Adaptively-Sound SNARGs for NP from Indistinguishability Obfuscation

David Wu

based on joint works with Brent Waters

NP relation $\mathcal R$ (with related language $\mathcal L$)

Completeness: *Honest prover convinces honest verifier of true statements* $\forall (x, w) \in \mathcal{R} : \Pr[\text{Verify(crs}, x, \pi) = 1 : \pi \leftarrow \text{Prove(crs}, x, w)] = 1$

Succinctness: *Proof is much shorter than sending NP witness* $|\pi| = \text{poly}(\lambda, \log |\mathcal{R}|)$

NP relation $\mathcal R$ (with related language $\mathcal L$)

Soundness: *Efficient prover should not be able to convince verifier of a false statement* Notion should be **adaptive**: prover can choose which statement it proves **after** it sees the CRS

NP relation $\mathcal R$ (with related language $\mathcal L$)

Soundness: *Efficient prover should not be able to convince verifier of a false statement*

Non-adaptive soundness: relaxation where prover has to declare the statement **before** seeing the CRS

NP relation $\mathcal R$ (with related language $\mathcal L$)

Soundness: *Efficient prover should not be able to convince verifier of a false statement* Non-adaptive soundness \Rightarrow adaptive soundness (via complexity leveraging) **Complexity leveraging:** $|\pi| = \text{poly}(\lambda, n)$ **Our goal:** $\text{poly}(\lambda, \log |\mathcal{R}|)$

SNARGs for NP

Constructions in idealized models

Generic (or algebraic) group model [Gro16, GWC19, MBKM19, CHMMVW20, Lip24, DMS24, ...]

Random oracle model **andom** oracle model **andom** [Mic94, Val08, BCS16, BBHR19, CMS19, COS20, CY21, ...]

Constructions from knowledge assumptions

[Gro10, BCCT12, GGPR13, BCIOP13, BCPR14, BISW17, ACLMT22, CLM23, …]

Non-adaptively-sound SNARG for NP from falsifiable assumptions

Sahai-Waters [SW14]: non-adaptively-sound SNARG for NP from indistinguishability obfuscation and one-way functions

Jain-Lin-Sahai [JLS21, JLS22]: indistinguishability obfuscation from falsifiable assumptions

Adaptively-sound SNARGs for NP from falsifiable assumptions?

The Gentry-Wichs Separation

"Adaptively-sound SNARGs for NP cannot be reduced to falsifiable assumptions in a black-box manner"

Does **not** rule out reductions that are able to decide the NP relation

Strategy: rely on sub-exponential hardness

- Adversary running in $2^{\lambda^{\varepsilon}}$ time succeeds with negligible advantage
- Suppose NP relation can be decided in time 2^{n^c} for some constant $c > 0$
- Instantiate the scheme with security parameter $\lambda > n^{c/\varepsilon}$

Reductions of iO to falsifiable assumptions run in time $2^{\Omega(\text{input})}$

In Sahai-Waters: obfuscated programs take statement x and witness w as input, so reductions run in time $2^{\Omega(|x|+|w|)}$ and the Gentry-Wichs separation does not apply

The Gentry-Wichs Separation

"Adaptively-sound SNARGs for NP cannot be reduced to falsifiable assumptions in a black-box manner"

Does not rule out reductions that

Strategy: rely on sub-ex

Challenge: The size of the proof cannot grow polynomially with n

Can we offload the entire cost of complexity leveraging

- Adversary running in $\overline{}$ (i.e., the use of sub-exponential hardness) to the CRS?
- Suppose NP relation can be decided in time 2^n for some constant $c > 0$
- Instantiate the scheme with security parameter $\lambda > n^{c/\varepsilon}$

Reductions of iO to falsifiable assumptions run in time $2^{\Omega(\text{input})}$

In Sahai-Waters: obfuscated programs take statement x and witness w as input, so reductions run in time $2^{\Omega(|x|+|w|)}$ and the Gentry-Wichs separation does not apply

Recent Progress in Adaptive Soundness

- [WW24a]: Adaptively-sound SNARGs for NP from sub-exponentially-secure $i\mathcal{O}$, subexponentially-secure one-way functions, and re-randomizable one-way functions (e.g., from discrete log / factoring)
- [MPV24]: Sahai-Waters SNARG (from sub-exponentially-secure $i\mathcal{O}$, sub-exponentiallysecure one-way functions) is adaptively sound in the designated-verifier model
- [WZ24]: Adaptively-sound SNARGs for NP from sub-exponentially-secure $i\mathcal{O}$, subexponentially-secure one-way functions, and lossy functions (e.g., includes LWE)
- [WW24b]: Adaptively-sound SNARGs for NP from sub-exponentially-secure $i\mathcal{O}$, and subexponentially-secure one-way functions

This Talk

- [WW24a]: Adaptively-sound SNARGs for NP from sub-exponentially-secure $i\mathcal{O}$, subexponentially-secure one-way functions, and re-randomizable one-way functions (e.g., from discrete log / factoring)
- [MPV24]: Sahai-Waters SNARG (from sub-exponentially-secure $i\mathcal{O}$, sub-exponentiallysecure one-way functions) is adaptively sound in the designated-verifier model
- [WZ24]: Adaptively-sound SNARGs for NP from sub-exponentially-secure $i\mathcal{O}$, subexponentially-secure one-way functions, and lossy functions (e.g., includes LWE)
- [WW24b]: Adaptively-sound SNARGs for NP from sub-exponentially-secure $i\mathcal{O}$, and subexponentially-secure one-way functions

