial time in

its input length. We say that two families of distributionsD1 = {D1,_}_∈N andD2 = {D2,_}_∈N are computationally

indistinguishable if no e�cient algorithm can distinguish them with non-negligible probability, and we denote this

by writing D1

2≈ D2. We say that D1 and D2 are statistically indistinguishable if the statistical distance Δ(D1,D2)
is bounded by a negligible function negl(_).

Tensor products. For matrices A ∈ Z=×<@ and B ∈ Z:×ℓ@ , we write A ⊗ B to denote the tensor (Kronecker) product

of A and B. For a positive integer 8 ∈ N, we write A⊗8 to denote tensoring A with itself 8 times. For matrices A,B,C,D
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where the products AC and BD are well-de�ned, the tensor product satis�es the following mixed-product property:

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD). (2.1)

The following is a useful consequence of the mixed-product property. For a vector x and a matrix A,

(x ⊗ I)A = (x ⊗ I) (1 ⊗ A) = x ⊗ A. (2.2)

Vectorization. For a matrix A ∈ Z=×<@ , we write vec(A) to denote its vectorization (i.e., the vector formed by

vertically stacking the columns of A from leftmost to rightmost). We will use the following useful identity: for

matrices A,B,C where the product ABC is well-de�ned, then

vec(ABC) = (CT ⊗ A) · vec(B).

2.1 Functional Commitments
In this section, we recall the formal de�nition of a (succinct) functional commitment. Our de�nition is adapted from

that of [WW23].

De�nition 2.1 (Succinct Functional Commitment [WW23, De�nition 4.1]). Let _ be a security parameter. Let F =

{F_}_∈N be a family of e�ciently-computable functions 5 : Xℓ → Y) with domain Xℓ and range Y) ; here ℓ = ℓ (_)
and) = ) (_) denote the input dimension and the output dimension, respectively. A succinct functional commitment

for F is a tuple of e�cient algorithms ΠFC = (Setup,Commit, Eval,Verify) with the following properties:

• Setup(1_) → crs: On input the security parameter _, the setup algorithm outputs a common reference string

crs.

• Commit(crs, x) → (f, st): On input the common reference string crs and an input x ∈ Xℓ , the commitment

algorithm outputs a commitment f and a state st.

• Eval(st, 5 ) → c5 : On input a commitment state st and a function 5 ∈ F , the evaluation algorithm outputs an

opening c5 .

• Verify(crs, f, 5 , y, c) → {0, 1}: On input the common reference string crs, a commitment f , a function 5 ∈ F ,

a value y ∈ Y) , and an opening c , the veri�cation algorithm outputs a bit 1 ∈ {0, 1}.

We now de�ne several correctness and security properties on the functional commitment scheme:

• Correctness: For all security parameters _, all functions 5 ∈ F , and all inputs x ∈ Xℓ ,

Pr

Verify
(
crs, f, 5 , 5 (x), c5

)
= 1 :

crs← Setup(1_);
(f, st) ← Commit(crs, x);

c5 ← Eval(st, 5 )

 = 1 − negl(_).

• Succinctness: There exists a universal polynomial poly(·) such that for all _ ∈ N, |f | = poly(_ + log ℓ) and��c5 �� = poly(_ + log ℓ +) ) in the correctness de�nition.

• Binding: We say ΠFC satis�es computational binding if for all e�cient adversaries A,

Pr

[
Verify(crs, f, 5 , y0, c0) = 1 = Verify(crs, f, 5 , y1, c1) :

crs← Setup(1_);
(f, 5 , y0, y1, c0, c1) ← A(1_, crs)

]
= negl(_).
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Functional commitments with preprocessing. In many constructions of functional commitments, verifying an

opening with respect to a function 5 requires time that scales with the running time of 5 and the size of the opening

often scaleswith the output dimension) . In settings where the function 5 and the target y are known in advance (e.g.,

5 could encode a list of predicates and the output y could be the all-ones vector, indicating that every predicate should

be satis�ed by the committed input), it is sometimes possible to decompose the veri�cation algorithm into a “slow”

o�ine step that takes as input the function 5 and the target output y and outputs a veri�cation key vk5 ,y. Importantly,

vk5 ,y is independent of the commitment and the opening. Then, there is a fast online veri�cation algorithm that uses

the preprocessed veri�cation key to validate the commitment and opening in time that is sublinear in the size of 5

and the number of outputs) . This setting is very similar to that of a preprocessing SNARK; here, the list of predicates

(which may be associated with the gates of a Boolean circuit) is �xed, and the goal is to prove knowledge of a witness

that satis�es all of the predicates (i.e., gate constraints).

In Remark 3.3, we note that it is also possible to preprocess the veri�cation key when only the function 5 is

known in advance. In this case, the online veri�cation algorithm will need to run in time that grows with the output

dimension ) (since the veri�er necessarily has to read the output in this case). Several recent schemes support fast

veri�cation with preprocessing [ACL
+
22, dCP23, BCFL23]. We de�ne this below:

De�nition 2.2 (Functional Commitment with Full Preprocessing). Let _ be a security parameter. Let F = {F_}_∈N
be a family of e�ciently-computable functions 5 : Xℓ → Y) where each function 5 can be computed by a Boolean

circuit of size at most B = B (_). Let ΠFC = (Setup,Commit, Eval,Verify) be a succinct functional commitment for F .

We say that F supports preprocessing if the veri�cation algorithm can be decomposed into two e�cient algorithms

(Preprocess,OnlineVerify) with the following syntax:

• Preprocess(crs, 5 , y) → vk5 ,y: On input the common reference string crs, a function 5 ∈ F , and an output

y ∈ Y) , the preprocess algorithm outputs a veri�cation key vk5 ,y.

• OnlineVerify(vk, f, c) → {0, 1}: On input a veri�cation key vk, a commitment f , and an opening c , the online

veri�cation algorithm outputs a bit 1 ∈ {0, 1}.

We require that

Verify(crs, f, 5 , y, c) := OnlineVerify(Preprocess(crs, 5 , y), f, c).

In addition, we require the additional succinctness property:

• Fast online veri�cation: There exists a universal polynomial poly(·) such that for all _ ∈ N, for crs ←
Setup(1_), all functions 5 ∈ F , and all outputs y ∈ Y) , the veri�cation key vk5 ,y output byPreprocess(crs, 5 , y)
satis�es

��vk5 ,y�� = poly(_+log B+log) ), and moreover, the running time of OnlineVerify is poly(_+log B+log) ).

Remark 2.3 (Function-Only Preprocessing). We can also consider functional commitments with a weaker function-

only preprocessing where the preprocessing algorithm Preprocess only takes the crs and the function 5 as input (but

not the output y) and outputs a preprocessed function key vk5 . Then, the online veri�cation algorithm OnlineVerify
takes the veri�cation key vk5 , the output y ∈ Y) , the commitment f , and the opening c as input. In this case, we

require that the size of the veri�cation key satisfy |vk5 | = poly(_ + log B), and the veri�cation time to be poly(_ +
log B +) ). Notably, the online veri�cation algorithm can now depend on the output dimension) (and this is required

since the veri�cation algorithm must read the output).

2.2 Lattice Preliminaries
Some parts are taken verbatim from [WW23, §2.1]. Throughout this work, we use the ℓ∞-norm for vectors and

matrices. For a vector u, we write ‖u‖ := max8 |G8 |, and for a matrix A, we write ‖A‖ = max8, 9

���8, 9 ��.
Min-entropy. We recall some basic de�nitions on min-entropy. Our de�nitions are taken from [DRS04]. For

a (discrete) random variable - , we write H∞ (- ) = − log(maxG Pr[- = G]) to denote its min-entropy. For two

(possibly correlated) discrete random variables - and . , we de�ne the average min-entropy of - given . to be

H∞ (- | . ) = − log(E~←. maxG Pr[- = G | . = ~]). We now state the (generalized) leftover hash lemma:
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Lemma 2.4 (Leftover Hash Lemma [HILL99, DRS04]). Let =,<,@ be lattice parameters. Let x ∈ {0, 1}< , aux ∈ {0, 1}∗
be (arbitrarily correlated) random variables where H∞ (x | aux) ≥ 2_ + = log@. Then, the statistical distance between
the following distributions is at most 2

−_ :

{(A,Ax, aux) : A r← Z=×<@ } and {(A, u, aux) : A r← Z=×<@ , u r← Z=@ }.

Discrete Gaussians. We write �Z,j to denote the discrete Gaussian distribution over Z with width parameter

j > 0. For a matrix A ∈ Z=×C@ , and a vector v ∈ Z=@ , we write A−1

j (v) to denote the random variable x ← �<Z,j
conditioned on Ax = v mod @. We extend A−1

j to matrices by applying A−1

j to each column of the input. We now

recall some useful properties on discrete Gaussian distributions over lattices:

Lemma2.5 (Gaussian Tail Bound [MP12, Lemma 2.6, adapted]). Let=,<,@ be lattice parameters where< ≥ $ (= log@).
Sample A r← Z=×<@ . Then, for all j ≥ l (

√
log<) and all vectors v ∈ Z=@ in the span of A,

Pr[‖u‖ >
√
<j : u← A−1

j (v)] = negl(=).

For the particular case of the discrete Gaussian distribution over the integers,

Pr[|G | >
√
_j : G ← �Z,j ] = negl(_).

Lemma 2.6 (Min-Entropy of a Discrete Gaussian [PR06, Lemma 2.11, adapted]). Let =, @ be lattice parameters and
suppose< ≥ 2= log@. Let A r← Z=×<@ . Then, with 1 − negl(=) probability over the choice of A, for all j ≥ l (

√
log<),

and any x∗ ∈ Z=@ , y ∈ Z<@ ,
Pr[x = x∗ : x← A−1

j (y)] ≤ negl(=).

Lemma 2.7 (Discrete Gaussian Preimages [WW23, Lemma 2.7, adapted]). Let =, @ be lattice parameters with @ prime
and suppose< ≥ 2= log@. Take any C = poly(=, log@) and ℓ = poly(=, log@). Sample A r← Z=×<@ . Then, for all matrices

B ∈ Z=C×ℓ@ , all target vectors t ∈ Z=C@ , all width parameters j ≥ l (
√

log<), and setting C = [IC ⊗ A | B] ∈ Z=C×(<C+ℓ)@ ,
the statistical distance between the following distributions is negl(=):

{v : v← C−1

j (t)} and
{[ v1

v2

]
: v2 ← �ℓZ,j , v1 ← (IC ⊗ A)−1

j (t − Bv2)
}
.

The gadget matrix. We recall the de�nition of the gadget matrix [MP12]. For positive integers =, @ ∈ N, let

G= = I= ⊗ gT ∈ Z=×<′@ be the gadget matrix where gT = [1, 2, . . . , 2 blog@c] and <′ = =(blog@c + 1). For dimensions

< ≥ <′, we overload the notation and write G= ∈ Z=×<@ to denote the “padded gadget matrix” [I= ⊗ gT | 0=×(<−<′) ].
The inverse function G−1

= : Z=×C@ → Z<′×C@ expands each entry G ∈ Z@ into a column of size blog@c + 1 consisting of

the bits in the binary representation of G . Similarly, when G= ∈ Z=×<@ is a padded gadget matrix with dimension

< ≥ <′, we extend the output of G−1

= : Z=×C@ → Z<×C@ by zero-padding each column. For every matrix A ∈ Z=×C@ , it

follows that G= · G−1

= (A) = A mod @. When the dimension = is clear, we omit the subscript and simply write G and

G−1 (·) to denote G= and G−1

= (·), respectively.

Gadget trapdoors. Our constructions will use the gadget trapdoors from [MP12], which builds on a long sequence

of works on constructing lattice trapdoors [Ajt96, GPV08, AP09, ABB10a, ABB10b, CHKP10].

Theorem 2.8 (Gadget Trapdoor [MP12, adapted]). Let =,<,@ be lattice parameters with< ≥ $ (= log@). Then there
exist e�cient algorithms (TrapGen, SamplePre) with the following syntax:

• TrapGen(1=, @,<) → (A,R): On input the lattice dimension =, the modulus @, and the number of samples<, the
trapdoor-generation algorithm outputs a matrix A ∈ Z=×<@ together with a trapdoor R ∈ Z<×<@ .

• SamplePre(A,R, v, j) → u: On input a matrix A ∈ Z=×<@ , a trapdoor R ∈ Z<×<@ , a target vector v ∈ Z=@ , and a
Gaussian width parameter j , the preimage-sampling algorithm outputs a vector u ∈ Z<@ .
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Moreover, the above algorithms satisfy the following properties:

• Trapdoor distribution: If (A,R) ← TrapGen(1=, @,<) and A′ r← Z=×<@ , then Δ(A,A′) ≤ 2
−= . Moreover,

AR = G and ‖R‖ = 1.

• Preimage sampling: For all matrices R ∈ Z<×<@ , parameters j > 0, and all target vectors v ∈ Z=@ in the column
span of A, the output u← SamplePre(A,R, v, j) of SamplePre satis�es Au = v.

• Preimage distribution: Suppose R is a gadget trapdoor for A ∈ Z=×<@ (i.e., AR = G). Then, for all j ≥
< ‖R‖ · l (

√
log=), and all target vectors v ∈ Z=@ , the statistical distance between the following distributions is at

most 2
−= :

{u← SamplePre(A,R, v, j)} and {u← A−1

j (v)}.
More generally, the above properties also hold if AR = HG for some invertible matrix H ∈ Z=×=@ . In addition, the
SamplePre algorithm extends naturally to block-diagonal matrices. Namely, for any ℓ and any v ∈ Zℓ=@ and under
the same conditions as above, the statistical distance between the following distributions is at most ℓ · 2−= :

{u← SamplePre(Iℓ ⊗ A, Iℓ ⊗ R, v, j)} and {u← (I ⊗ A)−1

j (v)}.

For a matrix V ∈ Z=×ℓ@ , we de�ne SamplePre(A,R,V, j) to be the algorithm that outputs the matrix where the 8th column
is SamplePre(A,R, v8 , j) and v8 denotes the 8th column of V.

Remark 2.9 (Trapdoor Extension [ABB10b, CHKP10, MP12]). Suppose R ∈ Z<×<′@ is a gadget trapdoor for a ma-

trix A ∈ Z=×<@ . Then, for every matrix B ∈ Z=×C@ , R′ =
[
R
0
]

is a gadget trapdoor for [A | B] and ‖R‖ = ‖R′‖.
To simplify notation, we will overload the preimage sampling algorithm SamplePre from Theorem 2.8 and write

SamplePre( [A | B],R, v, j) to denote SamplePre( [A | B],R′, v, j).

Ajtai trapdoors. When analyzing our new hardness assumptions, it will also be convenient to use the more

traditional lattice trapdoors introduced by Ajtai [Ajt96] and subsequently expanded by a number of subsequent

works [GPV08, AP09, ABB10b, ABB10a, CHKP10, LW15]. We recall the main property we need:

De�nition 2.10 (Ajtai Trapdoor [Ajt96]). Let =,<,@ be lattice parameters and A ∈ Z=×<@ be a matrix. We say that

a matrix R ∈ Z<×< is an Ajtai-trapdoor for A if AR = 0 mod @ and R is full rank over R. We write R̃ ∈ R<×< to

denote the Gram-Schmidt orthogonalization of the columns of R (from left to right).

Theorem 2.11 (Preimage Sampling [GPV08]). There exists an e�cient algorithm SamplePre′(A,R, v, j) that takes as
input a matrix A ∈ Z=×<@ , an Ajtai-trapdoor R ∈ Z<×< for A, a target vector v ∈ Z=@ in the column-span of A, and a
Gaussian width parameter j , and outputs a vector u ∈ Z<@ such that Au = v. Moreover, if j ≥ ‖R̃‖ ·l

(√
< log<

)
, then

the statistical distance between the following distributions is negl(=):

{u← SamplePre′(A,R, v, j)} and {u← A−1

j (v)}

Short integer solutions. We now recall the short integer solution (SIS) problem [Ajt96].

