
Adaptively-Sound SNARGs for NP from
Indistinguishability Obfuscation

David Wu
based on joint works with Brent Waters

Succinct Non-Interactive Arguments (SNARGs)

prover verifier

Completeness: Honest prover convinces honest verifier of true statements

 ∀ 𝑥, 𝑤 ∈ ℛ ∶ Pr Verify crs, 𝑥, 𝜋 = 1 ∶ 𝜋 ← Prove crs, 𝑥, 𝑤 = 1

(𝑥, 𝜋)

common reference string (crs)

NP relation ℛ (with related language ℒ)

Succinctness: Proof is much shorter than sending NP witness

 𝜋 = poly 𝜆, log ℛ

Succinct Non-Interactive Arguments (SNARGs)

prover verifier

Soundness: Efficient prover should not be able to convince verifier of a false statement

crs ← Setup 1𝜆

NP relation ℛ (with related language ℒ)

(𝑥, 𝜋)

Notion should be adaptive: prover can choose which statement it proves after it sees the CRS

Succinct Non-Interactive Arguments (SNARGs)

prover verifier

Soundness: Efficient prover should not be able to convince verifier of a false statement

crs ← Setup 1𝜆

NP relation ℛ (with related language ℒ)

𝜋

Non-adaptive soundness: relaxation where prover has to declare the statement before
seeing the CRS

𝑥 ∈ 0,1 𝑛

Succinct Non-Interactive Arguments (SNARGs)

prover verifier

Soundness: Efficient prover should not be able to convince verifier of a false statement

crs ← Setup 1𝜆

NP relation ℛ (with related language ℒ)

𝜋

Non-adaptive soundness ⇏ adaptive soundness (via complexity leveraging)

𝑥 ∈ 0,1 𝑛

Complexity leveraging: 𝜋 = poly 𝜆, 𝑛 Our goal: poly 𝜆, log ℛ

SNARGs for NP

Constructions in idealized models

Random oracle model [Mic94, Val08, BCS16, BBHR19, CMS19, COS20, CY21, …]

Generic (or algebraic) group model [Gro16, GWC19, MBKM19, CHMMVW20, Lip24, DMS24, …]

Constructions from knowledge assumptions
[Gro10, BCCT12, GGPR13, BCIOP13, BCPR14, BISW17, ACLMT22, CLM23, …]

Non-adaptively-sound SNARG for NP from falsifiable assumptions

Sahai-Waters [SW14]: non-adaptively-sound SNARG for NP from indistinguishability
obfuscation and one-way functions

Jain-Lin-Sahai [JLS21, JLS22]: indistinguishability obfuscation from falsifiable assumptions

Adaptively-sound SNARGs for NP from falsifiable assumptions?

The Gentry-Wichs Separation

“Adaptively-sound SNARGs for NP cannot be reduced to
falsifiable assumptions in a black-box manner”

Does not rule out reductions that are able to decide the NP relation

Strategy: rely on sub-exponential hardness

• Adversary running in 2𝜆𝜀
 time succeeds with negligible advantage

• Suppose NP relation can be decided in time 2𝑛𝑐
 for some constant 𝑐 > 0

• Instantiate the scheme with security parameter 𝜆 > 𝑛𝑐/𝜀

Reductions of 𝑖𝒪 to falsifiable assumptions run in time 2Ω input

In Sahai-Waters: obfuscated programs take statement 𝑥 and witness 𝑤 as input, so

reductions run in time 2Ω 𝑥 + 𝑤 and the Gentry-Wichs separation does not apply

The Gentry-Wichs Separation

“Adaptively-sound SNARGs for NP cannot be reduced to
falsifiable assumptions in a black-box manner”

Does not rule out reductions that is able to decide the NP relation

Strategy: rely on sub-exponential hardness

• Adversary running in 2𝜆𝜀
 time succeeds with negligible advantage

• Suppose NP relation can be decided in time 2𝑛𝑐
 for some constant 𝑐 > 0

• Instantiate the scheme with security parameter 𝜆 > 𝑛𝑐/𝜀

Reductions of 𝑖𝒪 to falsifiable assumptions run in time 2Ω input

In Sahai-Waters: obfuscated programs take statement 𝑥 and witness 𝑤 as input, so

reductions run in time 2Ω 𝑥 + 𝑤 and the Gentry-Wichs separation does not apply

Challenge: The size of the proof cannot grow
polynomially with 𝑛

Can we offload the entire cost of complexity leveraging
(i.e., the use of sub-exponential hardness) to the CRS?