The Sahai-Waters SNARG

CRS contains **two** obfuscated programs

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 1$, output $\pi = \text{PRF}(k, x)$
- Otherwise, output ⊥

Verify (x, π) :

- If $f(\pi) = f(PRF(k, x))$, output 1
- Otherwise, output 0
- R is an NP relation (fixed)
- PRF is a (puncturable) pseudorandom function
- f is a one-way function
- **PRF key k hard-wired inside both programs**

 $PRF(k, x)$ is a signature on the statement (technically, a MAC)

Check $f(\pi) = f(PRF(k, x))$ instead of $\pi = PRF(k, x)$ to facilitate punctured programming proof

The Sahai-Waters SNARG

CRS contains **two** obfuscated programs

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 1$, output $\pi = \text{PRF}(k, x)$
- Otherwise, output ⊥

Verify (x, π) :

- If $f(\pi) = f(PRF(k, x))$, output 1
- Otherwise, output 0
- $\mathcal R$ is an NP relation (fixed)
- PRF is a (puncturable) pseudorandom function
- f is a one-way function
- PRF key k hard-wired inside both programs

Will rely on indistinguishability obfuscation

if
$$
C_0 \equiv C_1
$$
, then $i\mathcal{O}(C_0) \approx i\mathcal{O}(C_1)$

Obfuscations of two functionally-equivalent programs are computationally indistinguishable

CRS contains **two** obfuscated programs

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 1$, output $\pi = \text{PRF}(k, x)$
- Otherwise, output ⊥

Verify (x, π) :

- If $f(\pi) = f(PRF(k, x))$, output 1
- Otherwise, output 0
- R is an NP relation (fixed)
- PRF is a (puncturable) pseudorandom function
- f is a one-way function
- PRF key k hard-wired inside both programs

Assume PRF is puncturable

Plucture at x^*	Plucture at x^*	Pluctured key $k^{(x^*)}$
-------------------	-------------------	---------------------------

Correctness: $\forall x \neq x^*$: $\text{PRF}(k, x) = \text{PRF}(k^{(x^*)}, x)$

Security: $\text{PRF}(k, x^*)$ is pseudorandom given $k^{(x^*)}$

Non-adaptive soundness: adversary commits to statement x^* at the beginning

Prove (x, w) :

- If $\mathcal{R}(x, w) = 1$, output $\pi = \text{PRF}(k, x)$
- Otherwise, output ⊥

Verify (x, π) :

- If $f(\pi) = f(PRF(k, x))$, output 1
- Otherwise, output 0

Real programs

Non-adaptive soundness: adversary commits to statement x^* at the beginning

Real programs

and hard-code $y^* = \text{PRF}(k, x^*)$

Non-adaptive soundness: adversary commits to statement x^* at the beginning

hard-code $y^* = \text{PRF}(k, x^*)$

Non-adaptive soundness: adversary commits to statement x^* at the beginning

Prove (x, w) :

- If $\mathcal{R}(x, w) = 1$, output $\pi = \text{PRF}(k^{(x^*)}, x)$
- Otherwise, output ⊥

Verify (x, π) :

- If $x = x^*$ and $f(\pi) = f(y^*)$, output 1
- If $x \neq x^*$ and $f(\pi) = f(PRF(k^{(x^*)}, x))$, output 1
- Otherwise, output 0

To win, adversary must produce π such that $f(\pi) = f(y^*)$ where y^* is uniform!

> Such an adversary breaks security of the one-way function!

Sample $y^* \leftarrow \{0,1\}^{\lambda}$

Understanding Sahai-Waters

CRS contains **two** obfuscated programs

 $Prove(x, w)$:

- If $\overline{R(x,w)} = 1$, output $\pi = \text{PRF}(k,x)$
- Otherwise, output ⊥

$\overline{\mathsf{Verify}(x,\pi)}$:

- If $f(\pi) = f(PRF(k, x))$, output 1
- Otherwise, output 0

Key properties:

- Proof in Sahai-Waters is a **preimage** of a one-way function
- Non-adaptive adversary tells us **where** the adversary will invert (i.e., the point x^*)
- Reduction embeds a fresh OWF challenge at x^* , so successful adversary breaks OWF

CRS contains **two** obfuscated programs

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 1$, output $\pi = \text{PRF}(k, x)$
- Otherwise, output ⊥

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

$\overline{\mathsf{Verify}(x,\pi)}$:

- If $f(\pi) = f(PRF(k, x))$, output 1
- Otherwise, output 0

Skipping to the End…

Sahai-Waters (non-adaptively sound)

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 1$, output $\pi = \text{PRF}(k, x)$
- Otherwise, output ⊥

 $\overline{\mathsf{Verify}(x,\pi)}$:

- If $f(\pi) = f(PRF(k, x))$, output 1
- Otherwise, output 0

This talk (adaptively sound)

$Prove(x, w)$:

- If $\mathcal{R}(\overline{x}, \overline{w}) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$