Assumption 2.12 (Short Integer Solution [Ajt96]). Let _ be a security parameter and = = =(_),< =<(_), @ = @(_),
and V = V (_) be lattice parameters. We say the short integer solution problem SIS=,<,@,V holds if for all e�cient

adversaries A,

Pr

[
Ax = 0 and 0 < ‖x‖ ≤ V :

A r← Z=×<@ ;

x← A(1_,A)

]
= negl(_).

We also de�ne the inhomogeneous SIS assumption where the target 0 in the above assumption is replaced by a uniform

random vector y r← Z=@ .

When< = poly(=, log@) and @ ≥ V · poly(=), hardness of SIS and inhomogeneous SIS can be based on the hardness

of approximating worst-case lattice problems on =-dimensional lattices to within a V · poly(=) factor [Ajt96, MR04,

GPV08].
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Homomorphic evaluation. Our construction of succinct functional commitments will rely on the lattice homo-

morphic evaluation procedure developed in [GSW13, BGG
+
14]. Our presentation is adapted from that in [BV15,

BCTW16, BTVW17].

Theorem 2.13 (Homomorphic Encodings [GSW13, BGG
+
14]). Let _ be a security parameter and = = =(_), @ = @(_)

be lattice parameters. Take any< ≥ =(blog@c + 1), and let ℓ = ℓ (_) be an input length. Let F = {F_}_∈N be a family
of functions 5 : {0, 1}ℓ → {0, 1} that can be computed by a Boolean circuit of depth at most 3 = 3 (_). Then, there exist
a pair of e�cient algorithms (EvalF, EvalFX) with the following properties:

• EvalF(A, 5 ) → A5 : On input a matrix A ∈ Z=×ℓ<@ and a function 5 ∈ F , the input-independent evaluation
algorithm outputs a matrix A5 ∈ Z=×<@ .

• EvalFX(A, 5 , x) → HA,5 ,x: On input a matrix A ∈ Z=×ℓ<@ , a function 5 ∈ F , and an input x ∈ {0, 1}ℓ , the
input-dependent evaluation algorithm outputs a matrix HA,5 ,x ∈ Zℓ<×<@ .

Moreover for all security parameters _ ∈ N, matrices A ∈ Z=×ℓ<@ , all functions 5 ∈ F , and all inputs x ∈ {0, 1}ℓ , the
matrices A5 ← EvalF(A, 5 ) and HA,5 ,x ← EvalFX(A, 5 , x) satisfy the following properties:

• ‖HA,5 ,x‖ ≤ (= log@)$ (3) .

• (A − xT ⊗ G) · HA,5 ,x = A5 − 5 (x) · G.

3 Functional Commitments with Fast Veri�cation
In this section, we show how to construct a functional commitment for constant-degree polynomials that support

fast veri�cation. Security of our construction relies on the ℓ-succinct short integer solutions problem from [Wee23],

which we recall below:

Assumption 3.1 (ℓ-Succinct SIS [Wee23]). Let _ be a security parameter and= = =(_),< =<(_), @ = @(_), j = j (_),
and V = V (_) be lattice parameters. We say that the ℓ-succinct SIS assumption with parameters (=,<,@, j, V) holds

if for all e�cient adversaries A,

Pr

Ax = 0 and 0 < ‖x‖ ≤ V :

A r← Z=×<@ ,W r← Z=ℓ×<@ ,

R← [Iℓ ⊗ A |W]−1

j (G=ℓ )
x← A(1_,A,W,R)

 = negl(_).

As suggested in [Wee23], we consider parameter settings for (=,<,@, V) where SIS=,<,@,V hold and where j =

poly(_,<, ℓ).

Construction 3.2 (Functional Commitment for Constant-Degree Polynomials). Let _ be a security parameter and

= = =(_),< =<(_), @ = @(_), j = j (_) be lattice parameters. We de�ne the following additional parameters:

• Let ℓ = ℓ (_) be an input length parameter, 3max = $ (1) be a constant degree bound, �in = �in (_) be a bound

on the magnitude of the inputs, and �out = �out (_) be a bound on the magnitude of the outputs.

• Let ! =
∑
8∈[3max ] ℓ

8
and � = �(_) be a veri�cation bound.

• Let F_ be the set of functions 5 : [−�in, �in]ℓ → [−�out, �out] where 5 can be computed by a homogeneous
polynomial

7
with �in-bounded coe�cients and degree at most 3max. For each function 5 ∈ F_ , we associate a

vector f ∈ [−�in, �in]ℓ
3

for some 3 ≤ 3max and de�ne 5 (x) := fTx⊗3 .

We construct a functional commitment ΠFC = (Setup,Commit, Eval,Verify) for F = {F_}_∈N as follows:

7
A functional commitment scheme for homogeneous polynomials implies one for non-homogeneous polynomial by padding the input with a

constant-value 1. See also Remark 3.4.
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• Setup(1_): On input the security parameter _, the setup algorithm samples (A,R) ← TrapGen(1=, @,<) and

W r← Z!=×<@ . Next, de�ne the target matrix

P =


Iℓ ⊗ G
Iℓ ⊗W1

...

Iℓ ⊗W3max−1


∈ Z!=×ℓ<@ where W =


W1

...

W3max

 ∈ Z
!=×<
@ , (3.1)

whereW8 ∈ Zℓ
8=×<
@ . Then, compute T← SamplePre( [I!⊗A |W], I!⊗R, P, j) ∈ Z(!<+<)×ℓ<@ . Parse T =

[
Topen
Tcom

]
where Topen ∈ Z!<×ℓ<@ and Tcom ∈ Z<×ℓ<@ . Output the common reference string crs = (A,W,Tcom,Topen).

• Commit(crs, x): On input the common reference string crs = (A,W,Tcom,Topen) and an input x ∈ [−�in, �in]ℓ ,
the commit algorithm outputs the commitment f = C = Tcom (x ⊗ I<) ∈ Z<×<@ and the state st = x.

• Eval(crs, st, 5 ): On input the common reference string crs = (A,W,Tcom,Topen), the state st = x, and a function

5 = f ∈ Zℓ3@ (for some 3 ≤ 3max) with �in-bounded coe�cients, the evaluation algorithm �rst computes

V = Topen (x ⊗ I<). It then parses

V =


V1

...

V3max

 ∈ Z
!<×<
@ (3.2)

where V8 ∈ Zℓ
8<×<
@ . Let V′

1
← V1 and for 8 ∈ [3], let V′8 ← (x ⊗ Iℓ8−1<)V′8−1

+ V8C8−1 ∈ Zℓ8<×<@ . Equivalently,

in expanded form, we can write

V′8 = V8C8−1 + (x ⊗ Iℓ8−1<)V8−1C + (x⊗2 ⊗ Iℓ8−2<)V8−2C2 + · · · + (x⊗8−1 ⊗ Iℓ<)V1

=
∑
9 ∈[8 ]
(x⊗8−9 ⊗ Iℓ 9<)V9C9−1

Output the opening c5 = V5 = (fT ⊗ I<)V′3 ∈ Z
<×<
@ .

• Verify(crs, f, 5 , ~, c): On input the common reference string crs = (A,W,Tcom,Topen), the commitment f =

C ∈ Z<×<@ , the output ~ ∈ [−�out, �out], a function 5 = f ∈ Zℓ3@ (for some 3 ≤ 3max) with �in-bounded

coe�cients, and the proof c = V ∈ Z<×<@ , the veri�cation algorithm �rst parses W into W1, . . . ,W3max
as in

Eq. (3.1) and outputs 1 if

‖V‖ ≤ � and (fT ⊗ I<)W3C3 = ~ · G − AV. (3.3)

Remark 3.3 (Supporting Preprocessing). Similar to previous (non-succinct) homomorphic commitments [GVW15b]

and succinct functional commitments [ACL
+
22, dCP23, BCFL23], our functional commitment (Construction 3.2) sup-

ports fast veri�cation in the preprocessing model. Note that since the output dimension is 1, we do not distinguish

between function-only preprocessing (Remark 2.3) and full preprocessing (De�nition 2.2). We de�ne the preprocess-

ing and online veri�cation algorithms as follows:

• Preprocess(crs, 5 ): On input the common reference string crs = (A,W,Tcom,Topen) and the function 5 = f ∈
Zℓ

3

@ for some 3 ≤ 3max, the preprocess algorithm outputs vk5 = F3 = (fT ⊗ I<)W3 ∈ Z=×<@ .

• OnlineVerify(vk, f,~, c): On input the veri�cation key vk = F3 , the commitment f = C ∈ Z<×<@ , the value

~ ∈ [−�out, �out], and the opening c = V ∈ Z<×<@ , the online veri�cation algorithm outputs 1 if

‖V‖ ≤ � and F3 · C3 = ~ · G − AV.

By construction, |F3 | = =< log@ and similarly, the online veri�cation algorithm runs in time poly(=,<,3max, log@).
We can set the parameters for Construction 3.2, so =,<, log@ scale polylogarithmically with the input dimension ℓ .
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Remark 3.4 (Supporting Non-Homogeneous Polynomials). It is straightforward to extend a functional commitment

for homogeneous polynomials (i.e., polynomials where every monomial has the same degree) to a functional commit-

ment for inhomogeneous polynomials. Speci�cally, to support openings to inhomogeneous polynomials over inputs

of dimension ℓ , we instantiate a scheme that supports homogeneous polynomials over inputs of dimension ℓ + 1.

Then to commit to an input x ∈ Zℓ@ , the committer commits to the extended vector x′ =
[

1

x
]
. Now, every inhomoge-

neous polynomial 5 : Zℓ@ → Z@ of degree at most 3 can be described by a homogeneous polynomial 5 ′ : Zℓ+1@ → Z@ of

degree 3 where 5 ′(x′) = 5 (x). Now, to open to an inhomogeneous polynomial 5 , the committer instead open to 5 ′.

Theorem3.5 (Correctness). Suppose= ≥ _,< ≥ $ (= log@), j ≥ $ (< log=), and� ≥ $
(
�
3max+1
in ℓ23max j3max< (33max−2)/2) .

Then, Construction 3.2 is correct.

Proof. Take any input x ∈ [−�in, �in]ℓ and function 5 = f ∈ Zℓ3@ for some 3 ≤ 3max. Let crs = (A,W,Tcom,Topen) ←
Setup(1_). Suppose (C, st) ← Commit(crs, x) and V5 ← Eval(crs, st, 5 ). Then[

V
C

]
=

[
Topen (x ⊗ I<)
Tcom (x ⊗ I<)

]
=

[
Topen
Tcom

]
(x ⊗ I<).

Parse W into W1, . . . ,W3max
according to Eq. (3.1). By construction of Setup and using Eq. (2.2),

Iℓ ⊗ A W1

Iℓ2 ⊗ A W2

. . .
...

Iℓ3max ⊗ A W3max


·
[
V
C

]
=


Iℓ ⊗ G
Iℓ ⊗W1

...

Iℓ ⊗W3max−1


(x ⊗ I<) =


(x ⊗ I=)G
(x ⊗ Iℓ=)W1

...

(x ⊗ Iℓ3max−1=)W3max−1


.

Thus, for all 8 ∈ [3max], we have that

W8C = (x ⊗ Iℓ8−1=)W8−1 − (Iℓ8 ⊗ A)V8 , (3.4)

where V8 ∈ Zℓ
8<×<
@ is de�ned according to Eq. (3.2) and W0 = G. Now, we claim that for all 8 ∈ [3max],

W8C8 = x⊗8 ⊗ G − (Iℓ8 ⊗ A)V′8 . (3.5)

For the base case where 8 = 1, V′
1
= V1 and the claim follows by Eq. (3.4). For the general case, we have from Eq. (3.4)

W8+1C8+1 = W8+1CC8 = (x ⊗ Iℓ8=)W8C8 − (Iℓ8+1 ⊗ A)V8+1C8

= (x ⊗ Iℓ8=)
(
(x⊗8 ⊗ G) − (Iℓ8 ⊗ A)V′8 )

)
− (Iℓ8+1 ⊗ A)V8+1C8

= (x ⊗ Iℓ8=) (x⊗8 ⊗ G) − (x ⊗ Iℓ8=) (Iℓ8 ⊗ A)V′8 − (Iℓ8+1 ⊗ A)V8+1C8 . (3.6)

Using Eqs. (2.1) and (2.2), we can write

(x ⊗ Iℓ8=) (x⊗8 ⊗ G) = x ⊗ x⊗8 ⊗ G = x⊗8+1 ⊗ G
(x ⊗ Iℓ8=) (Iℓ8 ⊗ A) = x ⊗ (Iℓ8 ⊗ A) = (Iℓ ⊗ (Iℓ8 ⊗ A)) (x ⊗ Iℓ8<) = (Iℓ8+1 ⊗ A) (x ⊗ Iℓ8<).

Substituting back into Eq. (3.6), we have

W8+1C8+1 = (x ⊗ Iℓ8=) (x⊗8 ⊗ G) − (x ⊗ Iℓ8=) (Iℓ8 ⊗ A)V′8 − (Iℓ8+1 ⊗ A)V8+1C8

= x⊗8+1 ⊗ G − (Iℓ8+1 ⊗ A)
(
(x ⊗ Iℓ8<)V′8 + V8+1C8

)
= x⊗8+1 ⊗ G − (Iℓ8+1 ⊗ A)V′8+1.

Thus, Eq. (3.5) holds and we can write

(fT ⊗ I=)W3C3 = (fT ⊗ I=)
(
x⊗3 ⊗ G

)
− (fT ⊗ I=) (Iℓ3 ⊗ A)V′

3

= fTx⊗3 · G − (1 ⊗ A) (fT ⊗ I<)V′3
= fTx⊗3 · G − A · (fT ⊗ I<)V′3
= 5 (x) · G − AV5 ,
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by the mixed-product property (Eq. (2.1)). It su�ces to bound ‖V5 ‖. By Lemma 2.5 and Theorem 2.8, with all but

negligible probability, ‖Tcom‖, ‖Topen‖ ≤ j ·
√
<. Thus, ‖C‖ ≤ ℓ ‖Tcom‖ ‖x‖ ≤ ℓ j�in

√
< and similarly, ‖V‖ ≤

ℓ ‖Topen‖ ‖x‖ ≤ ℓ j�in
√
<. We now show inductively that

V′8

 ≤ $ (

(ℓ j�in)8< (38−2)/2) .
First, V′

1
= V1 and the claim holds. For the inductive step, we have

V′8+1

 ≤ ‖x‖ ‖V′8 ‖ℓ + ‖V8+1‖ ‖C‖8<8 ≤ �inℓ ·$

(
(ℓ j�in)8< (38−2)/2) + (ℓ j�in√<)8+1<8

= $
(
(ℓ j�in)8+1< (38+1)/2

)
.

Since 3 ≤ 3max, we can bound

V5 

 ≤ ‖f ‖ 

V′3

 ℓ3 ≤ ‖f ‖ 


V′3max




 ℓ3max ≤ $
(
�
3max+1
in ℓ23max j3max< (33max−2)/2) .

As long as � ≥ $
(
�
3max+1
in ℓ23max j3max< (33max−2)/2)

, we see that Eq. (3.3) is satis�ed. �

Theorem 3.6 (Computational Binding). Suppose @ is prime, = ≥ $ (_), < ≥ $ (= log@), j0 ≥ l (
√

log<), j ≥
$ (<3/2!j0 log=), and V ≥ 2�<3/2

log=. Then, under the !-succinct SIS assumption with parameters (=,<,@, j0, V)
assumption, Construction 3.2 satis�es computational binding.