Recent Progress in Adaptive Soundness

[WW24a]: Adaptively-sound SNARGs for NP from sub-exponentially-secure 𝑖𝒪, sub-
exponentially-secure one-way functions, and re-randomizable one-way
functions (e.g., from discrete log / factoring)

[WZ24]: Adaptively-sound SNARGs for NP from sub-exponentially-secure 𝑖𝒪, sub-
exponentially-secure one-way functions, and lossy functions (e.g., includes LWE)

[WW24b]: Adaptively-sound SNARGs for NP from sub-exponentially-secure 𝑖𝒪, and sub-
exponentially-secure one-way functions

[MPV24]: Sahai-Waters SNARG (from sub-exponentially-secure 𝑖𝒪, sub-exponentially-
secure one-way functions) is adaptively sound in the designated-verifier model

This Talk

[WW24a]: Adaptively-sound SNARGs for NP from sub-exponentially-secure 𝑖𝒪, sub-
exponentially-secure one-way functions, and re-randomizable one-way
functions (e.g., from discrete log / factoring)

[WZ24]: Adaptively-sound SNARGs for NP from sub-exponentially-secure 𝑖𝒪, sub-
exponentially-secure one-way functions, and lossy functions (e.g., includes LWE)

[WW24b]: Adaptively-sound SNARGs for NP from sub-exponentially-secure 𝑖𝒪, and sub-
exponentially-secure one-way functions

[MPV24]: Sahai-Waters SNARG (from sub-exponentially-secure 𝑖𝒪, sub-exponentially-
secure one-way functions) is adaptively sound in the designated-verifier model

The Sahai-Waters SNARG

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

• ℛ is an NP relation (fixed)
• PRF is a (puncturable) pseudorandom function
• 𝑓 is a one-way function
• PRF key 𝑘 hard-wired inside both programs

PRF 𝑘, 𝑥 is a signature on the
statement (technically, a MAC)

Check 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 instead

of 𝜋 = PRF 𝑘, 𝑥 to facilitate
punctured programming proof

CRS contains two obfuscated programs

The Sahai-Waters SNARG

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

• ℛ is an NP relation (fixed)
• PRF is a (puncturable) pseudorandom function
• 𝑓 is a one-way function
• PRF key 𝑘 hard-wired inside both programs

Will rely on indistinguishability obfuscation

if 𝐶0 ≡ 𝐶1, then 𝑖𝒪 𝐶0 ≈ 𝑖𝒪 𝐶1

Obfuscations of two functionally-equivalent
programs are computationally indistinguishable

CRS contains two obfuscated programs

Non-Adaptive Soundness for Sahai-Waters

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

• ℛ is an NP relation (fixed)
• PRF is a (puncturable) pseudorandom function
• 𝑓 is a one-way function
• PRF key 𝑘 hard-wired inside both programs

Assume PRF is puncturable

PRF key 𝑘

Puncture at 𝑥∗

Punctured key 𝑘 𝑥∗

Correctness: ∀𝑥 ≠ 𝑥∗: PRF 𝑘, 𝑥 = PRF 𝑘 𝑥∗
, 𝑥

Security: PRF 𝑘, 𝑥∗ is pseudorandom given 𝑘 𝑥∗

CRS contains two obfuscated programs

Non-Adaptive Soundness for Sahai-Waters

Non-adaptive soundness: adversary commits to statement 𝑥∗ at the beginning

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

Real programs

Non-Adaptive Soundness for Sahai-Waters

Non-adaptive soundness: adversary commits to statement 𝑥∗ at the beginning

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

Real programs

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘 𝑥∗

, 𝑥

• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑥 = 𝑥∗ and 𝑓 𝜋 = 𝑓 𝑦∗ , output 1