• Output
$$
\pi = (b, \text{PRF}(k_b, x))
$$

Verify (x, π) :

• **Parse**
$$
\pi = (b, y)
$$

• If
$$
y = PRF(k_b, x)
$$
, output 1

Otherwise, output 0

Skipping to the End…

CRS contains **two** obfuscated programs

 $Prove(x, w)$:

Verify (x, π) :

• If $\mathcal{R}(x, w) = 1$, output $\pi = \text{PRF}(k, x)$

• If $f(\pi) = f(PRF(k, x))$, output 1

• Otherwise, output ⊥

Otherwise, output 0

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Attempt 1: Use a single challenge $y^* \leftarrow \{0,1\}^{\lambda}$

CRS contains **two** obfuscated programs

- If $\mathcal{R}(x)$ **ignore for now!** RF(k, x
-

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

 $\overline{\text{Verify}(x,\pi)}$: • If $f(\pi) = f(y^*)$, output 1

• Otherwise, output 0

Attempt 1: Use a single challenge $y^* \leftarrow \{0,1\}^{\lambda}$

Not indistinguishable from real verification program (where there are many distinct targets)

CRS contains **two** obfuscated programs

- If $\mathcal{R}(x)$ **ignore for now!** RF(k, x
-

Verify (x, π) : • If $f(\pi) = f(y^*)$, output 1

• Otherwise, output 0

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Rerandomizable one-way function:

 $\text{Rerand}(y^*; r) \to \tilde{y}$

- Distribution of \tilde{y} identical to fresh challenge
- Solution to \tilde{y} implies solution for y

CRS contains **two** obfuscated programs

- If $\mathcal{R}(x)$ **ignore for now!** RF(k, x
-

Verify (x, π) :

- If $f(\pi) = f(y^*)$, output 1
- Otherwise, output 0

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Rerandomizable one-way function:

 $\text{Rerand}(y^*; r) \to \tilde{y}$

- Distribution of \tilde{y} identical to fresh challenge
- Solution to \tilde{y} implies solution for y^*

Construction from discrete log:

- Discrete log problem: given $y^* = g^x$, find x
- Rerand $(y^*; r)$: Output $y^* \cdot g^r$
- Given z where $g^z = y^* \cdot g^r$ and r, recover $x = z r$

Suffices to have **perfect** random self-reduction

CRS contains **two** obfuscated programs

- If $\mathcal{R}(x)$ **ignore for now!** RF(k, x
-

Verify (x, π) :

- If $f(\pi) = f\big(\mathop{\rm Rerand}\nolimits(y^*; \mathop{\rm PRF}\nolimits(k, x)\big)\big)$, output 1
- Otherwise, output 0

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Attempt 2: Use a different re-randomized challenge on every input

Proof on **any** statement yields a solution to

Problem: how does the honest prover algorithm construct proofs?

The Two-Challenge Approach

CRS contains **two** obfuscated programs

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \overline{\text{PRF}(k_{\text{sel}}, x)}$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Verify (x, π) :

- Parse $\pi = (b, y)$
- If $f(y) = f(PRF(k_b, x))$, output 1
- Otherwise, output 0

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Key idea: Every statement will be associated with **two** challenges and prover program will output solution to one of them

Selector $PRF(k_{\text{sel}},\cdot)$ chooses bit $b \in \{0,1\}$

Both $(0, \text{PRF}(k_0, x))$ and $(1, \text{PRF}(k_1, x))$ are valid proofs, and prover program outputs **one** of them (determined by selector PRF)

Proving Adaptive Security

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary wins if it outputs $x, \pi = (b, y)$ where $f(y) = f(PRF(k_b, x))$

Statements

Proving Adaptive Security

$$
x_1 \leq f(\text{PRF}(k_0, x_1))
$$

\n
$$
x_2 \leq f(\text{PRF}(k_1, x_1))
$$

\n
$$
f(\text{PRF}(k_0, x_2))
$$

\n
$$
f(\text{PRF}(k_1, x_2))
$$

\n
$$
\vdots
$$

$$
x_N \leq f(\text{PRF}(k_0, x_N))
$$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary wins if it outputs $x, \pi = (b, y)$ where $f(y) = f(PRF(k_h, x))$

Take any false statement $x \notin \mathcal{L}$

By PRF security, the value of $PRF(k_{\text{sel}}, x)$ is pseudorandom

If adversary produces a proof $\pi = (b, y)$ on x, then $Pr[b = PRF(k_{\text{sel}}, x)] \approx 1/2$ Otherwise, adversary distinguishes PRF(k_{sel} , x)

Proving Adaptive Security

$$
x_1 \leq f(\text{PRF}(k_0, x_1))
$$

$$
f(\text{PRF}(k_1, x_1))
$$

$$
f(\text{PRF}(k_0, x_2))
$$

$$
f(\text{PRF}(k_1, x_2))
$$

 $\ddot{\bullet}$

 $x_N^{}$ $f\bigl(\text{PRF}(k_0, x_N$ $f\bigl(\mathrm{PRF}(k_1, x_N$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \overline{PRF(k_{\text{sel}}, x)}$

 If adversary produces a produces a produces a produces a produces a produces If

• Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary wins if it outputs $x, \pi = (b, y)$ where $f(y) = f(PRF(k_b, x))$