Proof. We de�ne an intermediate hybrid experiment:

• Hyb
0
: This is the real computational binding experiment, where the challenger starts by sampling crs ←

Setup(1_) and gives crs = (A,W,Tcom,Topen) to A. Speci�cally, it samples (A,R) ← TrapGen(1=, @,<),
W r← Z!=×<@ , and [

Topen
Tcom

]
← SamplePre( [I! ⊗ A |W], I! ⊗ R, P, j),

where P is the target matrix in Eq. (3.1). Algorithm A outputs a commitment f = C ∈ Z<×<@ , a function

5 = f ∈ Zℓ3@ (for some 3 ≤ 3max), distinct values ~0, ~1 ∈ [−�out, �out], and openings V0,V1 ∈ Z<×<@ . The

output of the experiment is 1 if the following conditions hold:

– ‖V0‖ , ‖V1‖ ≤ �; and

– (fT ⊗ I<)W3C3 = ~0G −AV0 = ~1G −AV1, where W3 ∈ Zℓ
3=×<
@ is derived from W according to Eq. (3.1).

• Hyb
1
: Same as Hyb

0
except the challenger samples A r← Z=×<@ , R← [I! ⊗ A |W]−1

j0

(G=!) and[
Topen
Tcom

]
← SamplePre( [I! ⊗ A |W],R, P, j).

For an adversary A, we write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A. We now

reason about the output distributions Hyb
0
(A) and Hyb

1
(A).

Lemma 3.7. Suppose @ is prime, = ≥ $ (_),< ≥ $ (= log@), j0 ≥ l (
√

log<), and j ≥ $ (<3/2!j0 log=). Then, for
all adversaries A, Hyb

0
(A) B≈ Hyb

1
(A).

Proof. We introduce some additional intermediary distributions for A, Topen, and Tcom.

• Hyb
0
: (A,R) ← TrapGen(1=, @,<) and

[
Topen
Tcom

]
← SamplePre( [I! ⊗ A |W], I! ⊗ R, P, j).

• Hyb
0,1: (A,R) ← TrapGen(1=, @,<) and

[
Topen
Tcom

]
← [I! ⊗ A |W]−1

j (P).

Indistinguishability: Hyb
0
(A) andHyb

0,1 (A) are statistically indistinguishable when= ≥ $ (_),< ≥ $ (= log@)
and j ≥ $ (< log=) by Theorem 2.8.
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• Hyb
0,2: A r← Z=×<@ and

[
Topen
Tcom

]
← [I! ⊗ A |W]−1

j (P).

Indistinguishability: Hyb
0,1 (A) andHyb

0,2 (A) are statistically indistinguishable when= ≥ $ (_),< ≥ $ (= log@)
by Theorem 2.8.

• Hyb
1
: A r← Z=×<@ , R← [I! ⊗ A |W]−1

j0

(G=!), and

[
Topen
Tcom

]
← SamplePre( [I! ⊗ A |W],R, P, j).

Indistinguishability: Hyb
0,2 (A) andHyb

1
(A) are statistically indistinguishable when= ≥ $ (_), j0 ≥ l (

√
log<)

and j ≥ $ (<3/2!j0 log=). This follows by �rst applying Lemmas 2.5 and 2.7 to conclude that with overwhelm-

ing probability, ‖R‖ ≤
√
<j0. We can then invoke Theorem 2.8.

The claim then follows by a hybrid argument. �

Lemma3.8. Suppose@ is prime and V ≥ 2�<3/2
log=. Under the!-succinct SIS assumptionwith parameters (=,<,@, j0, V),

for all e�cient adversaries A, Pr[Hyb
1
(A) = 1] = negl(_).

Proof. Suppose there exists an e�cient adversaryA where Pr[Hyb
1
(A) = 1] = Y for some non-negligible Y. We use

A to construct an adversary B that breaks the !-succinct SIS assumption:

• At the beginning of the game, algorithm B receives A ∈ Z=×<@ , W ∈ Z=!×<@ , and a trapdoor R. Algorithm B
forms the target matrix P ∈ Z!=×ℓ<@ according to Eq. (3.1) and computes[

Topen
Tcom

]
← SamplePre( [I! ⊗ A |W],R, P, j).

It gives crs = (A,W,Tcom,Topen) to A.

• Algorithm A outputs a commitment C ∈ Z<×<@ , a function 5 = f ∈ Zℓ3@ , distinct values ~0, ~1 ∈ [−�out, �out],
and openings V0,V1 ∈ Z<×<@ .

• Algorithm B outputs x← SamplePre(A,V0 − V1, 0, j ′) where j ′ = 2�< log=.

In the !-succinct SIS assumption, A r← Z=×<@ , W r← Z=!×<@ , and R ← [I! ⊗ A | W]−1

j0

(G=!). Thus, algorithm A
perfectly simulates the common reference string in Hyb

1
. Thus, with probability at least Y, the output of algorithm

A satis�es the following properties:

~0 ≠ ~1 and ‖V0‖ , ‖V1‖ ≤ � and (fT ⊗ I<)W3C3 = ~0G − AV0 = ~1G − AV1.

This means A(V0 − V1) = (~0 − ~1)G. Since ~0 ≠ ~1 and @ is prime, V0 − V1 is a gadget trapdoor for A. Since

‖V0 − V1‖ ≤ 2� and j ′ ≥ 2�< log=, by Theorem 2.8, the distribution of x is statistically close to A−1

j′ (0), which is

non-zero with overwhelming probability. Moreover, by Lemma 2.5, ‖x‖ ≤
√
<j ′ and the claim follows. �

The claim now follows by combining Lemmas 3.7 and 3.8. �

3.1 Opening to Multiple Outputs
In this section, we describe how to extend Construction 3.2 to obtain a functional commitment scheme that supports

succinct openings to multiple outputs (i.e., the size of the opening scales sub-linearly with the number of functions

we open to). Our approach follows the the approach from [WW23] for aggregating openings.

Construction 3.9 (Multi-Output Functional Commitment for Constant-Degree Polynomials). Let _ be a security

parameter. Let =,<,@, j, ℓ, 3max, �in, �out, � be the same parameters as in Construction 3.2. Let ) = ) (_) be a bound

on the number of outputs. Let F = {F_}_∈N be the set of functions 5 : [−�in, �in]ℓ → [−�out, �out]) , where each
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function 5 can be described by a vector of homogeneous polynomials (f1, . . . , f) ) with �in-bounded coe�cients and

of the same degree 3 ≤ 3max:
8

5 (x) :=
(
fT
1
x⊗3 , . . . , fT) x

⊗3 ) .
We construct a functional commitment ΠFC = (Setup,Commit, Eval,Verify) for F = {F_}_∈N as follows:

• Setup(1_): Sample A ∈ Z=×<@ , W ∈ Z!=×<@ , Topen ∈ Z!<×ℓ<@ , and Tcom ∈ Z<×ℓ<@ using the same pro-

cedure as Setup in Construction 3.2. Sample D r← Z=×)@ , and output the common reference string crs =

(A,W,Tcom,Topen,D).

• Commit(crs, x): Same as in Construction 3.2.

• Eval(crs, st, 5 ): On input the common reference string crs = (A,W,Tcom,Topen,D), the state st = x, and a

function 5 = (f1, . . . , f) ) where each f8 ∈ Zℓ
3

@ is �in-bounded and 3 ≤ 3max, the evaluation algorithm �rst

computes an opening Vf8 ∈ Z<×<@ for f8 using the same procedure as in Construction 3.2. Then, it outputs the

opening c5 = v5 where

v5 =
∑
8∈[) ]

Vf8G
−1 (d8 ) ∈ Z<@ ,

and d8 ∈ Z=@ denotes the 8th column of D.

• Verify(crs, f, 5 , y, c): On input the common reference string crs = (A,W,Tcom,Topen,D), the commitment

f = C ∈ Z<×<@ , the function 5 = (f1, . . . , f) ) where each f8 ∈ Zℓ
3

@ is �in-bounded and 3 ≤ 3max, the output

y ∈ [−�out, �out]) , and the proof c = v ∈ Z<@ , the veri�cation algorithm parses W as in Eq. (3.1) and outputs

1 if

‖v‖ ≤ � and

∑
8∈[) ]
(fT8 ⊗ I<)W3C3G−1 (d8 ) = Dy − Av, (3.7)

where d8 ∈ Z=@ is the 8th column of D.

Remark 3.10 (Supporting Preprocessing). Like Construction 3.2, Construction 3.9 supports full preprocessing (Def-

inition 2.2) and function-only preprocessing (Remark 2.3). Here, we describe the approach for full preprocessing.

• Preprocess(crs, 5 , y): On input the common reference string crs = (A,W,Tcom,Topen,D), the function 5 =

(f1, . . . , f) ) where each f8 ∈ Zℓ
3

@ is �in-bounded and 3 ≤ 3max, and the output y ∈ [−�out, �out]) , the prepro-

cessing algorithm computes

F =
∑
8∈[) ]

( (
G−1 (d8 )

)T ⊗ (fT8 ⊗ I<)W3

)
∈ Z=×<2

@ (3.8)

y∗ = Dy ∈ Z=@ , (3.9)

and outputs the veri�cation key vk5 ,y = (F, y∗).

• OnlineVerify(vk, f, c): On input the veri�cation key vk = (F, y∗), the commitment f = C ∈ Z<×<@ , and the

opening c = v ∈ Z<@ , the online veri�cation algorithm outputs 1 if

‖v‖ ≤ � and F · vec(C3 ) = y∗ − Av.

To show that this is correct, we apply vectorization to the main veri�cation relation in Eq. (3.7):

vec

©­«
∑
8∈[) ]
(fT8 ⊗ I<)W3C3G−1 (d8 )

ª®¬ =
∑
8∈[) ]

( (
G−1 (d8 )

)T ⊗ (fT8 ⊗ I<)W3

)
︸                                       ︷︷                                       ︸

F

vec(C3 ).

8
Our construction also supports the setting where f1, . . . , f) have di�erent degrees 31, . . . , 3) ≤ 3max. For simplicity of exposition, we just

describe the case where they have equal degree 3 ≤ 3max.

21



Then, the main veri�cation relation in Eq. (3.7) becomes

F · vec(C3 ) = vec(Dy − Av) = Dy − Av = y∗ − Av,

and correctness reduces to that of Construction 3.9. By construction, |vk5 ,y | = (=<2 + =) log@ and the running

time of OnlineVerify is poly(=,<,3max, log@). As we show below, we can instantiate our scheme so that =,<, log@ =

poly(_, log ℓ, log) ), and so the construction satis�es the required e�ciency properties. Finally, the above analysis

also applies to function-only preprocessing: namely, the preprocessed function key for a function 5 = (f1, . . . , f) ) is

the matrix F from Eq. (3.8). In this case, the running time of veri�cation becomes poly(=,<, log@,) ).

Theorem 3.11 (Correctness). Suppose = ≥ _,< ≥ $ (= log@), j ≥ $ (< log=), and � ≥ $
(
)�

3max+1
in ℓ23max j3max<33max

)
.

Then, Construction 3.9 is correct.

Proof. Take any input x ∈ [−�in, �in]ℓ and function 5 = (f1, . . . , f) ) where f8 ∈ Zℓ
3

@ for some 3 ≤ 3max. Let y =

5 (x) = (fT
1
x⊗3 , . . . , fT

)
x⊗3 ). Let crs = (A,W,Tcom,Topen,D) ← Setup(1_), (C, st) ← Commit(crs, x), and c5 = v5 ←

Eval(crs, st, 5 ). Then, C = Tcom (x ⊗ I<). For 8 ∈ [) ], let Vf8 ∈ Z<×<@ be the matrices computed by Eval(crs, st, 5 ). By

the same analysis as in the proof of Theorem 3.5, we have that for all 8 ∈ [) ],

(fT8 ⊗ I=)W3C3 = fT8 x
⊗3 · G − AVf8 = ~8G − AVf8 ,

and ‖Vf8 ‖ ≤ $
(
�3+1in ℓ23 j3< (33−2)/2)

. Then,∑
8∈[) ]
(fT8 ⊗ I<)W3C3G−1 (d8 ) =

∑
8∈[) ]

~8d8 − A ·
∑
8∈[) ]

Vf8G
−1 (p8 ) = Dy − Av5 .

Moreover, 

v5 

 ≤ ∑
8∈[) ]

‖Vf8 ‖< ≤ $
(
)�3+1in ℓ23 j3<33

)
≤ �

since 3 ≤ 3max. �

Theorem 3.12 (Computational Binding). Suppose @ is prime, = ≥ $ (_), < ≥ $ (= log@), j0 ≥ l (
√

log<), j ≥
$ (<3/2!j0 log=), and V ≥ 2� + 2)�out. Then, under the !-succinct SIS assumption with parameters (=,<,@, j0, V)
assumption, Construction 3.9 satis�es computational binding.

Proof. We use a similar sequence of hybrids as in the proof of Theorem 3.6:

• Hyb
0
: This is the real computational binding experiment, where the challenger starts by sampling crs ←

Setup(1_) and gives crs = (A,W,Tcom,Topen,D) to A. Speci�cally, it samples (A,R) ← TrapGen(1=, @,<),
W r← Z!=×<@ , D r← Z=×)@ , and [

Topen
Tcom

]
← SamplePre( [I! ⊗ A |W], I! ⊗ R, P, j),

where P is the target matrix in Eq. (3.1). Algorithm A outputs a commitment f = C ∈ Z<×<@ , a function 5 =

(f1, . . . , f) ) where each f8 ∈ Zℓ
3

@ (for some 3 ≤ 3max), values y0, y1 ∈ [−�out, �out]) , and openings v0, v1 ∈ Z<@ .

The output of the experiment is 1 if the following conditions hold:

– ‖v0‖ , ‖v1‖ ≤ �; and

–
∑
8∈[) ] (fT8 ⊗ I<)W3C3G−1 (d8 ) = Dy0 − Av0 = Dy1 − Av1, where d8 ∈ Z=@ is the 8th column of D and

W3 ∈ Zℓ
3=×<
@ is the 3 th

block of W (see Eq. (3.1)).

• Hyb
1
: Same as Hyb

0
except the challenger samples A r← Z=×<@ , R← [I! ⊗ A |W]−1

j0

(G=!) and[
Topen
Tcom

]
← SamplePre( [Iℓ ⊗ A |W],R, P, j).
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• Hyb
2
: Same as Hyb

1
except the challenger samples R′ r← {0, 1}<×) and sets D← AR′.

For an adversary A, we write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A.

Lemma 3.13. Suppose @ is prime, = ≥ $ (_),< ≥ $ (= log@), j0 ≥ l (
√

log<), and j ≥ $ (<3/2!j0 log=). Then, for
all adversaries A, Hyb

0
(A) B≈ Hyb

1
(A).

Proof. Follows by the same argument as the proof of Lemma 3.8 �

Lemma 3.14. Suppose< > 2_ + = log@. Then, for all adversaries A, Hyb
1

B≈ Hyb
2
(A).

Proof. Follows by the leftover hash lemma (Lemma 2.4) and a standard hybrid argument. �

Lemma 3.15. Suppose< ≥ 2_+(_+=) log@ and V ≥ 2�+2)�out. Under the !-succinct SIS assumption with parameters
(=,<,@, j0, V), for all e�cient adversaries A, Pr[Hyb

2
(A) = 1] = negl(_).

Proof. Suppose there exists an e�cient adversary A such that Pr[Hyb
1
(A) = 1] = negl(_). We use A to construct

an adversary B that breaks the !-succinct SIS assumption:

• At the beginning of the game, algorithm B receives A ∈ Z=×<@ , W ∈ Z=!×<@ , and a trapdoor R. Algorithm B
forms the target matrix P ∈ Z!=×ℓ<@ according to Eq. (3.1) and computes[

Topen
Tcom

]
← SamplePre( [I! ⊗ A |W],R, P, j).

It then samples R′ r← {0, 1}<×) and sets D← AR′. It gives crs = (A,W,Tcom,Topen,D) to A.

• AlgorithmA outputs a commitment C ∈ Z<×<@ , a function 5 = (f1, . . . , f) ) where each f8 ∈ Zℓ
3

@ , distinct values

y0, y1 ∈ [−�out, �out]) , and openings v0, v1 ∈ Z<@ .

• Algorithm B outputs x = v0 − v1 + R′(y1 − y0).