• If 𝑥 ≠ 𝑥∗ and 𝑓 𝜋 = 𝑓 PRF(𝑘 𝑥∗
, 𝑥 , output 1

• Otherwise, output 0

Replace 𝑘 with punctured key 𝑘 𝑥∗
 and

hard-code 𝑦∗ = PRF 𝑘, 𝑥∗

𝑖𝒪 security

Relies on the fact that 𝑥∗ ∉ ℒ

Non-Adaptive Soundness for Sahai-Waters

Non-adaptive soundness: adversary commits to statement 𝑥∗ at the beginning

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘 𝑥∗

, 𝑥

• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑥 = 𝑥∗ and 𝑓 𝜋 = 𝑓 𝑦∗ , output 1

• If 𝑥 ≠ 𝑥∗ and 𝑓 𝜋 = 𝑓 PRF(𝑘 𝑥∗
, 𝑥 , output 1

• Otherwise, output 0

Replace 𝑘 with punctured key 𝑘 𝑥∗
 and

hard-code 𝑦∗ = PRF 𝑘, 𝑥∗

Relies on the fact that 𝑥∗ ∉ ℒ

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘 𝑥∗

, 𝑥

• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑥 = 𝑥∗ and 𝑓 𝜋 = 𝑓 𝑦∗ , output 1

• If 𝑥 ≠ 𝑥∗ and 𝑓 𝜋 = 𝑓 PRF(𝑘 𝑥∗
, 𝑥 , output 1

• Otherwise, output 0

PRF security

Sample 𝑦∗ ← 0,1 𝜆

Non-Adaptive Soundness for Sahai-Waters

Non-adaptive soundness: adversary commits to statement 𝑥∗ at the beginning

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘 𝑥∗

, 𝑥

• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑥 = 𝑥∗ and 𝑓 𝜋 = 𝑓 𝑦∗ , output 1

• If 𝑥 ≠ 𝑥∗ and 𝑓 𝜋 = 𝑓 PRF(𝑘 𝑥∗
, 𝑥 , output 1

• Otherwise, output 0

Sample 𝑦∗ ← 0,1 𝜆

To win, adversary must produce 𝜋 such that
𝑓 𝜋 = 𝑓 𝑦∗ where 𝑦∗ is uniform!

Such an adversary breaks security
of the one-way function!

Understanding Sahai-Waters

CRS contains two obfuscated programs

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

Key properties:
• Proof in Sahai-Waters is a preimage of a

one-way function
• Non-adaptive adversary tells us where the

adversary will invert (i.e., the point 𝑥∗)
• Reduction embeds a fresh OWF challenge

at 𝑥∗, so successful adversary breaks OWF

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Adaptive SNARG Blueprint

CRS contains two obfuscated programs

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Our approach: embed a one-way function
challenge on all inputs, so no matter where

adversary inverts, reduction is successful

Skipping to the End…

Sahai-Waters (non-adaptively sound)

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏, 𝑥

Verify 𝑥, 𝜋 :
• Parse 𝜋 = 𝑏, 𝑦
• If 𝑦 = PRF 𝑘𝑏, 𝑥 , output 1
• Otherwise, output 0

This talk (adaptively sound)

Skipping to the End…

Sahai-Waters (non-adaptively sound)

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏, 𝑥

Verify 𝑥, 𝜋 :
• Parse 𝜋 = 𝑏, 𝑦
• If 𝑦 = PRF 𝑘𝑏, 𝑥 , output 1
• Otherwise, output 0

This talk (adaptively sound)

Not a big edit
distance!