 Consider adaptive soundness game where adversary By Pressury when the duversary burputs a statement wins only when the adversary outputs a statement x and a proof where $\pi = (b, y)$ and $b \neq \text{PRF}(k_{\text{sel}}, x)$

Only decreases adversary's advantage by factor of 2 Otherwise, adversary distinguishes PRF sel, adversary distinguishes PRF sel, and

$$
x_1 \leftarrow f(\text{PRF}(k_0, x_1))
$$
\n
$$
x_2 \leftarrow f(\text{PRF}(k_1, x_1))
$$
\n
$$
f(\text{PRF}(k_0, x_2))
$$
\n
$$
\vdots
$$
\n
$$
f(\text{PRF}(k_1, x_2))
$$
\n
$$
f(\text{PRF}(k_0, x_N))
$$

 $x_N^{}$ $f\bigl(\mathrm{PRF}(k_1, x_N$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_h, x))$ and $b \neq PRF(k_{\text{sel}}, x)$

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$

Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$ and $b \neq F(k_{\text{sel}}, x)$

Claim: $Pr[Game_1 = 1] \geq$ 1 $\frac{1}{2} \cdot Pr[Game_0 = 1] - negl(\lambda)$

Define event E_i to be the event that prover chooses statement $i \in \{0,1\}^n$

$$
Pr[Game_1 = 1] = \sum_{i \in \{0,1\}^n} Pr[Game_1 = 1 \land E_i] \qquad Pr[Game_0 = 1] = \sum_{i \in \{0,1\}^n} Pr[Game_0 = 1 \land E_i]
$$

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Verify (x, π) :

- Parse $\pi = (b, y)$
- If $f(y) = f(PRF(k_b, x))$, output 1
- Otherwise, output 0

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$

Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$ and $b \neq F(k_{\text{sel}}, x)$

Claim: $Pr[Game_1 = 1] \geq$ 1 $\frac{1}{2} \cdot Pr[Game_0 = 1] - negl(\lambda)$

Define event E_i to be the event that prover chooses statement $i \in \{0,1\}^n$

$$
Pr[Game_1 = 1] = \sum_{i \in \{0,1\}^n} Pr[Game_1 = 1 \land E_i] \qquad Pr[Game_0 = 1] = \sum_{i \in \{0,1\}^n} Pr[Game_0 = 1 \land E_i]
$$

Suffices to show that for all $i \in \{0,1\}^n$:

$$
\Pr[\text{Game}_1 = 1 \land \text{E}_i] \ge \frac{1}{2} \cdot \Pr[\text{Game}_0 = 1 \land \text{E}_i] - \frac{1}{2^n} \cdot \text{negl}(\lambda)
$$

Will require sub-exponential hardness!

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$

Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$ and $b \neq F(k_{\text{sel}}, x)$

Claim: $Pr[Game_1 = 1] \geq$ 1 $\frac{1}{2} \cdot Pr[Game_0 = 1] - negl(\lambda)$

Define event E_i to be the event that prover chooses statement $i \in \{0,1\}^n$

$$
Pr[Game_1 = 1] = \sum_{i \in \{0,1\}^n} Pr[Game_1 = 1 \land E_i] \qquad Pr[Game_0 = 1] = \sum_{i \in \{0,1\}^n} Pr[Game_0 = 1 \land E_i]
$$

Suffices to show that for all $i \in \{0,1\}^n$:

$$
\Pr[\text{Game}_1 = 1 \land \text{E}_i] \ge \frac{1}{2} \cdot \Pr[\text{Game}_0 = 1 \land \text{E}_i] - \frac{1}{2^n} \cdot \text{negl}(\lambda)
$$

Observe: If $i \in \mathcal{L}$, then $Pr[Game_1 = 1 \wedge E_i] = 0 = Pr[Game_0 = 1 \wedge E_i]$

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$ Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$ and $b \neq F(k_{\text{sel}}, x)$ **Claim:** for all $i \notin L$: $Pr[Game_1 = 1 \land E_i] \ge$ 1 $\frac{1}{2} \cdot Pr[Game_0 = 1 \wedge E_i]$ – 1 $\frac{1}{2^n}$ · negl(λ

 $Hyb_{i,0}$ for $i \notin \mathcal{L}$

$$
Pr[Hyb_{i,0} = 1] = Pr[Game_0 = 1 \land E_i]
$$

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Prover wins if it outputs x, b, y where $x \notin L$ and $Verify(x, \pi) = 1$ and $x = i$

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$ Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$ and $b \neq F(k_{\text{sel}}, x)$ **Claim:** for all $i \notin L$: $Pr[Game_1 = 1 \land E_i] \ge$ 1 $\frac{1}{2} \cdot Pr[Game_0 = 1 \wedge E_i]$ – 1 $\frac{1}{2^n}$ · negl(λ

 $Hyb_{i,0}$ for $i \notin \mathcal{L}$

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_b, x))$

 $Hyb_{i,1}$ for $i \notin \mathcal{L}$

 $Prove(x, w)$:

• If $\mathcal{R}(x, w) = 0$ or $x = i$, output \perp

• Compute
$$
b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)
$$

• Output
$$
\pi = (b, \text{PRF}(k_b, x))
$$

Prover wins if it outputs x, b, y where $x \notin L$ and $Verify(x, \pi) = 1$ and $x = i$