In the !-succinct SIS assumption, A r← Z=×<@ , W r← Z=!×<@ , and R ← [I! ⊗ A | W]−1

j0

(G=!). Thus, algorithm A
perfectly simulates the common reference string in Hyb

2
. Thus, with probability at least Y, the output of algorithm

A satis�es the following properties:

y0 ≠ y1 and ‖v0‖ , ‖v1‖ ≤ � and Dy0 − Av0 = Dy1 − Av1.

We can re write this as

0 = A(v0 − v1) + D(y1 − y0) = A(v0 − v1 + R′(y1 − y0)) = Ax.

By construction, ‖x‖ ≤ 2� + 2)�out ≤ V , so it su�ces to argue that x ≠ 0, or equivalently, that R′(y0 − y1) ≠
v0 − v1. We appeal to an entropy argument and the generalized leftover hash lemma. By construction, v0, v1, y0, y1

are functions of D ∈ Z=×)@ (and other quantities that are independent of R′). Moreover, D contains at most =) log@

bits of information about R′. This means that

H∞ (R′ | v0, v1, y0, y1) ≥ H∞ (R′ | D) ≥ <) − =) log@ ≥ (2_ + _ log@)) .

By the (generalized) leftover hash lemma (Lemma 2.4), the following distributions are statistically indistinguishable:

�0
:=

{(
C,CR′, (v0, v1, y0, y1)

)
:

C r← Z_×<@

R′ r← {0, 1}<×)
}

and �1
:=

{(
C,Z, (v0, v1, y0, y1)

)
:

C r← Z_×<@

Z r← Z_×)@

}
. (3.10)
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Since y0 − y1 ≠ 0, in distribution �1, with overwhelming probability over the choice of C r← Z_×<@ and Z r← Z_×C@ ,

we have that

[C | Z]
[
v1 − v0

y0 − y1

]
≠ 0.

Since the distributions �0 and �1 in Eq. (3.10) are statistically close, this means that with overwhelming probability,

0 ≠ [C | CR′]
[
v1 − v0

y0 − y1

]
= C[I< | R′]

[
v1 − v0

y0 − y1

]
.

This correspondingly means that with overwhelming probability

[I< | R′]
[
v1 − v0

y0 − y1

]
≠ 0,

or equivalently, that v0 − v1 ≠ R′(y0 − y1), as required. We conclude that algorithm A succeeds with probability

Y − negl(_) and the claim follows. �

The claim now follows by combining Lemmas 3.13 to 3.15. �

Parameter instantiation. Let _ be a security parameter, ℓ be the input dimension, ) be the output dimension,

and 3max = $ (1) be a degree bound. Let �in be a bound on the input magnitude and �out be a bound on the output

magnitude. We instantiate the lattice parameters in Construction 3.9 to satisfy Theorems 3.11 and 3.12 as follows:

• We set the lattice dimension = = _ and< = $ (= log@).

• We set j0 = poly(_,<, !) and j ≥ $ (<3/2!j0 log=) = poly(_,<, !). By de�nition, ! = $ (ℓ3max ).

• We set the bound � = $ ()�3max+1
in ℓ23max j3max<33max ).

• Let V = 2� + 2)�out = $
(
) (�3max+1

in ℓ23max j3max<33max + �out)
)
. We choose the modulus @ = V · poly(=) so that

the !-succinct SIS assumption with parameters (=,<,@, j0, V) holds. In this case,

log@ = poly(3max, log _, log ℓ, log), log�in, log�out) .

When �in, �out = poly(_) and 3max = $ (1), the noise bound V and the modulus @ are both poly(=).

For simplicity of exposition, we consider the case where the input magnitude �in and output magnitudes �out are

both poly(_). Then, log@ = poly(3max, log _, log ℓ, log) ). With this setting of parameters, we obtain a functional

commitment scheme for constant-degree polynomials of degree up to 3max with the following parameter sizes:

• Commitment size: A commitment f to an input x ∈ {0, 1}ℓ consists of a matrix f = C ∈ Z<×<@ , so

|f | =<2
log@ = poly(=, log@) = poly(_, 3max, log ℓ, log) ).

• Opening size: An opening c to a function 5 consists of a vector c = v5 ∈ Z<@ so

|c | =< log@ = poly(_, 3max, log ℓ, log) ).

• CRS size: The CRS consists of (A,W,Tcom,Topen,D) where A ∈ Z=×<@ , W ∈ Z!=×<@ , Topen ∈ Z!<×ℓ<@ , and

Tcom ∈ Z<×ℓ<@ . Thus the total size of the CRS is

|crs| = $ (!ℓ<2) · log@ = ℓ3max+1 · poly(_, 3max, log ℓ, log) ).

We summarize the instantiation in the following corollary:
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Corollary 3.16 (Succinct Functional Commitment for Constant-Degree Polynomials). Let _ be a security parameter,
and let F = {F_}_∈N be a family of functions 5 : [−�in, �in]ℓ → [−�out, �out]) on inputs of length ℓ = ℓ (_) and
magnitude �in = poly(_), and outputs of length ) = ) (_) and magnitude �out = poly(_), and where each function
5 can be described by a vector of ) homogeneous polynomials with �in-bounded coe�cients and degree 3 ≤ 3max =

$ (1). Then, under the !-succinct SIS assumption (with ! = $ (ℓ3max )) and a polynomial norm bound, there exists a
succinct functional commitment for F . The commitment and opening have size poly(_, 3max, log ℓ, log) ) and the CRS
has size ℓ3max+1 · poly(_, 3max, log ℓ, log) ). The functional commitment supports full preprocessing (De�nition 2.2) and
function-only preprocessing (Remark 2.3). With full preprocessing, the running time of the online veri�cation algorithm
is poly(_, 3max, log ℓ, log) ).
Remark 3.17 (Shorter Commitment and Openings). We can reduce the commitment size to $ (=2

log@) and the

opening size to $ (= log@) in the above construction by using a gadget matrix with a larger decomposition base

(speci�cally, instead of considering a binary decomposition, we consider a I-ary gadget matrix where I = @1/2
for a

large constant 2 ∈ N). This coincides with the approach taken in [ACL
+
22]. In addition, we can further reduce the

size of the commitment by using module lattices instead of integer lattices. We provide the details on extending to

modules and using a I-ary gadget decomposition in Appendix A.

3.2 A Dual Functional Commitment for Committing to Functions
In this section, we construct a functional commitment that supports committing to a function 5 : {0, 1}ℓ → {0, 1}
and then opening the commitment at a particular input x ∈ {0, 1}ℓ . This is a dual notion of De�nition 2.1, where the

Commit algorithm takes as input the function 5 and the Eval algorithm takes as input an input vector x. We often

refer to this variant of functional commitment as a “dual functional commitment.”

Here, we consider a construction for general Boolean functions 5 on inputs of length ℓ = ℓ (_) and computable by

Boolean circuits with bounded depth 3 = 3 (_). Similar to [dCP23, WW23], we allow the length of the commitment

and the openings to scale with poly(_, 3, log ℓ). We can view our construction as a hybrid of the dual functional

commitment from [dCP23] and the attribute-based encryption (ABE) scheme from [Wee23].

Like the construction of [dCP23], our functional commitment scheme satis�es a weaker notion of binding called

“selective-input security” where the adversary is required to �rst commit to the point x ∈ {0, 1}ℓ to which it will

construct an opening. The adversary has to commit to this input before seeing the public parameters. The security

reduction will then program x into the public parameters itself. This limitation to a selective notion of security is

common to many related lattice-based primitives such as attribute-based encryption [GVW13, BGG
+
14, GVW15a,

Wee23] and constrained PRFs [BV15, BTVW17]. We now give the formal de�nition of selective-input binding and

then show how to use the ℓ-succinct SIS assumption to construct a succinct dual functional commitment for Boolean

circuits with succinct commitments, openings, and fast veri�cation (in the preprocessing model).

De�nition 3.18 (Selective-Input Binding Security). Let _ be a security parameter, and let F = {F_}_∈N be a family

of e�ciently-computable functions 5 : Xℓ → Y. Let ΠFC = (Setup,Commit, Eval,Verify) be a (dual) functional com-

mitment scheme for F . We now de�ne the selective-input binding game between an adversaryA and a challenger:

1. At the beginning of the game, the adversary chooses an input x ∈ Xℓ and sends x to the challenger.

2. The challenger samples crs← Setup(1_) and gives crs to A.

3. The adversary outputs a commitment f , values ~0, ~1 ∈ Y, and openings c0, c1.

4. The output of the experiment is 1 = 1 if ~0 ≠ ~1 and Verify(crs, f, x, ~0, c0) = 1 = Verify(crs, f, x, ~1, c1).
Otherwise, the output of the experiment is 1 = 0.

The functional commitment scheme satis�es computational selective-input binding if for all e�cient adversariesA,

Pr[1 = 1] = negl(_) in the above security game.

Construction 3.19 (Dual Functional Commitment for Boolean Circuits). Let _ be a security parameter and= = =(_),
< =<(_), @ = @(_), and j = j (_) be lattice parameters. Let ℓ = ℓ (_) be an input length parameter, and � = �(_) be

a bound. Let F_ be a collection of functions 5 : {0, 1}ℓ → {0, 1} that can be computed by a Boolean circuit of depth

at most 3 = 3 (_). We construct a dual functional commitment ΠFC = (Setup,Commit, Eval,Verify) for F = {F_}_∈N
as follows:
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• Setup(1_): On input the security parameter _, the setup algorithm samples (A,R) ← TrapGen(1=, @,<) and

W r← Zℓ=×<@ . Sample T ← SamplePre( [Iℓ ⊗ A | W], Iℓ ⊗ R,G=ℓ , j) ∈ Z(ℓ<+<)×ℓ<@ . Parse T =

[
Topen
Tcom

]
where

Topen ∈ Zℓ<×ℓ<@ and Tcom ∈ Z<×ℓ<@ . Finally, it samples W0

r← Z=×<@ , computes B = −W0Tcom ∈ Z=×ℓ<@ and

outputs the common reference string crs = (A,W,Tcom,Topen,W0,B).

• Commit(crs, 5 ): On input the common reference string crs = (A,W,Tcom,Topen,W0,B) and a function 5 : {0, 1}ℓ →
{0, 1}, the commit algorithm computes B5 ← EvalF(B, 5 ) and outputs the commitment f = B5 ∈ Z=×<@ along

with the state st = 5 .

• Eval(crs, st, x): On input the common reference string crs = (A,W,Tcom,Topen,W0,B), the state st = 5 , and

the input x ∈ {0, 1}ℓ , the evaluation algorithm computes HB,5 ,x ← EvalFX(B, 5 , x) ∈ Zℓ<×<@ and outputs

c = V =

[
−(xT ⊗ I<)Topen
−Tcom

]
· HB,5 ,x ∈ Z2<×<

@ . (3.11)

• Verify(crs, f, x, ~, c): On input the common reference string crs = (A,W,Tcom,Topen,W0,B), a commitment

f = B5 ∈ Z=×<@ , an input x ∈ {0, 1}ℓ , an output ~ ∈ {0, 1}, and an opening c = V ∈ Z2<×<
@ , the veri�cation

algorithm outputs 1 if

‖V‖ ≤ � and B5 − ~G = [A |W0 + (xT ⊗ I=)W]V. (3.12)

Remark 3.20 (Supporting Preprocessing). Similar to Constructions 3.2 and 3.9, Construction 3.19 also supports fast

veri�cation in the preprocessing model. Note that in the dual setting, we preprocess with respect to an input x rather

than a function 5 .

• Preprocess(crs, x): On input the common reference string crs = (A,W,Tcom,Topen,W0,B) and the input x ∈
{0, 1}ℓ , the preprocess algorithm outputs vkx = Fx = [A |W0 + (xT ⊗ I=)W] ∈ Z=×2<

@ .

• OnlineVerify(vk, f,~, c): On input the veri�cation key vk = Fx ∈ Z=×2<
@ , the commitment f = B5 ∈ Z=×2<

@ , a

value ~ ∈ {0, 1}, and an opening c = V ∈ Z2<×<
@ , the online veri�cation algorithm outputs 1 if

‖V‖ ≤ � and B5 − ~G = FxV.

Theorem 3.21 (Correctness). Suppose = ≥ $ (_), < ≥ $ (= log@), and � ≥ ℓ<5/2j (= log@)$ (3) . Then, Construc-
tion 3.19 is correct.

Proof. Take any function 5 : {0, 1}ℓ → {0, 1} which can be computed by a function of depth at most 3 and any

input x ∈ {0, 1}ℓ . Let crs = (A,W,Tcom,Topen,W0,B) ← Setup(1_), (B5 , st) ← Commit(crs, 5 ), and c = V ←
Eval(crs, st, x). By construction, this means [Iℓ ⊗ A | W]T = G, B = −W0Tcom, B5 = EvalF(B, 5 ), and V satis�es

Eq. (3.11). The key equation is

[A | (xT ⊗ I=)W]
[
(x ⊗ I<)Topen

Tcom

]
= A(xT ⊗ I<)Topen + (xT ⊗ I=)WTcom

= (xT ⊗ I=) (Iℓ ⊗ A)Topen + (xT ⊗ I=)WTcom

= (xT ⊗ I=) [Iℓ ⊗ A |W]T
= xT ⊗ G, (3.13)

where the second line follows from the mixed product property (i.e., A(xT⊗ I<) = (1⊗A) (xT⊗ I<) = (xT⊗ I=) (Iℓ ⊗A))
and the �nal line by Eq. (2.2). Consider now the main veri�cation relation (Eq. (3.12)):

[A |W0 + (xT ⊗ I=)W]V = [A |W0 + (xT ⊗ I=)W]
[
−(xT ⊗ I<)Topen
−Tcom

]
· HB,5 ,x

= (−W0Tcom − xT ⊗ G) · HB,5 ,x

= (B − xT ⊗ G) · HB,5 ,x

= B5 − 5 (x) · G,
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using Eq. (3.13) and Theorem 2.13. To complete the proof, it su�ces to bound ‖V‖. By Theorem 2.8, ‖T‖ ≤
√
<j . By

Theorem 2.13, ‖HB,5 ,x‖ ≤ (= log@)$ (3) , so

‖V‖ ≤ (<3/2j) (ℓ<) (= log@)$ (3) = ℓ<5/2j (= log@)$ (3) ≤ �. �

Theorem 3.22 (Selective-Input Binding). Suppose = ≥ $ (_), < ≥ $ (= log@), and j ≥ $ (< log=). Set V ≥
$ (<5/2� log=). Then, under the ℓ-succinct SIS assumption with parameters (=,<,@, j, V), Construction 3.19 satis�es
computational selective-input binding.

Proof. We start by de�ning a sequence of hybrid experiments:

• Hyb
0
: This is the selective-input computational binding experiment, where the adversary starts by committing

to the input x ∈ {0, 1}ℓ . Then, the challenger samples crs← Setup(1_) and gives crs = (A,W,Tcom,Topen,W0,B)
to A. Speci�cally, it samples (A,R) ← TrapGen(1_, @,<), W r← Zℓ=×<@ and[

Topen
Tcom

]
← SamplePre( [Iℓ ⊗ A |W], Iℓ ⊗ R,G=ℓ , j),

W0

r← Z=×<@ and B = −W0Tcom ∈ Z=×ℓ<@ . Algorithm A outputs a commitment f = B5 ∈ Z=×<@ and two

openings V0,V1 ∈ Z2<×<
@ for values 0 and 1, respectively.

9
The output of the experiment is 1 if the following

conditions hold:

– ‖V0‖ , ‖V1‖ ≤ �; and

– B5 = [A |W0 + (xT ⊗ I=)W]V0 and B5 − G = [A |W0 + (xT ⊗ I=)W]V1.

• Hyb
1
: Same as Hyb

0
except the challenger samples A r← Z=×<@ , W r← Zℓ=×<@ , and T← [Iℓ ⊗ A |W]−1

j (G=ℓ ).

• Hyb
2
: Same as Hyb

1
except the challenger samples R′ r← {0, 1}<×< and W0 ← AR′ − (xT ⊗ I=)W.

For an adversary A, we write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A. We now

reason about the output distributions of each adjacent pair of experiments:

Lemma 3.23. Suppose = ≥ $ (_), < ≥ $ (= log@), and j ≥ $ (< log=). Then, for all adversaries A, Hyb
0
(A) B≈

Hyb
1
(A).

Proof. This follows by a similar sequence of hybrid arguments as the proof of Lemma 3.7. Speci�cally, we introduce

some additional intermediary distributions for A, Topen, and Tcom.

• Hyb
0
: (A,R) ← TrapGen(1=, @,<) and

[
Topen
Tcom

]
← SamplePre( [I! ⊗ A |W], I! ⊗ R,G=ℓ , j).

• Hyb
0,1: (A,R) ← TrapGen(1=, @,<) and

[
Topen
Tcom

]
← [I! ⊗ A |W]−1

j (G=ℓ ).

Indistinguishability: Hyb
0
(A) andHyb

0,1 (A) are statistically indistinguishable when= ≥ $ (_),< ≥ $ (= log@)
and j ≥ $ (< log=) by Theorem 2.8.

• Hyb
0,2: A r← Z=×<@ and

[
Topen
Tcom

]
← [I! ⊗ A |W]−1

j (G=ℓ ).

Indistinguishability: Hyb
0,1 (A) andHyb

0,2 (A) are statistically indistinguishable when= ≥ $ (_),< ≥ $ (= log@)
by Theorem 2.8.

The claim now follows by a hybrid argument. �

Lemma 3.24. Suppose< ≥ 2_ + = log@. Then, for all adversaries A, Hyb
1
(A) B≈ Hyb

2
(A).

9
Note that we are considering single-bit outputs so without loss of generality, we require the adversary to output openings to 0 and 1, respectively,

in the selective-input binding game.
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Proof. Since A r← Z=×<@ and R′ r← Z<×<@ where < ≥ 2_ + = log@ the distribution of AR′ is statistically close to

uniform over Z=×<@ by the leftover hash lemma (Lemma 2.4). Since A,R′ are sampled independently of x and W, the

distribution of W0 in Hyb
2

is statistically close to uniform, which coincides with its distribution in Hyb
1
. �

Lemma 3.25. Suppose = ≥ $ (_),< ≥ $ (= log@), and V ≥ $ (<5/2� log=). Then, under the ℓ-succinct SIS assumption
with parameters (=,<,@, j, V), for all e�cient adversaries A, Pr[Hyb

2
(A) = 1] = negl(_).

Proof. Suppose there exists an e�cient adversaryA where Pr[Hyb
2
(A) = 1] = Y for some non-negligible Y. We use

A to construct an adversary B for the ℓ-succinct SIS assumption:

1. At the beginning of the game, algorithm B receives A ∈ Z=×<@ , W ∈ Z=ℓ×<@ , and a trapdoor T ∈ Z(ℓ+1)<×ℓ<@ .

Algorithm B parses T =

[
Topen
Tcom

]
where Topen ∈ Zℓ<×ℓ<@ and Tcom ∈ Z<×ℓ<@ .

2. Algorithm B runs algorithm A to obtain x ∈ {0, 1}ℓ . Then, algorithm B samples R′ r← {0, 1}<×< and sets

W0 ← AR′ − (xT ⊗ I=)W and B← −W0Tcom. It gives crs = (A,W,Tcom,Topen,W0,B) to A.

3. Algorithm A outputs a commitment B5 ∈ Z=×<@ along with openings V0,V1 ∈ Z2<×<
@ . Algorithm A samples

and outputs x← SamplePre(A, [I< | R′] (V0 − V1), 0, j ′), where j ′ =<(2< + 1)� log= = $ (<2� log=).

In the ℓ-succinct SIS assumption, the challenger samples A r← Z=×<@ , W r← Z=ℓ×<@ and T← [Iℓ ⊗ A |W]−1

j (G=ℓ ), so

algorithm B perfectly simulates an execution of Hyb
2

for algorithm B. Thus, with probability at least Y, algorithm

B outputs a commitment B5 ∈ Z=×<@ and openings V0,V1 ∈ Z2<×<
@ where ‖V0‖ , ‖V1‖ ≤ � and

B5 = [A |W0 + (xT ⊗ I=)W]V0 and B5 − G = [A |W0 + (xT ⊗ I=)W]V1 .

By construction W0 + (xT ⊗ I=)W = AR′, so this means that

G = [A | AR′] (V0 − V1) = A[I< | R′] (V0 − V1).

Thus, [I< | R′] (V0−V1) is a gadget trapdoor forA and ‖ [I< | R′] (V0 − V1)‖ ≤ (2<+1)�. When j ′ ≥ <(2<+1)� log=,

the distribution of x is statistically close to A−1

j′ (0) by Theorem 2.8. By Lemmas 2.6 and 2.7,

0 < ‖x‖ ≤
√
<j ′ = $ (<5/2� log=) ≤ V,

and the claim follows. �

The claim now follows by combining Lemmas 3.23 to 3.25. �

Parameter instantiation. Let _ be a security parameter and F = {F_}_∈N be a family of functions 5 : {0, 1}ℓ →
{0, 1} on inputs of length ℓ = ℓ (_) and which can be computed by Boolean circuits of depth 3 = 3 (_). We instantiate

the lattice parameters in Construction 3.19 to satisfy Theorems 3.21 and 3.22 as follows:

• Let Y > 0 be a constant. We set the lattice dimension = = 31/Y · poly(_) and< = $ (= log@).

• We set j = poly(_,<, ℓ) and � = ℓ<5/2j (= log@)$ (3) = (= log@)$ (3) · poly(_,<, ℓ).

• We choose the modulus @ = V · poly(=) so that the ℓ-succinct SIS assumption with parameters (=,<,@, j, V)
holds, where

V = $ (<5/2� log=) = (= log@)$ (3) · poly(_,<, ℓ) = 2
$̃ (3) = 2

$̃ (=Y ) ,

where we write $̃ (·) to suppress polylogarithmic factors in _, 3 , and ℓ . With this instantiation, log@ =

poly(31/Y , log _, log ℓ), and we are relying on ℓ-succinct SIS with a sub-exponential noise bound.

With this setting of parameters, we obtain a dual functional commitment for F with the following parameter sizes:
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• Commitment size: A commitment f to a function 5 : {0, 1}ℓ → {0, 1} consists of a matrix f = B5 ∈ Z=×<@ , so

|f | = =< log@ = poly(_, 31/Y , log ℓ).

• Opening size: An opening c to a function 5 consists of a matrix c = V5 ∈ Z2<×<
@ so

|c | = 2<2
log@ = poly(_, 31/Y , log ℓ).

• CRS size: The CRS consists of (A,W,Tcom,Topen,W0,B) where A ∈ Z=×<@ , W ∈ Zℓ=×<@ , Topen ∈ Zℓ<×ℓ<@ , and

Tcom ∈ Z<×ℓ<@ , W0 ∈ Z=×<@ , and B ∈ Z=×ℓ<@ . Thus the total size of the CRS is

|crs| = $ (ℓ2<2) · log@ = ℓ2 · poly(_, 31/Y , log ℓ).

We summarize the instantiation in the following corollary:

Corollary 3.26 (Dual Functional Commitment for Bounded-Depth Boolean Circuits). Let _ be a security parameter
and letF = {F_}_∈N be a family of functions 5 : {0, 1}ℓ → {0, 1} on inputs of length ℓ = ℓ (_) andwhich can be computed
by Boolean circuits of depth at most 3 = 3 (_). Under the ℓ-succinct SIS assumption with a sub-exponential norm
bound V = 2

$̃ (=Y ) for some constant Y > 0 and lattice dimension = = =(_), there exists a dual functional commitment
for F . The functional commitment satis�es computational selective-input binding and supports preprocessing for fast
veri�cation (De�nition 2.2). The size of the commitment and the opening have size poly(_, 31/Y , log ℓ) and the CRS has
size ℓ2 · poly(_, 31/Y , log ℓ).

4 Cryptanalysis of Extractable Commitments
In this section, we describe some of the challenges in constructing extractable lattice-based functional commitments.

First, we show that Construction 3.2 is not an extractable functional commitment for quadratic functions. We then

show that assuming inhomogeneous SIS, the [ACL
+
22] approach does not yield an extractable functional commit-

ment for linear functions. The attacks we develop work by using the components in the CRS to derive a basis for

a lattice de�ned by the scheme’s veri�cation relation. We then use the basis to obliviously sample a solution that

satis�es the schemes’ veri�cation relation without knowledge of a corresponding input. In one case (Section 4.1),

this can be used to sample a valid opening to an unsatis�able set of quadratic constraints, while in the other case

(Section 4.2), we can embed a SIS instance that the extractor must solve in order to output a valid input. We start

with a basic de�nition of a extractable functional commitment.

De�nition 4.1 (Extractability). Let _ be a security parameter. We say that a functional commitment ΠFC = (Setup,
Commit, Eval,Verify) for a function family F = {F_}_∈N is extractable if for all e�cient adversaries A, there exists

an e�cient extractor E such that

Pr

[
∃8 ∈ [) ] : Verify(crs, f, 58 , ~8 , c8 ) = 1 and

58 (x) ≠ ~8
:

crs← Setup(1_)(
(f, {(58 , ~8 , c8 )}8∈[) ]), x

)
← (A‖E)(1_, crs)

]
= negl(_).

Here, we write (A‖E)(·) to denote invoking algorithm A and the extractor E on the same input and randomness.

The output ofA is a commitment f along with a list of openings (58 , ~8 , c8 ) for f (for value~8 with respect to function

58 ), and the output of E is x.

4.1 An Attack on the Extractability of Construction 3.2
We begin by describing a (heuristic) attack on extractability for Construction 3.2. Here, we will just focus on the

case of extraction for degree-2 polynomials over (a subset of) Z@ (for prime @).
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Attack strategy. Suppose the input dimension satis�es ℓ > 6. Let crs = (A,W1,W2,Tcom,Topen) ← Setup(1_) In

the following we will view W1 as the vertical concatenation of ℓ matrices W(1)
1
, . . . ,W(ℓ)

1
∈ Z=×<@ , one associated

with each variable G8 . Similarly, we will view W2 as the vertical concatenation of ℓ2
matrices W(8, 9)

2
∈ Z=×<@ , where

W(8, 9)
2

is associated with the product G8G 9 . Consider the following system of quadratic constraints:

G2

1
= 0 and G1G2 = 1. (4.1)

Over Z@ , this system of constraints is unsatis�able since G2

1
= 0 implies that G1 = 0, and correspondingly, G1G2 = 0.

Then, to break extraction, it su�ces for the adversary to construct a commitment C ∈ Z<×<@ along with short

openings V11,V12 ∈ Z<×<@ such that

W(1,1)
2

C2 = −AV11 (4.2)

W(1,2)
2

C2 = G − AV12 (4.3)

Suppose �rst that the adversary has a trapdoor for the following matrix B:

B =


A W(2)

1

A W(1,1)
2

A W(1,2)
2

 ∈ Z
3=×4<
@ (4.4)

The adversary can use the trapdoor for B to e�ciently sample a short solution (V′
2
,V′

11
,V′

12
,C) for the linear system

A W(2)
1

A W(1,1)
2

A W(1,2)
2

 ·

V′

2

V′
11

V′
12

C

 =


G
0

W(2)
1

 . (4.5)

We now de�ne V11 and V12 as follows:
10

• From Eq. (4.5), W(1,1)
2

C = −AV′
11

, so W(1,1)
2

C2 = −AV′
11
C. Since V′

11
and C are short, setting V11 = V′

11
C yields

a short solution to Eq. (4.2).

• Similarly Eq. (4.5) implies that W(1,2)
2

C = W(2)
1
− AV′

12
and W(2)

1
C = G − AV′

2
. Thus,

W(1,2)
2

C2 = W(2)
1

C − AV′
12
C = G − A(V′

2
+ V′

12
C).

Setting V12 = V′
2
+ V′

12
C yields a short solution to Eq. (4.3).

Thus, given a trapdoor for B in Eq. (4.4), it is straightforward to sample a commitment C and short openings V11,V12

that satisfy Eqs. (4.2) and (4.3). To complete the attack description, we show how the adversary can construct a

trapdoor for B using the components in the CRS. This is immediate from the construction. Namely, the components

W1,W2 and Topen,Tcom in the CRS satisfy[
Iℓ ⊗ A W1

Iℓ2 ⊗ A W2

]
·
[
Topen
Tcom

]
=

[
Iℓ ⊗ G
Iℓ ⊗W1.

]
∈ Z(ℓ+ℓ

2)=×ℓ<
@

Consider the subset of 3= rows corresponding to the blocks W(2)
1

, W(1,1)
2

, and W(1,2)
2

:
eT

2
⊗ A W(2)

1

eT
11
⊗ A W(1,1)

2

eT
12
⊗ A W(1,2)

2

︸                                  ︷︷                                  ︸
B′

·
[
Topen
Tcom

]
=


eT

2
⊗ G

eT
1
⊗W(1)

1

eT
1
⊗W(2)

1

︸         ︷︷         ︸
U

∈ Z3=×ℓ<
@ ,

10
If the evaluator was honest, instead of targeting

[ G
0

W(2)
1

]
in Eq. (4.5), it would have targeted the matrix


G2G

G1W
(1)
1

G1W
(2)
1

 for some G1, G2 ∈ {0, 1}.

Essentially, in this attack, the adversary is targeting a matrix that corresponds to an inconsistent assignment for G1.
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where e8 ∈ Zℓ@ denotes the 8th canonical basis vector. If we remove the columns of B′ that are all-zeroes, and remove

the corresponding rows from Topen (call the resulting matrix T′open ∈ Z3<×ℓ<
@ ), we see that

B ·
[
T′open
Tcom

]
= U = [U′ | 0],

where U′ ∈ Z3=×2<
@ . This means that

[
T′open
Tcom

]
contains (ℓ − 2)< short vectors in the kernel of B. Since the dimen-

sion ℓ satis�es ℓ > 6, the adversary obtains at least 5< > 4< short vectors in the kernel of B. These vectors are

sampled independently from a discrete Gaussian distribution, so heuristically we assume that there is a set of 4<

linearly independent vectors over the rationals. If this holds, then we obtain an Ajtai trapdoor for B (De�nition 2.10),

which su�ces to carry out the above attack. Putting everything together, we construct an adversary that breaks

extractability of Construction 3.2 as follows:

1. Using the components Topen and Tcom from the CRS, construct an Ajtai trapdoor for the matrix B in Eq. (4.4).

The trapdoor is formed by taking a subset of the rows of

[
Topen
Tcom

]
.

2. Using the Ajtai trapdoor for B, sample a short solution (V′
2
,V′

11
,V′

12
,C) to Eq. (4.5).

3. Output the commitment C and openings V11 = V′
11
C and V12 = V′

2
+ V′

12
C. This is a valid opening for the

constraints in Eq. (4.1), which is an unsatis�able quadratic system.

Cryptanalysis of a candidate defense based on sparsi�cation. We brie�y remark that the above oblivious

sampling attack still works even if we adopt the [ACL
+
22] strategy of “sparsi�cation.” In the [ACL

+
22] approach

(see also Section 4.2), a commitment would only be considered valid if the adversary can additionally output a short

opening Vext such that AextVext = WextC, where Aext ∈ ZC<×C< log@
@ is a random matrix and Wext ∈ ZC×<@ where

C �<. To facilitate this, the CRS would now contain short matrices (Topen,Text,Tcom) where[
Iℓ+ℓ2 ⊗ A W

Aext Wext

] 
Topen
Text
Tcom

 =

[
P
0

]
where P =

[
Iℓ ⊗ G
Iℓ ⊗W1

]
.