 $i\mathcal{O}$

- Pr $[Hyb_{i,0} = 1] = Pr[Game_0 = 1 \wedge E_i$
- $Pr[Hyb_{i,1} = 1] \ge Pr[Hyb_{i,0} = 1] 2^{-n} \cdot negl(\lambda)$ (sub-exponential security of

 $(sub-exponential security of $i\mathcal{O}$)$

$Hyb_{i,0}$ for $i \notin \mathcal{L}$

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_b, x))$

 $Hyb_{i,1}$ for $i \notin \mathcal{L}$

$Prove(x, w)$:

• If $\mathcal{R}(x, w) = 0$ or $x = i$, output \perp

• Compute
$$
b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)
$$

• Output $\pi = (b, \text{PRF}(k_h, x))$

Prover wins if it outputs x, b, y where $x \notin L$ and $Verify(x, \pi) = 1$ and $x = i$

 $i\mathcal{O}$

- Pr $[Hyb_{i,0} = 1] = Pr[Game_0 = 1 \wedge E_i$
- Pr $[Hyb_{i,1} = 1] \ge Pr[Hyb_{i,0} = 1] 2^{-n} \cdot negl(\lambda)$ (sub-exponential security of
- $Pr[Hyb_{i,2} = 1] = \frac{1}{2} \cdot Pr[Hyb_{i,1} = 1]$ $\frac{1}{2} \cdot \Pr[Hyb_{i,1} = 1]$

 $(sub-exponential security of *iO*)$

 $Hyb_{i,2}$ for $i \notin \mathcal{L}$

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$ or $x = i$, output \perp
- Compute $b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)$
- Output $\pi = (b, \text{PRF}(k_b, x))$

 $Hyb_{i,1}$ for $i \notin \mathcal{L}$

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$ or $x = i$, output \perp
- Compute $b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)$
- Output $\pi = \begin{pmatrix} b, \mathrm{PRF}(k_b, x) \end{pmatrix}$, $b' \leftarrow \{0, 1\}$

Prover wins if it outputs x, b, y where $x \notin L$ and $Verify(x, \pi) = 1$ and $x = i$ and $b \neq b'$

- Pr $[Hyb_{i,0} = 1] = Pr[Game_0 = 1 \wedge E_i$
- Pr $[Hyb_{i,1} = 1] \ge Pr[Hyb_{i,0} = 1] 2^{-n} \cdot negl(\lambda)$ (sub-exponential security of
- $Pr[Hyb_{i,2} = 1] = \frac{1}{2} \cdot Pr[Hyb_{i,1} = 1]$ $\frac{1}{2} \cdot \Pr[Hyb_{i,1} = 1]$
- Pr $[Hyb_{i,3} = 1] \ge Pr[Hyb_{i,2} = 1] 2^{-n}$
- $Pr[Hyb_{i,3} = 1] = Pr[Game_1 = 1 \wedge E_i]$

 $(sub-exponential security of $i\mathcal{O}$)$

⋅ Pr Game⁰ = 1 ∧ E − \cdot negl(λ) (sub-exponential security of PRF) \cdot neglection

 $Hyb_{i,2}$ for $i \notin \mathcal{L}$

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$ or $x = i$, output \perp
- Compute $b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)$
- $\overline{\bullet}$ Output $\overline{\pi} = (b, \text{PRF}(k_h, x))$

Hyb_{i.3} for $i \notin L$

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$ or $x = i$, output \perp
- Compute $b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Prover wins if it outputs x, b, y where $x \notin L$ and $Verify(x, \pi) = 1$ and $x = i$ and $b \neq \text{PRF}(k_{\text{sel}}, i)$

PRF

- Pr $[Hyb_{i,0} = 1] = Pr[Game_0 = 1 \wedge E_i]$
- Pr $[Hyb_{i,1} = 1] \ge Pr[Hyb_{i,0} = 1] 2^{-n}$
- Pr[Hyb_{i,2} = 1] = $\frac{1}{2}$ $\frac{1}{2} \cdot \Pr[Hyb_{i,1} = 1]$
- Pr $[Hyb_{i,3} = 1] \ge Pr[Hyb_{i,2} = 1] 2^{-n}$
- $Pr[Hyb_{i,3} = 1] = Pr[Game_1 = 1 \wedge E_i]$

 $(sub-exponential security of $i\mathcal{O}$)$

(sub-exponential security of PRF)

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$

Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin L$ and $Verify(x, \pi) = 1$ and $b \neq F(k_{\text{sel}}, x)$

Claim: for all $i \notin L$: $Pr[Game_1 = 1 \land E_i] \ge$ 1 $\frac{1}{2} \cdot Pr[Game_0 = 1 \wedge E_i]$ – 1 $\frac{1}{2^n}$ · negl(λ **Therefore:** $Pr[Game_1 = 1] \geq$ 1 $\frac{1}{2} \cdot Pr[Game_0 = 1] - negl(\lambda)$

$$
x_1 \leftarrow f(\text{PRF}(k_0, x_1))
$$
\n
$$
x_2 \leftarrow f(\text{PRF}(k_1, x_1))
$$
\n
$$
f(\text{PRF}(k_0, x_2))
$$
\n
$$
\vdots
$$

$$
x_N \sim f(\text{PRF}(k_0, x_N))
$$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_h, x))$ and $b \neq PRF(k_{\text{sel}}, x)$

Observation: Prover program *never* computes $PRF(k_h, x)$

Value is pseudorandom!

$$
x_1 \leftarrow f(\text{PRF}(k_0, x_1))
$$
\n
$$
x_2 \leftarrow f(\text{PRF}(k_1, x_1))
$$
\n
$$
f(\text{PRF}(k_0, x_2))
$$
\n
$$
\vdots
$$

$$
x_N \sim f(\text{PRF}(k_0, x_N))
$$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_h, x))$ and $b \neq PRF(k_{\text{sel}}, x)$

Formally argued using $N = 2^n$ hybrids

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary only wins if it outputs x , b , y where $f(y) = f(PRF(k_h, x))$ and $b \neq PRF(k_{\text{sel}}, x)$

Formally argued using $N = 2^n$ hybrids

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary only wins if it outputs x , b , y where $f(y) = f(PRF(k_h, x))$ and $b \neq PRF(k_{\text{sel}}, x)$

Formally argued using $N = 2^n$ hybrids

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary only wins if it outputs x , b , y where $f(y) = f(PRF(k_h, x))$ and $b \neq PRF(k_{\text{sel}}, x)$

$$
x_1\n\leftarrow\n\begin{array}{c}\nf(\text{PRF}(k_0, x_1)) \\
\text{Rerand}(y^*, \text{PRF}(k_1, x_1)) \\
\text{Rerand}(y^*, \text{PRF}(k_0, x_2)) \\
\vdots \\
\text{Rerand}(y^*, \text{PRF}(k_0, x_N))\n\end{array}
$$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

 $\int f(x) dx$, , where $\int f(x) dx$, where $\int f(x) dx$, and $\int f(x) dx$, where $\int f(x) dx$, where $\int f(x) dx$, and $\int f(x) dx$, where $\int f(x) dx$, where • Parse $\pi = (b, y)$ Verify (x, π) : • Output 1 if • $b = PRF(k_{\text{sel}}, x)$ and $f(y) = f(PRF(k_b, x))$ • $b \neq \text{PRF}(k_{\text{sel}}, x)$ and $f(y) = f\left(\text{Rerand}(y^*; \text{PRF}(k_b, x))\right)$ • Otherwise, output 0

 y^* is a random instance for the OWF

$$
x_1 \sum_{\text{Rerand}(y^*; \text{PRF}(k_1, x_1))} f(\text{PRF}(k_1, x_1))
$$
\n
$$
x_2 \sum_{f(\text{PRF}(k_1, x_2))} f(\text{PRF}(k_1, x_2))
$$

$$
\boldsymbol{x}_N \qquad \qquad \text{Rerand}(y^*; \text{PRF}(k_0, x_N)) \qquad \qquad \text{F}(\text{PRF}(k_1, x_N))
$$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \overline{\text{PRF}(k_{\text{sel}}, x)}$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_h, x))$ and $b \neq PRF(k_{\text{sel}}, x)$

Adversary only wins if it outputs x, b, y where $f(y) = f\left(\mathop{\rm Rerand}\nolimits\bigl(y^*; \mathop{\rm PRF}\nolimits(k_b, x)\bigr)\right)$ and $b\neq \mathop{\rm PRF}\nolimits(k_{\mathop{\rm sel}\nolimits}, x)$

$$
x_1 \leftarrow f(\text{PRF}(k_0, x_1))
$$
\n
$$
x_2 \leftarrow \text{Rerand}(y^*; \text{PRF}(k_1, x_1))
$$
\n
$$
f(\text{PRF}(k_1, x_2))
$$

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}
$$

$$
\mathcal{X}_N
$$
 $\left(\text{Per}(\mathcal{K}_1, \mathcal{K}_N)\right)$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

• If $\mathcal{R}(x, w) = 0$, output \perp

• Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$

• Output
$$
\pi = (b, \text{PRF}(k_b, x))
$$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_b, x))$ and $b \neq PRF(k_{\text{sel}}, x)$

By the rerandomization property, any such y yields a preimage of the challenge y^*

 A where \overline{A} where \overline{A}

 $f(y) = f\left(\mathop{\rm Rerand}\nolimits\bigl(y^*; \mathop{\rm PRF}\nolimits(k_b, x)\bigr)\right)$ and $b\neq \mathop{\rm PRF}\nolimits(k_{\mathop{\rm sel}\nolimits}, x)$

$$
x_1 \leftarrow f(\text{PRF}(k_0, x_1))
$$
\n
$$
x_2 \leftarrow \text{Rerand}(y^*; \text{PRF}(k_1, x_1))
$$
\n
$$
f(\text{PRF}(k_1, x_2))
$$

 $\overline{\mathcal{X}}_N$. Rerand $(y^*; \mathsf{PRF}(k_0, x_N))$ $f\bigl(\mathrm{PRF}(k_1, x_N$

Verification targets

 $\ddot{\bullet}$

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_b, x))$

 $\sum_{i=1}^{n}$ $P(1)$ proof is a bit and a single premiage of the O . Final proof is a bit and a single preimage of the OWF: poly(λ) bits, independent of n