The intuition in [ACL
+
22] (see also Section 4.2) is that the only way to sample low-norm Vext,C that satis�es this

veri�cation relation is to multiply Text,Tcom by the same low-norm matrix, from which we can “extract” x. However,

the attack strategy described above naturally extends to this setting, except we now use the components in the CRS

to derive a trapdoor for the extended matrix

B =


A W(2)

1

A W(1,1)
2

A W(1,2)
2

Aext Wext


In the next section, we apply a similar methodology to analyze a variant of the linear functional commitment scheme

from [ACL
+
22].

4.2 Analyzing the [ACL+22] Knowledge Assumption
In this section, we analyze one version of the :-ISIS and knowledge :-ISIS family of assumptions from [ACL

+
22].

While the original assumptions from [ACL
+
22] were de�ned over polynomial rings (and module/ideal lattices), we

consider the analogous assumptions over the integers. Since ring multiplication is commutative whereas matrix

multiplication is not, there are multiple (and similar) ways to translate the [ACL
+
22] family of assumptions to the

integers. We describe one adaptation here, where we “sparsify by left multiplication.” We refer to this adaptation as

the MatrixACLMT construction.
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Assumption 4.2 (MatrixACLMT :-ISIS Assumption for Linear Functions). Let _ be a security parameter and let

(=,<,@, j, ℓ, V) be lattice parameters. The MatrixACLMT :-SIS assumption says that for every e�cient adversaryA,

there exists a negligible function negl(·) such that

Pr


Ax = Uu mod @

and

0 < |U |, ‖x‖ ≤ V
:

A r← Z=×<@ , u r← Z=@ ,
∀8 ∈ [ℓ] : W8

r← Z=×=@ , t8 ←W−1

8 u,
∀8 ≠ 9 : z8, 9 ← A−1

j (W8 t9 ),
(U, x) ← A

(
1
_,A, u, {W8 }8∈[ℓ ], {z8, 9 }8≠9

)
 = negl(_).

Assumption 4.3 (MatrixACLMT Knowledge Assumption). Let _ be a security parameter and let (=,<,@, j, C, ℓ, U, V)
be lattice parameters where @=−C = negl(_) and< ≥ $ (C log@). The MatrixACLMT knowledge assumption says that

for every e�cient adversary A, there exists an e�cient extractor E such that

Pr

 Av = Dc mod @ and ‖v‖ ≤ V and

(‖x‖ ≥ U or c ≠
∑
8∈[ℓ ] G8 t8 mod @) :

A r← ZC×<@ ,D r← ZC×=@ ,

∀8 ∈ [ℓ] : t8
r← Z=@ , z8 ← A−1

j (Dt8 )(
(c, v), x

)
← (A‖E)

(
1
_,A,D, {(t8 , z8 )}8∈[ℓ ]

)  = negl(_),

where ((c, v), x) ← (A‖E)(1_,A,D, {(t8 , z8 )}8∈[ℓ ]) denotes that A and E are invoked on the same input and ran-

domness, and (c, v) is the output of A while x is the output of E.

The MatrixACLMT knowledge assumption essentially says that any e�cient adversarial strategy that produces a

short v ∈ Z<@ where Av ∈ ZC@ lies in the image of D (i.e., Av = Dc) can be explained as taking a short linear

combination of the given preimages z1, . . . , zℓ . Indeed, if c =
∑
8∈[ℓ ] G8 t8 , then we can write v =

∑
8∈[ℓ ] G8z8 :

Dc = D ©­«
∑
8∈[ℓ ]

GC t8
ª®¬ = A ©­«

∑
8∈[ℓ ]

G8z8
ª®¬ = Av.

The requirement @=−C = negl(_) is necessary to prevent the basic oblivious sampling attack where the adversary

samples a random short vector v ∈ Z<@ and solves for a c ∈ Z=@ satisfying Av = Dc. Since the image of A has @C

elements and the image of D has @= elements, only a negligible fraction of the elements in the image of A are also in

the image of D (i.e., for most vectors v ∈ Z<@ , there will not exist a vector c ∈ Z=@ where Av = Dc).

A heuristic oblivious sampling algorithm for Assumption 4.3. We start by describing an adversary for As-

sumption 4.3 that obliviously samples a short vector v ∈ Z<@ such that Av is in the image of D. While this by itself

does not necessarily falsify Assumption 4.3, we will subsequently show that Assumptions 4.2 and 4.3 cannot simul-

taneously hold for a broad range of parameter settings (i.e., at least one of Assumption 4.2 or Assumption 4.3 is

false).

Algorithm 4.4 (Candidate Oblivious Sampler for MatrixACLMT). Suppose ℓ � < + = in Assumption 4.3. Our

heuristic oblivious sampling algorithm A for Assumption 4.3 works as follows:

1. Let A r← ZC×<@ , D r← ZC×=@ , t8
r← Z=@ and z8 ← A−1

j (Dt8 ) be the challenge from Assumption 4.3. By construction,

[A | DG] ·
[

z1 · · · zℓ
−G−1 (t1) · · · −G−1 (tℓ )

]
︸                                   ︷︷                                   ︸

¯T

= 0 mod @.

Since t8 and z8 are sampled independently and assuming that ℓ � < + = is su�ciently large (e.g., setting

ℓ = 2(< + =) should su�ce), we can heuristically assume that
¯T ∈ Z(<+=)×ℓ is full rank over the reals.11

Thus,

we can use
¯T to derive an Ajtai-trapdoor T (De�nition 2.10) for the matrix B = [A | DG] (e.g., by taking a

subset of< + = columns of
¯T that are linearly independent over the reals).

11
Note that

¯T does not (and cannot) have full rank over Z@ .
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2. Using T, the algorithm samples a short [ vc ] where B · [ vc ] = 0. The commitment is then Gc and the opening

is v. For instance, the algorithm might implement Babai’s rounding algorithm. Speci�cally, it starts with an

arbitrary (non-zero) solution y ∈ Z<+= where By = 0 mod @, solves for the unique z ∈ Q<+= where Tz = y ∈
Q<+= and then outputs x = y − T · bze. By construction Bx = 0 mod @ and moreover ‖x‖ ≤ ‖T(z − bze)‖,
which is small.

The basic question is whether the solution x derived by rounding o� a long solution as in Algorithm 4.4 (or sampled

through some alternative trapdoor sampling algorithm) can always be explained by a short linear combination of

the basis vectors T. We note that in the particular case of Assumption 4.3, if ℓ �< + =, then the adversary actually

has ℓ short vectors in the kernel of B, so the extractor does have more �exibility in coming up with a linear strategy.

It is an interesting challenge to either write down an explicit extractor for this oblivious sampling strategy or prove

that no such strategy is possible (say, under a standard computational assumption). In the following, we show that

assuming (non-uniform) hardness of inhomogeneous SIS and the matrix-ACLMT assumption for linear functions

(Assumption 4.2), then no such extractor exists. One implication of this is that this particular adaptation of [ACL
+
22]

to the integers is not an extractable functional commitment for linear functions.

Attacking the Matrix-ACLMT commitment for linear functions. We now show how we can apply the ap-

proach in Algorithm 4.4 to break extractability for the linear functional commitment from [ACL
+
22] (when instanti-

ated over the integers). We start by recalling their construction (over the integers):

Construction 4.5 (Functional Commitment for Linear Functions). Let _ be a security parameter and=,<,<′, @, C, �, j
be lattice parameters. Let ℓ = ℓ (_) be the input length. For a matrix M ∈ Z:×ℓ@ , let 5M : Z:×ℓ@ → Z:@ be the linear

function x ↦→ Mx. Let F_ = {5M | M ∈ {0, 1}:×ℓ }. We construct a functional commitment ΠFC = (Setup,Commit,
Eval,Verify) for F = {F_}_∈N as follows:

• Setup(1_, 1ℓ ): Sample matrices (A,RA) ← TrapGen(1_, =,<), W1, . . . ,Wℓ
r← Z=×=@ , u ← Z=@ , and let t8 ←

W−1

8 u ∈ Z=@ for each 8 ∈ [ℓ]. For each 8 ≠ 9 , sample z8, 9 ← SamplePre(A,RA,W8 t9 , j). Let Ŵ ∈ Zℓ=×=@ be the

vertical stacking of the matrices W1, . . . ,Wℓ :

Ŵ =


W1

...

Wℓ

 ∈ Z
ℓ=×=
@ .

Next, sample (B,RB) ← TrapGen(1_, C,<′) and a matrix D r← ZC×=@ . Sample z′8 ← SamplePre(B,RB,Dt8 , j) for

each 8 ∈ [ℓ]. Output the common reference string crs =
(
A,B,D, u, {W8 }8∈[ℓ ], {z8, 9 }8≠9 , {z′8 }8∈[ℓ ]

)
.

• Commit(crs, x): On input the common reference string crs =
(
A,B,D, u, {W8 }8∈[ℓ ], {z8, 9 }8≠9 , {z′8 }8∈[ℓ ]

)
and an

input vector x ∈ Zℓ@ , the commit algorithm outputs the commitment c =
∑
8∈[ℓ ] G8 t8 ∈ Z=@ and the state st = x.

• Eval(crs, st, 5M): On input the common reference string crs =
(
A,B,D, u, {W8 }8∈[ℓ ], {z8, 9 }8≠9 , {z′8 }8∈[ℓ ]

)
, a com-

mitment state st = x, and a function 5M for some matrix M ∈ Z:×ℓ@ , the evaluation algorithm computes

v̂8 ←
∑
9≠8 G 9z8, 9 for each 8 ∈ [ℓ] and de�nes v̂ ∈ Zℓ<@ and ẑ ∈ Zℓ<′@ as follows:

v̂ =


v̂1

...

v̂ℓ

 ∈ Z
ℓ<
@ and ẑ =


z′

1

...

z′ℓ

 .
It outputs the opening

v =

[
(M ⊗ I<)v̂
(xT ⊗ I<′)z′8

]
∈ Z:<+<′@ .
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• Verify(crs, f, 5M, ~, c): On input the common reference string crs =
(
A,B,D, u, {W8 }8∈[ℓ ], {z8, 9 }8≠9 , {z′8 }8∈[ℓ ]

)
,

a commitment f = c ∈ Z=@ , a function 5M : Z:×ℓ@ → Z:@ where M ∈ Z:×ℓ@ , a value y ∈ Z:@ , and an opening

c = v ∈ Z(:<+<
′)×<

@ , the veri�cation algorithm outputs 1 if

‖v‖ ≤ � and

[
I: ⊗ A 0

0 B

]
· v =

[
(M ⊗ I=)Ŵ

D

]
· c −

[
y ⊗ u
0

]
. (4.6)

Correctness. Correctness follows by the same argument as in [ACL
+
22], adapted to operate over the integers. We

give a sketch here and refer to [ACL
+
22] for more details. Let crs =

(
A,B,D, u, {W8 }8∈[ℓ ], {z8, 9 }8≠9 , {z′8 }8∈[ℓ ]

)
be a CRS

sampled via the Setup algorithm. Suppose c =
∑
8∈[ℓ ] G8 t8 is a commitment to a short input x ∈ Zℓ@ . Suppose v is an

opening to a function 5M where M ∈ Z:×ℓ@ is a matrix with small entries. By construction, if the entries of M and x
are short, then so is v. Consider now the main veri�cation relation. First, for each 8 ∈ [ℓ],

W8c =
∑
9 ∈[ℓ ]

G 9W8 t9 = G8u +
∑
9≠8

G 9Az8, 9 = G8u + Av̂8 .

Equivalently, this means Ŵc = x ⊗ u + (Iℓ ⊗ A)v̂. Consider now the main veri�cation relation:

(M ⊗ I=)Ŵc = (M ⊗ I=) (x ⊗ u) + (M ⊗ I=) (Iℓ ⊗ A)v̂
= (Mx ⊗ u) + (I: ⊗ A) (M ⊗ I<)v̂

Dc =
∑
8∈[ℓ ]

G8Dt8 = B · ©­«
∑
8∈[ℓ ]

G8z′8
ª®¬ = B · (xT ⊗ I<′)ẑ.

For a su�ciently-large bound �, the veri�cation relations hold and correctness follows.

Extractability. By an analogous argument as in [ACL
+
22], we can show that under Assumptions 4.2 and 4.3 (with

suitable parameter instantiations), if an e�cient adversary can produce a commitment f = c along with a valid

opening c = v to a short value y ∈ ZC@ with respect to a linear function 5M with short M ∈ Z:×ℓ@ , then there exists

an e�cient extractor that outputs a short x ∈ Zℓ@ where Mx = y. We give a sketch of the general approach here and

refer to [ACL
+
22] for a formal argument:

• Suppose there exists an e�cient adversary A is able to come up with a commitment c ∈ Z=@ and a short

opening v =
[ v1

v2

]
that satis�es Eq. (4.6). This means that Bv2 = Dc. By Assumption 4.3, there exists an

e�cient extractor E that outputs a short x ∈ Zℓ@ such that c =
∑
8∈[ℓ ] G8 t8 .

• If the extracted x satis�es Mx = y, then the extractor is successful. Consider the case where Mx ≠ y. If this

happens with non-negligible probability, we can construct an adversary B that uses the extractor E to break

Assumption 4.2:

1. Algorithm B receives

(
A, u, {W8 }8∈[ℓ ], {z8, 9 }8≠9

)
from the challenger for Assumption 4.2.

2. It samples (B,RB) ← TrapGen(1_, C,<′), D r← ZC×=@ , and z′8 ← SamplePre(B,RB,Dt8 , j) for each

8 ∈ [ℓ] as in the real scheme. The reduction algorithm constructs the common reference string crs =(
A,B,D, u, {W8 }8∈[ℓ ], {z8, 9 }8≠9 , {z′8 }8∈[ℓ ]

)
and gives crs to A.

3. After A outputs a commitment c and an opening v =
[ v1

v2

]
to a value y, algorithm B runs the extractor

E on the same input as A to obtain a short input x ∈ Zℓ@ . Suppose Mx = y′ ≠ y. Then algorithm A
computes an opening v′ =

[
v′

1

v′
2

]
by computing Eval(crs, x, 5M). By correctness, v′ is short and moreover

satis�es the following veri�cation relation from Eq. (4.6):

(I: ⊗ A)v′
1
= (M ⊗ I=)Ŵc −Mx ⊗ u (4.7)
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Since v is also a valid opening, we have that

(I: ⊗ A) (v1 − v′1) = (y′ − y) ⊗ u.

Since y−y′ ≠ 0, there is at least one non-zero “block” where A(v1,8 −v′1,8 ) = (~ ′8 −~8 )u and ~ ′8 ≠ ~8 . Since

y, y′ are both short, this yields a valid solution to Assumption 4.2.

An attack on Construction 4.5. To conclude, we describe a (heuristic) attack that breaks extractability of Con-

struction 4.5. Our approach takes the following template:

1. Given the CRS for the functional commitment scheme, we construct an e�cient adversary A that can oblivi-

ously sample an opening to an arbitrary vector y ∈ Z:@ with respect to a function 5M where M = [Ml | 0:×ℓ1 ]
and Ml ∈ Z:×ℓ2@ is short.

2. Extractability of the functional commitment now says that there exists an e�cient extractor that outputs a

short x ∈ Zℓ1+ℓ2@ such that Mx = y.

3. Since the oblivious sampler is agnostic to the choice of Ml (as long as it is short), we can embed an (inhomo-

geneous) SIS instance into Ml. In this case, an extractor for algorithm A is able to solve inhomogeneous SIS

with respect to M, and by extension, Ml.

We now describe the �rst step in more detail. Here, we consider an instance of the vector commitment scheme for

inputs of length ℓ1 + ℓ2:

• Let crs =
(
A,B,D, u, {W8 }8∈[2ℓ ], {z8, 9 }8≠9 , {z′8 }8∈[2ℓ ]

)
. Suppose we want to open a function 5M for some matrix

M = [Ml | 0:×ℓ ] to y. The goal is to sample a commitment c ∈ Z=@ and short openings v =
[ vfc
vext

]
∈ Z:<+<′@

where [
I: ⊗ A 0 −(M ⊗ I=)Ŵ

0 B −D

]
·

vfc
vext
c

 =

[
y ⊗ u
0

]
.