 CDC size is not $\left(\frac{1}{2}n\right)$ = nocessary to absorb the put upper grow with $\log p$ increased γ to discrete the $N - 2^n$ hybrids or portential secarity ressuredned by the α exponential CRS size is $\text{poly}(\lambda,n)$ – necessary to absorb the exponential security loss incurred by the $N = 2^n$ hybrids

complexity leveraging

Previous approach needed the OWF to be statistically rerandomizable

Rerandomizability seems to be an *algebraic* property (not known how to build from $i\mathcal{O}$ and OWFs) Waters-Zhandry [WZ24]: Can relax rerandomizable PRF to a lossy function Lossy functions also not known from $i\mathcal{O}$ and OWFs

Can we get adaptive soundness just from iO and OWFs?

 y is a valid proof for $x_{\widetilde t}$ if it corresponds to one of the two paths

$$
x_1 \longrightarrow y = \text{PRF}(k_0, x_1)
$$
\n
$$
y = \text{PRF}(k_1, x_1)
$$
\n
$$
y = \text{PRF}(k_1, x_1)
$$
\n
$$
y = \text{PRF}(k_1, x_2)
$$
\n
$$
\vdots
$$
\n
$$
y = \text{PRF}(k_1, x_1)
$$
\n
$$
x_N \longrightarrow y = \text{PRF}(k_1, x_N)
$$

First, rewrite $y = PRF(k_h, x_i)$ as $y \oplus \text{PRF}(k_b, x_i) \oplus y^* = y^*$

$$
x_1 \longrightarrow y = \text{PRF}(k_0, x_1)
$$

\n
$$
y \oplus \text{PRF}(k_1, x_1) \oplus y^* = y^*
$$

\n
$$
y \oplus \text{PRF}(k_0, x_2) \oplus y^* = y^*
$$

\n
$$
y = \text{PRF}(k_1, x_2)
$$

\n
$$
y \oplus \text{PRF}(k_0, x_N) \oplus y^* = y^*
$$

\n
$$
y = \text{PRF}(k_1, x_N)
$$

First, rewrite $y = PRF(k_h, x_i)$ as $y \oplus \text{PRF}(k_b, x_i) \oplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \oplus \mathrm{PRF}(k_b, x) \oplus y^* = y^*$ and $b \neq \mathrm{PRF}(k_{\mathrm{sel}}, x)$

Prover program *never* computes $PRF(k_h, x)$

By punctured PRF security: $PRF(k_b, x) \bigoplus y^* \approx PRF(k_b, x)$

$$
x_1 \longrightarrow y = \text{PRF}(k_0, x_1)
$$

\n
$$
y \oplus \text{PRF}(k_1, x_1) = y^*
$$

\n
$$
y \oplus \text{PRF}(k_0, x_2) \oplus y^* = y^*
$$

\n
$$
y = \text{PRF}(k_1, x_2)
$$

\n
$$
\vdots
$$

\n
$$
y \oplus \text{PRF}(k_0, x_N) \oplus y^* = y^*
$$

\n
$$
y = \text{PRF}(k_1, x_N)
$$

First, rewrite $y = PRF(k_h, x_i)$ as $y \oplus \text{PRF}(k_b, x_i) \oplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \oplus \mathrm{PRF}(k_b, x) \oplus y^* = y^*$ and $b \neq \mathrm{PRF}(k_{\mathrm{sel}}, x)$

Prover program *never* computes $PRF(k_h, x)$

By punctured PRF security: $PRF(k_b, x) \bigoplus y^* \approx PRF(k_b, x)$

∗

$$
y = \text{PRF}(k_0, x_1)
$$
\n
$$
y \oplus \text{PRF}(k_1, x_1) = y^*
$$
\n
$$
y \oplus \text{PRF}(k_0, x_2) = y^*
$$
\n
$$
y = \text{PRF}(k_1, x_2)
$$
\n
$$
\vdots
$$
\n
$$
y \oplus \text{PRF}(k_0, x_N) \oplus y^* = y
$$
\n
$$
y = \text{PRF}(k_1, x_N)
$$

First, rewrite $y = PRF(k_h, x_i)$ as $y \oplus \text{PRF}(k_b, x_i) \oplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \oplus \mathrm{PRF}(k_b, x) \oplus y^* = y^*$ and $b \neq \mathrm{PRF}(k_{\mathrm{sel}}, x)$

Prover program *never* computes $PRF(k_h, x)$

By punctured PRF security: $PRF(k_b, x) \bigoplus y^* \approx PRF(k_b, x)$

$$
y = \text{PRF}(k_0, x_1)
$$
\n
$$
y \oplus \text{PRF}(k_1, x_1) = y^*
$$
\n
$$
y \oplus \text{PRF}(k_0, x_2) = y^*
$$
\n
$$
y = \text{PRF}(k_1, x_2)
$$
\n
$$
\vdots
$$
\n
$$
y \oplus \text{PRF}(k_0, x_N) = y^*
$$
\n
$$
y = \text{PRF}(k_1, x_N)
$$

"off-path" verification targets

First, rewrite $y = PRF(k_h, x_i)$ as $y \oplus \text{PRF}(k_b, x_i) \oplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \oplus \mathrm{PRF}(k_b, x) \oplus y^* = y^*$ and $b \neq \mathrm{PRF}(k_{\mathrm{sel}}, x)$

Prover program *never* computes $PRF(k_h, x)$

By punctured PRF security: $PRF(k_b, x) \bigoplus y^* \approx PRF(k_b, x)$

$$
y = \text{PRF}(k_0, x_1)
$$
\n
$$
y \oplus \text{PRF}(k_1, x_1) = y^*
$$
\n
$$
y \oplus \text{PRF}(k_0, x_2) = y^*
$$
\n
$$
y = \text{PRF}(k_1, x_2)
$$
\n
$$
\vdots
$$
\n
$$
y \oplus \text{PRF}(k_0, x_N) = y^*
$$
\n
$$
y = \text{PRF}(k_1, x_N)
$$

"off-path" verification targets

First, rewrite $y = PRF(k_h, x_i)$ as $y \oplus \text{PRF}(k_b, x_i) \oplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \oplus \mathrm{PRF}(k_b, x) \oplus y^* = y^*$ and $b \neq \mathrm{PRF}(k_{\mathrm{sel}}, x)$

Prover program *never* computes $PRF(k_h, x)$

By punctured PRF security: $PRF(k_b, x) \bigoplus y^* \approx PRF(k_b, x)$

Let f be an injective OWF Then $z = z' \Leftrightarrow f(z) = f(z')$

$$
x_1 \longrightarrow f(y \oplus \text{PRF}(k_0, x_1)) = f(y^*)
$$

\n
$$
f(y \oplus \text{PRF}(k_1, x_1)) = f(y^*)
$$

\n
$$
y = \text{PRF}(k_1, x_2)
$$

\n
$$
\vdots
$$

\n
$$
f(y \oplus \text{PRF}(k_1, x_2)) = f(y^*)
$$

\n
$$
f(y \oplus \text{PRF}(k_0, x_N)) = f(y^*)
$$

\n
$$
y = \text{PRF}(k_1, x_N)
$$

"off-path" verification targets

First, rewrite $y = PRF(k_h, x_i)$ as $y \oplus \text{PRF}(k_b, x_i) \oplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \oplus \mathrm{PRF}(k_b, x) \oplus y^* = y^*$ and $b \neq \mathrm{PRF}(k_{\mathrm{sel}}, x)$

Prover program *never* computes $PRF(k_h, x)$

By punctured PRF security: $PRF(k_b, x) \bigoplus y^* \approx PRF(k_b, x)$

Let f be an injective OWF Then $z = z' \Leftrightarrow f(z) = f(z')$

$$
x_1 \longrightarrow f(y \oplus \text{PRF}(k_0, x_1))
$$

\n
$$
f(y \oplus \text{PRF}(k_1, x_1)) = f(y^*)
$$

\n
$$
f(y \oplus \text{PRF}(k_0, x_2)) = f(y^*)
$$

\n
$$
\vdots
$$

\n
$$
f(y \oplus \text{PRF}(k_1, x_2))
$$

\n
$$
f(y \oplus \text{PRF}(k_0, x_N)) = f(y^*)
$$

\n
$$
y = \text{PRF}(k_1, x_N)
$$

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Adversary only wins if it outputs x, b, y where $f(y \oplus \mathrm{PRF}(k_b, x)) = f(y^*)$ and $b \neq \mathrm{PRF}(k_{\mathrm{sel}}, x)$

Adversary only wins if it outputs an **encryption** of a preimage to $f(y^*)$; reduction only needs a "off-path" verification targets $\qquad \qquad$ single instance $f(y^*)$ of the OWF!

Summary

CRS contains **two** obfuscated programs

 $Prove(x, w)$:

- If $\mathcal{R}(x, w) = 0$, output \perp
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_h, x))$

Verify (x, π) :

- Parse $\pi = (b, y)$
- If $y = PRF(k_h, x)$, output 1
- Otherwise, output 0

Scheme relies on sub-exponential secure $i\mathcal{O}$ and sub-exponential secure OWFs

Construction as described relies on **injective** one-way function

 $[BPW16]: i\mathcal{O} + OWFs \Rightarrow$ (keyed) injective OWFs

Alternatively, observe that injective one-way function only shows up in the security proof

Suffices to build injective OWF with an *inefficient* sampler (implied by vanilla OWFs)

[see paper for details]

Summary

This work: Adaptively-sound SNARGs for NP from sub-exponentially-secure $i\mathcal{O}$ and subexponentially-secure one-way functions

Large CRS ($|{\rm crs}| = \text{poly}(\lambda, |\mathcal{R}|)$), short proofs ($|\pi| = \text{poly}(\lambda)$)

Reduction to falsifiable assumptions runs in time $2^{\Omega(|x|+|w|)}$

Upcoming work [DWW24]**:** fully succinct SNARGs for batch NP from sub-exponentially-secure $i\mathcal{O}$, sub-exponentially secure one-way functions, and rerandomizable one-way functions

Open problems:

- Adaptively-sound SNARGs for NP without $i\mathcal{O}$ (e.g., from LWE)?
- Non-adaptively-sound SNARGs for NP from a polynomial-time falsifiable assumption?

(or extend Gentry-Wichs to rule this out)

Thank you!