Since M = [Ml | 0:×ℓ2 ], this is equivalent to[
I: ⊗ A 0 −(Ml ⊗ I=)Ŵt

0 B −D

]
·

vfc
vext
c

 =

[
y ⊗ u
0

]
where Ŵt =


W1

...

Wℓ1

 ∈ Z
ℓ1=×=
@

De�ne the related matrix

B̃ =

[
I: ⊗ A 0 −(Ml ⊗ I=)ŴtG

0 B −DG

]
∈ Z(:=+C )×(:<+<

′+<)
@ . (4.8)

• By construction, for all 8 ≠ 9 ∈ [ℓ1 + ℓ2], we have that Az8, 9 = W8 t9 and Bz′8 = Dt8 . For 8 ∈ {ℓ1 + 1, . . . , ℓ1 + ℓ2},
de�ne the vector

ẑ8 =


z1,8

...

zℓ1,8

 ∈ Z
<ℓ1
@ .

Then, (Iℓ1 ⊗ A)ẑ8 = Ŵtt8 . Now we can write

(Ml ⊗ I=)Ŵtt8 = (Ml ⊗ I=) (Iℓ1 ⊗ A)ẑ8 = (I: ⊗ A) (Ml ⊗ I<)ẑ8 .

We can now write [
I: ⊗ A 0 −(Ml ⊗ I=)ŴtG

0 B −DG

]
︸                                     ︷︷                                     ︸

B̃

·

(Ml ⊗ I<)ẑ8

z′8
G−1 (t8 )

︸            ︷︷            ︸
ṽ8

= 0.

35



• When Ml has small coe�cients, ṽ8 ∈ Z:<
′+<′+<

@ is a short vector in the kernel of B̃. Suppose ℓ2 � :< +
<′ + < (e.g., setting ℓ2 > 2(:< + <′ + <) seems su�cient). We now heuristically assume that the matrix

[ṽℓ1+1 | · · · | ṽℓ1+ℓ2 ] has full rank over the rationals (but not mod@). This seems plausible since the vectors ẑ8 ,
z′8 , and t8 are all independent. This yields an Ajtai trapdoor (De�nition 2.10) for B̃.

• Using the trapdoor for B̃, we can sample short vfc, vext, c′ such that

B̃ ·

vfc
vext
c′

 =

[
I: ⊗ A 0 −(Ml ⊗ I=)ŴtG

0 B −DG

]
·

vfc
vext
c′

 =

[
y ⊗ u
0

]
.

Then v =
[ vfc
vext

]
is a valid opening for the commitment c = Gc′ ∈ Z=@ to the value y with respect to 5M.

To complete the attack on extractability, we show that if Construction 4.5 satis�es extractability (for su�ciently long

inputs ℓ), then the extractor breaks SIS:

• Let (K, y) where K r← Z=×<@ and y r← Z=@ be an inhomogeneous SIS challenge. Let M = [G−1 (K) | 0<×ℓ2 ].

• LetA be the adversary that takes as input crs =
(
A,B,D, u, {W8 }8∈[2ℓ ], {z8, 9 }8≠9 , {z′8 }8∈[2ℓ ]

)
for Construction 4.5

and runs the above algorithm to obtain a commitment c along with a short opening v to the value G−1 (y) with

respect to the function M. Here, the matrix M is hard-wired in the description of A.

• If Construction 4.5 is extractable, then there exists an e�cient extractor E that on input crs and outputs a short
x =

[ x1

x2

]
where x1 ∈ Z<@ and z2 ∈ Zℓ2@ such that

G−1 (y) = M ·
[
x1

x2

]
= [G−1 (K) | 0<×ℓ2 ] ·

[
x1

x2

]
= G−1 (K) · x1 .

Correspondingly, this means that G · G−1 (y) = y = Kx1, and E has successfully outputted a solution to the

inhomogeneous SIS problem (K, y).

The approach described above shows that as long as the vector dimension is su�ciently large (i.e., ℓ = ℓ1 + ℓ2 �
<2 +<′ + 2<), then the existence of an extractor for Construction 4.5 implies a non-uniform adversary for the in-

homogeneous SIS assumption. Note that our approach does rely on a heuristic assumption that the short preimages

provided in the CRS span the full space (over the reals). This seems like a relatively mild assumption in practice. As-

suming this heuristic holds, our analysis shows that under the inhomogeneous SIS assumption, either Assumption 4.2

or Assumption 4.3 must be false, and correspondingly, the functional commitment scheme in Construction 4.5 is not
extractable.
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A Extending to Module Lattices
Both of our functional commitments (Constructions 3.2 and 3.19) readily translate to work over module lattices [Mic02,

LPR10, LS15]. For some parameter settings, this confers asymptotic improvements in the size of the commitment

and opening. Speci�cally, in this section, we show how to adapt Construction 3.2 to obtain a functional commitment

for constant-degree polynomials where the size of the commitment and opening are both $ (= log@), where = is the

lattice dimension, @ = poly(_, ℓ) is the modulus, and ℓ is the input length. As described in Section 3, the size of the

commitment in Construction 3.2 is $ (=2
log

3 @) and the size of the opening is $ (= log
2 @). By working over module

lattices and using a larger decomposition base in the gadget matrix (as done also in [ACL
+
22]), the (asymptotic) size

of the commitment and openings of our construction matches those from [ACL
+
22].

Background on module lattices. Let ' be a Z-module of rank C . A common choice for ' is to take C = 2
:

to be

a power-of-two and ' = Z[G]/(GC + 1) to be the (2:+1)th-cyclotomic ring. For an element A ∈ ', we write ‖A ‖ to

denote the ℓ∞-norm of the components of A (viewed as a C-dimensional vector over Z). When r = (A1, . . . , A=) ∈ '= is

a vector, we de�ne ‖r‖ as the ℓ∞-norm of the (=3)-dimensional vector formed by concatenating the components of

A1, . . . , A= ∈ '. For a modulus @ ∈ N, we write '@ to denote the quotient module '@ B '/@'. For parameters = = =(_),
< =<(_), @ = @(_), V = V (_), the module SIS problem over ' says that for all e�cient adversaries A,

Pr

[
Ax = 0 and 0 < ‖x‖ ≤ V :

A r← '=×<@ ;

x← A(1_,A)

]
= negl(_).

Observe that the standard SIS problem (Assumption 2.12) corresponds to the case where C = 1 (i.e., where ' = Z).

The ring SIS problem over ' corresponds to the case where = = 1.

Gadget trapdoors for module lattices. The trapdoor sampling techniques from [MP12] directly extend to the

setting of rings (c.f., [MP12, §4.3] and [GM18]). We summarize the relevant results (i.e., the analog of Theorem 2.8)

when ' = Z[G]/(GC + 1) is a power-of-two cyclotomic ring (i.e., C = 2
:

for some : ∈ N) and with respect to an

arbitrary decomposition base I ∈ N:

• Let gI =
[
1, I, I2, . . . , I blogI @c

]
be the I-ary gadget vector.

• Let _ be a security parameter and let C = C (_) be the module rank, = = =(_) be the dimension, and @ = @(_)
be a modulus. We require that for all _ ∈ N, C (_) is a power-of-two; then, let ' = {'_}_∈N where '_ is the

power-of-two cyclotomic ring '_ B Z[G]/(GC +1). There exist e�cient algorithms TrapGen' and SamplePre'
with the following syntax:

– TrapGen' (1_,<) → (A,R): On input the security parameter _ (which de�nes the module rank C , the

dimension =, and the modulus @), and the number of samples <, the trapdoor-generation algorithm

outputs a matrix A ∈ '=×<@ and a trapdoor R ∈ '<×<@ .

– SamplePre' (A,R, v, j) → u: On input a matrix A ∈ '=×<@ , a trapdoor R ∈ '<×<@ , a target vector v ∈ '=@ ,

and a Gaussian width parameter j , the preimage-sampling algorithm outputs a vector u ∈ '<@ .

Suppose< ≥ $ (= logI @). Then, these algorithms satisfy a similar set of properties as in Theorem 2.8:

– Trapdoor distribution: If (A,R) ← TrapGen(1_,<) and A′ r← '=×<@ , then Δ(A,A′) ≤ negl(_). More-

over, AR = GI = (I= ⊗ gI) and ‖R‖ = $ (I).
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– Preimage sampling: For all matrices ' ∈ '<×<@ , parameters j > 0, and all target vectors v ∈ '=@ in the

column span of A, the output u← SamplePre' (A,R, v, j) of SamplePre satis�es Au = v.

– Preimage distribution: Suppose AR = GI . There exists a �xed polynomial poly(·, ·, ·) such that for

all j ≥ poly(_,<, ‖R‖) and all target vectors v ∈ '=@ , the statistical distance between the following

distributions is negl(_):

{u← SamplePre' (A,R, v, j)} and {u← A−1

j (v)},

where A−1

j (v) denotes sampling a vector u according to discrete Gaussian distribution over '< with

parameter j subject to the condition that Au = v ∈ '=@ .

Functional commitment over module lattices. We now describe our adaptation of Construction 3.2 over mod-

ule lattices. We essentially replace the ring Zwith the Z-module ' in Construction 3.2. For completeness, we provide

the full description here.

Construction A.1 (Functional Commitment over Module Lattices). Let _ be a security parameter. We now de�ne

the following scheme parameters:

• Let C = C (_), = = =(_), < = <(_), @ = @(_), j = j (_) be lattice parameters. We assume that for all _ ∈ N,

C (_) is a power of two. The scheme operates over a Z-module ' = {'_}_∈N where each '_ = Z[G]/(GC + 1) is

a power-of-two cyclotomic ring.

• Let I = I (_) be a decomposition base.

• Let ℓ = ℓ (_) be an input length parameter, 3max = $ (1) be a constant degree bound, �in = �in (_) be a bound

on the magnitude of the inputs, and �out = �out (_) be a bound on the magnitude of the outputs.

• Let ! =
∑
8∈[3max ] ℓ

8
and � = �(_) be a veri�cation bound.

• Let F_ be the set of functions 5 : [−�in, �in]ℓ → [−�out, �out] where 5 can be computed by a homogeneous
polynomial with �in-bounded coe�cients and degree at most 3max. As in Construction 3.2, we associate a

function 5 ∈ F_ with a vector f ∈ [−�in, �in]ℓ
3

for some 3 ≤ 3max and de�ne 5 (x) := fTx⊗3 .

We construct a functional commitment ΠFC = (Setup,Commit, Eval,Verify) for F = {F_}_∈N as follows:

• Setup(1_): On input the security parameter _, the setup algorithm samples (A,R) ← TrapGen' (1_,<) and

W r← '!=×<@ . Next, de�ne the target matrix

P =


Iℓ ⊗ GI
Iℓ ⊗W1

...

Iℓ ⊗W3max−1


∈ '!=×ℓ<@ where W =


W1

...

W3max

 ∈ '
!=×<
@ , (A.1)

where W8 ∈ 'ℓ
8=×<
@ . Then, compute T ← SamplePre' ( [I! ⊗ A | W], I! ⊗ R, P, j) ∈ ' (!<+<)×ℓ<@ . Parse T =[

Topen
Tcom

]
whereTopen ∈ '!<×ℓ<@ andTcom ∈ '<×ℓ<@ . Output the common reference string crs = (A,W,Tcom,Topen).

• Commit(crs, x): On input the common reference string crs = (A,W,Tcom,Topen) and an input x ∈ [−�in, �in]ℓ ,
the commit algorithm outputs the commitment f = C = Tcom (x ⊗ I<) ∈ '<×<@ and the state st = x.

• Eval(crs, st, 5 ): On input the common reference string crs = (A,W,Tcom,Topen), the state st = x, and a function

5 = f ∈ Zℓ3@ (for some 3 ≤ 3max) with �in-bounded coe�cients, the evaluation algorithm �rst computes

V = Topen (x ⊗ I<). It then parses

V =


V1

...

V3max

 ∈ '
!<×<
@ (A.2)
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where V8 ∈ 'ℓ
8<×<
@ . Let V′

1
← V1 and for 8 ∈ [3], let V′8 ← (x ⊗ Iℓ8−1<)V′8−1

+ V8C8−1 ∈ 'ℓ8<×<@ . Output the

opening c5 = V5 = (fT ⊗ I<)V′3 ∈ '
<×<
@ .

• Verify(crs, f, 5 , ~, c): On input the common reference string crs = (A,W,Tcom,Topen), the commitment f =

C ∈ '<×<@ , the output ~ ∈ [−�out, �out], a function 5 = f ∈ Zℓ3@ (for some 3 ≤ 3max) with �in-bounded

coe�cients, and the proof c = V ∈ '<×<@ , the veri�cation algorithm �rst parses W into W1, . . . ,W3max
as in

Eq. (3.1) and outputs 1 if

‖V‖ ≤ � and (fT ⊗ I<)W3C3 = ~ · G − AV. (A.3)

Correctness and security analysis. Correctness and security follow via a similar analysis as in the proofs of

Theorems 3.5 and 3.6. Binding in this case relies on the !-succinct SIS assumption over the module ' = {'_}_∈N:

namely, for all e�cient adversaries A,

Pr

Ax = 0 and 0 < ‖x‖ ≤ V :

A r← '=×<@ ,W r← '=ℓ×<@ ,

R← [Iℓ ⊗ A |W]−1

j (G=ℓ )
x← A(1_,A,W,R)

 = negl(_) .

Similar to the case over the integers, we consider instantiations of the lattice parameters (', =,<,@, V) where the

module SIS assumption over ' holds. To satisfy correctness and security for constant-degree polynomials and

polynomially-bounded inputs and outputs (i.e.,3max = $ (1) and �in, �out = poly(_)), it su�ces to set< ≥ $ (= logI @),
j0 ≥ poly(_,<, I), j ≥ poly(_,<, I), � ≥ poly(_,<, ℓ, I), and V ≥ poly(_,<, ℓ, I).

Parameter instantiation. We now describe one way to instantiate the above construction using module lattices.

Let _ be a security parameter, ℓ be the input dimension, and 3max = $ (1) be a degree bound. For simplicity, we

consider the setting where the input and output magnitudes are both polynomially-bounded: namely, �in = poly(_)
and �out = poly(_). Consider the following instantiation of the the lattice parameters in the above construction:

• Let ' = Z[G]/
(
G2

: + 1

)
be a power-of-two cyclotomic ring. Let C = 2

:
be the rank of ' when viewed as a

Z-module. We set the dimension = such that =C = $̃ (_).

• We set< = $ (= logI @).

• We set j0, j = poly(_,<, !, I) = poly(_,<, ℓ, I) since by de�nition, ! = $ (ℓ3max ) = poly(ℓ) for constant 3max.

• We set the bound � = poly(_,<, ℓ, I) and V = poly(_,<, ℓ, I).

• We choose the decomposition base so that I ≥ @1/2
for a (su�ciently-large) constant 2 ∈ N. In particular, the

constant 2 must be larger than the exponent on I in V .

• We set the modulus @ ≥ V ·poly(=, C) = V ·poly(_) so that the !-succinct module SIS assumption (over ') holds.

In particular, we can set @ = poly(_,<, ℓ).

With this choice of parameters,< = $ (= logI @) = $ (= log@/log I) = $ (=), since 2 ∈ N is a constant. Hardness relies

on (quasi)-exponential hardness of !-succinct SIS (i.e., for = = =(_) and C = C (_) where =C ≥ _ and all adversaries

running in time at most 2
Ω̃ (_)

, the advantage is bounded by a negligible function negl(_)). With this setting of pa-

rameters, we obtain a functional commitment scheme for constant-degree polynomials with the following parameter

sizes:

• Commitment size: A commitment f to an input x ∈ [−�in, �in]ℓ is a matrix f = C ∈ '<×<@ , so

|f | =<2 · (C log@) = $ (=2C log@).

• Opening size: An opening c to a function 5 consists of a vector c = v5 ∈ '<@ so

|c | =< · (C log@) = $ (=C log@).
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We now obtain the following instantiations:

• Integer lattices: If we consider integer lattices (i.e., ' = Z), then C = 1 and = = $̃ (_). In this case, the above

parameter instantiations yield commitments of size $̃ (_2
log ℓ) and openings of size $̃ (_ log ℓ).

• Module lattices: If we consider module lattices, we set C = $̃ (_) and = = $ (1). This yields commitments and

openings with size $̃ (_ log ℓ).

B Functional Commitments for Circuits from ℓ-Succinct SIS
In this section, we show how to adapt the functional commitment scheme from [WW23] to rely on the ℓ-succinct

SIS assumption (Assumption 3.1) instead of the BASISstruct assumption. We start with an informal overview of the

construction from [WW23] and then describe the simple tweak that allows us to base security on the less-structured

ℓ-succinct SIS assumption. We speci�cally consider the “alternative” version described in [WW23, Remark 4.13]:

• The CRS contains A r← Z=×<@ , a matrix W̃ r← Z=ℓ×=@ and a trapdoor T for Bℓ := [Iℓ ⊗ A | W̃G]. We will often

parse

W̃ =


W̃1

...

W̃ℓ

 where W̃8 ∈ Z=×=@ .

• To commit to an input x, the committer samples
V1

...

Vℓ
Ĉ


← B−1

ℓ (−x ⊗ G) .

The commitment isC = GĈ. By construction, for all 8 ∈ [ℓ], AV8 = −W̃8C−G8G. Let C̃ = [−W̃1C | · · · | −W̃ℓC]
and Ṽ = [V1 | · · · | Vℓ ]. Then,

AṼ = C̃ − xT ⊗ G.

• The opening for a function 5 is Ṽ5 := ṼHC̃,5 ,x. To check the opening, the veri�er computes C̃5 from C̃ and

checks that Ṽ5 is short and moreover, AṼ5 = C̃5 − 5 (x) · G. Correctness now follows from Theorem 2.13:

AṼ5 = AṼHC̃,5 ,x = (C̃ − x
T ⊗ G) · HC̃,5 ,x = C̃5 − 5 (x) · G.

Binding then follows from the BASISstruct assumption. In particular, in this setting, the BASISstruct assumption essen-

tially asserts that SIS is hard with respect to A even given a trapdoor for the structured matrix [Iℓ ⊗ A | W̃G].

Basing security on ℓ-succinct SIS. The observation in this work is we can replace W̃G in the above construction

with a uniform matrix W r← Z=ℓ×<@ ; that is, Bℓ := [Iℓ ⊗ A |W]. To commit to an input x, the committer still samples

B−1

ℓ (−x⊗G). The only di�erence is now the commitment C is the full preimage (instead of GĈ as before). This leads

to slight larger commitments (by a log@ factor); see Remark B.8. We now give the full construction and analysis

(which closely follows the corresponding analysis in [WW23]):

Construction B.1 (Succinct Functional Commitment). Let _ be a security parameter and = = =(_),< = <(_), and

@ = @(_) be lattice parameters where @ is prime. Let � = �(_) be a bound. Let j0 = j0 (_), j1 = j1 (_) be Gaussian

width parameters. Let F = {F_}_∈N be a family of Boolean valued functions 5 : {0, 1}ℓ → {0, 1} where each function

5 : {0, 1}ℓ → {0, 1} is a function on inputs of length ℓ = ℓ (_) and which can be computed by a Boolean circuit of

depth at most 3 = 3 (_). We construct a functional commitment ΠVC = (Setup,Commit,Open,Verify) for F as

follows:
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• Setup(1_): On input the security parameter _, the setup algorithm samples (A,R) ← TrapGen(1=, @,<), W r←
Zℓ=×<@ and T← SamplePre( [Iℓ ⊗ A |W], Iℓ ⊗ R,G=ℓ , j0). Finally, it outputs crs = (A,W,T).

• Commit(crs, x): On input the common reference string crs = (A,W,T) and a vector x ∈ {0, 1}ℓ , the commit

algorithm samples a preimage
V1

...

Vℓ
C


← SamplePre( [Iℓ ⊗ A |W],T,−x ⊗ G=, j1). (B.1)

It outputs the commitment f = C = Z<×<@ and the state st = (x,C,V1, . . . ,Vℓ ).

• Eval(crs, st, 5 ): On input the common reference string crs = (A,W,T), a commitment state st = (x,C,V1, . . . ,Vℓ ),
and a function 5 : {0, 1}ℓ → {0, 1}, the evaluation algorithm parses

W =


W1

...

Wℓ

 where W8 ∈ Z=×<@ (B.2)

and sets C̃ ← [−W1C | · · · | −WℓC]. It then computes HC̃,5 ,x ← EvalFX(C̃, 5 , x), and outputs the opening

c5 = V5 ← [V1 | · · · | Vℓ ] · HC̃,5 ,x ∈ Z<×<@ .

• Verify(crs, f, 5 , ~, c): On input the common reference string crs = (A,W,T), a commitment f = C ∈ Z<×<@ , a

function 5 : {0, 1}ℓ → {0, 1}, a value ~ ∈ {0, 1}, and an opening c = V5 ∈ Z<×<@ , the veri�cation algorithm

parses W into W1, . . . ,Wℓ according to Eq. (B.2), computes C̃← [−W1C | · · · | −WℓC], C̃5 ← EvalF(C̃, 5 ),
and outputs 1 if 

V5 

 ≤ � and AV5 = C̃5 − ~G. (B.3)

Correctness and security. The correctness and security analysis of Construction B.1 follow via the same template

as in [WW23]. We include the analysis here for completeness:

Theorem B.2 (Correctness). Suppose = ≥ _,< ≥ $ (= log@), j0 ≥ $ (ℓ< log(=ℓ)), j1 ≥ $ (ℓ3/2<3/2
log(=ℓ) · j0) and

� ≥ <
√
<(ℓ + 1) · (= log@)$ (3) · j1. Then, Construction B.1 is correct.

Proof. Take a security parameter _, a function 5 ∈ F_ , and an input x ∈ {0, 1}ℓ . Let crs = (A,W,T) ← Setup(1_)
and (f, st) ← Commit(crs, x) where f = C ∈ Z<×<@ and st = (x,C,V1, . . . ,Vℓ ). Let c = V5 ← Eval(crs, st, 5 ) and

consider Verify(crs, f, 5 , 5 (x), c):

• By Theorem 2.8 and Lemma 2.5, for < ≥ $ (= log@) and j0 ≥ <(ℓ + 1) · l (
√

log=ℓ) = $ (ℓ< log(=ℓ)). then

[Iℓ ⊗ A |W]T = G=ℓ and ‖T‖ ≤
√
<(ℓ + 1)j0 with overwhelming probability.

• Suppose j1 ≥ <(ℓ + 1) ‖T‖ · l (
√

log(=ℓ)) = $ (ℓ3/2<3/2
log(=ℓ) · j0). By construction of (V1, . . . ,Vℓ ,C),

AV8 +W8C = −G8G.

Let C̃ = [−W1C | · · · | −WℓC] and Ṽ = [V1 | · · · | Vℓ ]. Then,

C̃ − xT ⊗ G = A[V1 | · · · | Vℓ ] = AṼ. (B.4)

Let �0 =
√
<(ℓ + 1) · j1 be the “initial” noise bound. By Lemma 2.5, ‖V8 ‖ ≤

√
<(ℓ + 1)j1 = �0 and so ‖Ṽ‖ ≤ �0.

• By construction of Eval, we have that V5 = Ṽ · HC̃,5 ,x where HC̃,5 ,x ← EvalFX(C̃, 5 , x). By Theorem 2.13,

HC̃,5 ,x



 ≤ (= log@)$ (3) , so ‖V5 ‖ ≤ < · �0 · (= log@)$ (3) ≤ j1 ·<
√
<(ℓ + 1) · (= log@)$ (3) .
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• Again appealing to Theorem 2.13 and Eq. (B.4), we can write

AV5 = AṼHC̃,5 ,x = (C̃ − x
T ⊗ G) · HC̃,5 ,x = C̃5 − 5 (x) · G,

where C̃ = EvalF(C̃, 5 ). Correspondingly, Verify(crs, f, 5 , 5 (x), c) outputs 1. �

Theorem B.3 (Binding). Suppose = ≥ _,< ≥ $ (= log@), j0 ≥ $ (ℓ< log(=ℓ)), and V ≥ 2�<3/2
log=. Then, under the

ℓ-succinct SIS assumption with parameters (=,<,@, j0, V), Construction B.1 is computationally binding.

Proof. We proceed via a hybrid argument:

• Hyb
0
: This is the real binding experiment:

– The challenger samples (A,R) ← TrapGen(1=, @,<), W r← Zℓ=×<@ , and T← SamplePre( [Iℓ ⊗A |W], Iℓ ⊗
R,G=ℓ , j0) and gives crs =

(
A,W,T

)
to the adversary A. Let W1, . . . ,Wℓ ∈ Z=×<@ be the components of

W according to Eq. (B.2).

– Algorithm A outputs a commitment C ∈ Z<×<@ , a function 5 ∈ F_ , and openings V0,V1 ∈ Z<×<@ .

– The output of the experiment is 1 if ‖V0‖ , ‖V1‖ ≤ �, AV0 = C̃5 , and AV1 = C̃5 − G, where C̃5 ←
EvalF(C̃, 5 ), and C̃ = [−W1C | · · · | −WℓC]. Otherwise, the experiments outputs 0.

• Hyb
1
: Same as Hyb

0
except after constructing the matrix the challenger samples T ← [Iℓ ⊗ A | W]−1

j0

(G=ℓ )
without using the trapdoor R. The CRS is now independent of R.

• Hyb
2
: Same as Hyb

1
except the challenger samples A r← Z=×<@ .

For an adversary A, we write Hyb8 (A) to denote the output of an execution of Hyb8 with adversary A. We now

show that each adjacent pair of experiments are computationally indistinguishable.

Lemma B.4. Suppose = ≥ _, < ≥ $ (= log@), and j0 ≥ $ (ℓ< log(=ℓ)). Then, for all adversaries A, Hyb
0
(A) B≈

Hyb
1
(A).

Proof. The only di�erence between Hyb
0

and Hyb
1

is the distribution of T. In Hyb
0
, the challenger samples T ←

SamplePre( [Iℓ ⊗ A | W], Iℓ ⊗ R,G=ℓ , j0). By Theorem 2.8, for < ≥ $ (= log@) and j0 ≥ <(ℓ + 1) · l (
√

log=ℓ) =
$ (ℓ< log(=ℓ)), the distribution of T is statistically close to the distribution [Iℓ ⊗ A |W]−1

j0

(G=ℓ ), which is the distri-

bution of T in Hyb
1
. �

Lemma B.5. Suppose = ≥ _ and< ≥ $ (= log@). Then, for all adversaries A, Hyb
1
(A) B≈ Hyb

2
(A).

Proof. The only di�erence between Hyb
1

andHyb
2

is the distribution of A. InHyb
1
, the challenger samples (A,R) ←

TrapGen(1=, @,<). By Theorem 2.8, the distribution of A is statistically close to A r← Z=×<@ . �

Lemma B.6. Suppose V ≥ 2�<3/2
log=. Under the ℓ-succinct SIS assumption with parameters (=,<,@, j0, V), for all

e�cient adversaries A, Pr[Hyb
2
(A) = 1] = negl(_).

Proof. Suppose there exists an e�cient adversaryA where Pr[Hyb
2
(A) = 1] = Y for some non-negligible Y. We use

A to construct an adversary B for the ℓ-succinct SIS assumption:

1. Algorithm B receives a challenge A ∈ Z=×<@ , W ∈ Z=ℓ×<@ , and T ∈ Z< (ℓ+1)×ℓ<@ . Algorithm B gives crs =

(A,W,T) to A.

2. Algorithm A outputs a commitment C ∈ Z=×<@ , a function 5 ∈ F_ , and openings V0,V1 ∈ Z<×<@ .

3. Algorithm B outputs x← SamplePre(A,V0 − V1, 0, B ′) where B ′ = 2�< log=.

By construction, algorithmB perfectly simulates the common reference string according to the speci�cation of Hyb
2
.

Thus, with probability Y, ‖V0‖ , ‖V1‖ ≤ �, AV0 = C̃5 , AV1 = C̃5 − G. This means that A(V0 − V1) = G, so V0 − V1 is

a trapdoor for A. By Theorem 2.8, the distribution of x is statistically close to A−1

B′ (0). By Lemma 2.6, x is non-zero

with probability 1 − negl(=). Finally, by Lemma 2.5, ‖x‖ ≤
√
<B ′ = V , and the claim holds. �

Combining Lemmas B.4 to B.6, the functional commitment scheme is computationally binding. �
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Parameter instantiations. We can instantiate the parameters for Construction B.1 as in [WW23]. Speci�cally,

let F = {F_}_∈N be a family of functions 5 : {0, 1}ℓ → {0, 1} on inputs of length ℓ = ℓ (_) and which can be computed

by Boolean circuits of depth at most 3 = 3 (_). We instantiate the parameters in Construction B.1 as follows:

• Let Y > 0 be a constant. We set the lattice dimension = = 31/Y · poly(_) and< = $ (= log@).

• We set j0 = $ (ℓ< log(=ℓ)) and j1 = $ (ℓ3/2<3/2
log(=ℓ) · j0) = $ (ℓ5/2<5/2

log
2 (=ℓ)).

• We set the bound � = j1 ·<
√
<(ℓ + 1) · (= log@)$ (3) = ℓ3

log
2 ℓ · (= log@)$ (3) .

• We set the modulus @ so that the ℓ-succinct SIS assumption holds with parameters (=,<,@, j0, V), where

V = 2�<3/2
log= = ℓ3

log
2 ℓ · (= log@)$ (3) = 2

$̃ (3) = 2
$̃ (=Y ) ,

where we write $̃ (·) to suppress polylogarithmic factors in _, 3 , and ℓ . With this instantiation, log@ =

poly(31/Y , log _, log ℓ), and we are relying on ℓ-succinct SIS with sub-exponential noise bound.

With this setting of parameters, we obtain a functional commitment scheme for F with the following properties:

Corollary B.7 (Succinct Vector Commitment from ℓ-Succinct SIS). Let _ be a security parameter, and let F = {F_}_∈N
be a family of functions 5 : {0, 1}ℓ → {0, 1} on inputs of length ℓ = ℓ (_) and which can be computed by Boolean circuits
of depth at most 3 = 3 (_). Under the ℓ-succinct SIS assumption with a sub-exponential norm bound V = 2

$̃ (1/Y) for some
constant Y > 0 and lattice dimension = = =(_), there exists a succinct functional commitment scheme for F . Both the
size of the commitment and the opening are poly(_, 31/Y , log ℓ), and the CRS has size ℓ2 · poly(_, 31/Y , log ℓ).

Remark B.8 (Comparison with [WW23]). As noted above, Construction B.1 is identical to [WW23, Remark 4.13]

except the CRS contains a trapdoor for the matrix [Iℓ ⊗ A | W] where W r← Z=ℓ×<@ is uniform. In [WW23], the

corresponding matrix W := W̃G is structured, where W̃ r← Z=ℓ×=@ . Replacing W with a uniform matrix yields a

construction with essentially the same e�ciency as the construction of [WW23] while enabling a reduction to the

weaker ℓ-succinct SIS assumption rather than theBASISstruct assumption. Previously, [Wee23] showed that ℓ-succinct

SIS implies the BASISstruct assumption. The drawback of Construction B.1 is that the commitments are longer than

those in [WW23] by a log@ factor. In [WW23], because W := W̃G, we can take the commitment C̃ ∈ Z<×<@ and

“pre-multiply” by G. Namely, the commitment in [WW23] is C := GC̃ ∈ Z=×<@ . In contrast, when W is uniform,

we cannot compress C̃ anymore. Thus, in Construction B.1, the commitments are<-by-< matrices over Z@ . Since

< = = log@, the commitments in Construction B.1 are larger by a factor log@ = poly(31/Y , log _, log ℓ).
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