Adaptive SNARG Blueprint

CRS contains two obfuscated programs

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Our approach: embed a one-way function
challenge on all inputs, so no matter where

adversary inverts, reduction is successful

Attempt 1: Use a single challenge 𝑦∗ ← 0,1 𝜆

Adaptive SNARG Blueprint

CRS contains two obfuscated programs

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 𝑦∗ , output 1
• Otherwise, output 0

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Our approach: embed a one-way function
challenge on all inputs, so no matter where

adversary inverts, reduction is successful
Ignore for now!

Attempt 1: Use a single challenge 𝑦∗ ← 0,1 𝜆

Not indistinguishable from real verification
program (where there are many distinct targets)

Adaptive SNARG Blueprint

CRS contains two obfuscated programs

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 𝑦∗ , output 1
• Otherwise, output 0

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Our approach: embed a one-way function
challenge on all inputs, so no matter where

adversary inverts, reduction is successful
Ignore for now!

Rerandomizable one-way function:

Rerand 𝑦∗; 𝑟 → 𝑦
• Distribution of 𝑦 identical to fresh challenge
• Solution to 𝑦 implies solution for 𝑦

Adaptive SNARG Blueprint

CRS contains two obfuscated programs

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :
• If 𝑓 𝜋 = 𝑓 𝑦∗ , output 1
• Otherwise, output 0

Our approach: embed a one-way function
challenge on all inputs, so no matter where

adversary inverts, reduction is successful
Ignore for now!

Rerandomizable one-way function:

Rerand 𝑦∗; 𝑟 → 𝑦
• Distribution of 𝑦 identical to fresh challenge
• Solution to 𝑦 implies solution for 𝑦∗

Construction from discrete log:
• Discrete log problem: given 𝑦∗ = 𝑔𝑥, find 𝑥
• Rerand 𝑦∗; 𝑟 : Output 𝑦∗ ⋅ 𝑔𝑟

• Given 𝑧 where 𝑔𝑧 = 𝑦∗ ⋅ 𝑔𝑟 and 𝑟, recover 𝑥 = 𝑧 − 𝑟

Suffices to have perfect random self-reduction

Adaptive SNARG Blueprint

CRS contains two obfuscated programs

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 1, output 𝜋 = PRF 𝑘, 𝑥
• Otherwise, output ⊥

Verify 𝑥, 𝜋 :

• If 𝑓 𝜋 = 𝑓 Rerand 𝑦∗; PRF 𝑘, 𝑥 , output 1

• Otherwise, output 0

Difficulty with adaptive security: Reduction does not know where the adversary
will invert, so where do we embed the challenge to the one-way function?

Our approach: embed a one-way function
challenge on all inputs, so no matter where

adversary inverts, reduction is successful
Ignore for now!

Attempt 2: Use a different re-randomized
challenge on every input

Proof on any statement yields a solution to 𝑓

Problem: how does the honest prover
algorithm construct proofs?

The Two-Challenge Approach

CRS contains two obfuscated programs

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Our approach: embed a one-way function
challenge on all inputs, so no matter where

adversary inverts, reduction is successful

Key idea: Every statement will be associated
with two challenges and prover program will

output solution to one of them

Verify 𝑥, 𝜋 :
• Parse 𝜋 = 𝑏, 𝑦

• If 𝑓 𝑦 = 𝑓 PRF 𝑘𝑏 , 𝑥 , output 1

• Otherwise, output 0

Selector PRF 𝑘sel,⋅ chooses bit 𝑏 ∈ 0,1

Both 0, PRF 𝑘0, 𝑥 and 1, PRF 𝑘1, 𝑥 are

valid proofs, and prover program outputs one
of them (determined by selector PRF)

Proving Adaptive Security

𝑥1

𝑥2

⋮

𝑥𝑁

Statements

PRF 𝑘0, 𝑥1

PRF 𝑘1, 𝑥1

PRF 𝑘0, 𝑥2

PRF 𝑘1, 𝑥2

PRF 𝑘0, 𝑥𝑁

PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Adversary wins if it outputs 𝑥, 𝜋 = 𝑏, 𝑦 where 𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥

Proving Adaptive Security

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

𝑓 PRF 𝑘1, 𝑥1

𝑓 PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

𝑓 PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Adversary wins if it outputs 𝑥, 𝜋 = 𝑏, 𝑦 where 𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥

Take any false statement 𝑥 ∉ ℒ

By PRF security, the value of PRF(𝑘sel, 𝑥) is pseudorandom

If adversary produces a proof 𝜋 = 𝑏, 𝑦 on 𝑥, then
Pr 𝑏 = PRF 𝑘sel, 𝑥 ≈ Τ1 2

Otherwise, adversary distinguishes PRF 𝑘sel, 𝑥

Proving Adaptive Security

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

𝑓 PRF 𝑘1, 𝑥1

𝑓 PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

𝑓 PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Adversary wins if it outputs 𝑥, 𝜋 = 𝑏, 𝑦 where 𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥

Take any false statement 𝑥 ∉ ℒ

By PRF security, the value of PRF(𝑘sel, 𝑥) is pseudorandom

If adversary produces a proof 𝜋 = 𝑏, 𝑦 on 𝑥, then
Pr 𝑏 = PRF 𝑘sel, 𝑥 ≈ Τ1 2

Otherwise, adversary distinguishes PRF 𝑘sel, 𝑥

Consider adaptive soundness game where adversary
wins only when the adversary outputs a statement 𝑥
and a proof where 𝜋 = 𝑏, 𝑦 and 𝑏 ≠ PRF 𝑘sel, 𝑥

Only decreases adversary’s advantage by factor of 2

Step 1: Only Accept an Off-Path Proof

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

𝑓 PRF 𝑘1, 𝑥1

𝑓 PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

𝑓 PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥

Step 1: Only Accept an Off-Path Proof

Formally:

Game0: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1

Verify 𝑥, 𝜋 :
• Parse 𝜋 = 𝑏, 𝑦

• If 𝑓 𝑦 = 𝑓 PRF 𝑘𝑏 , 𝑥 , output 1

• Otherwise, output 0

Game1: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑏 ≠ 𝐹 𝑘sel, 𝑥

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Claim: Pr Game1 = 1 ≥
1

2
⋅ Pr Game0 = 1 − negl(𝜆)

Define event E𝑖 to be the event that prover chooses statement 𝑖 ∈ 0,1 𝑛

Pr Game0 = 1 =

𝑖∈ 0,1 𝑛

Pr[Game0 = 1 ∧ E𝑖] Pr Game1 = 1 =

𝑖∈ 0,1 𝑛

Pr[Game1 = 1 ∧ E𝑖]

Step 1: Only Accept an Off-Path Proof

Formally:

Game0: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1

Game1: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑏 ≠ 𝐹 𝑘sel, 𝑥

Claim: Pr Game1 = 1 ≥
1

2
⋅ Pr Game0 = 1 − negl(𝜆)

Define event E𝑖 to be the event that prover chooses statement 𝑖 ∈ 0,1 𝑛

Pr Game0 = 1 =

𝑖∈ 0,1 𝑛

Pr[Game0 = 1 ∧ E𝑖] Pr Game1 = 1 =

𝑖∈ 0,1 𝑛

Pr[Game1 = 1 ∧ E𝑖]

Suffices to show that for all 𝑖 ∈ 0,1 𝑛:

Pr Game1 = 1 ∧ E𝑖 ≥
1

2
⋅ Pr Game0 = 1 ∧ E𝑖 −

1

2𝑛
⋅ negl 𝜆

Will require sub-exponential hardness!

Step 1: Only Accept an Off-Path Proof

Formally:

Game0: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1

Game1: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑏 ≠ 𝐹 𝑘sel, 𝑥

Claim: Pr Game1 = 1 ≥
1

2
⋅ Pr Game0 = 1 − negl(𝜆)

Define event E𝑖 to be the event that prover chooses statement 𝑖 ∈ 0,1 𝑛

Pr Game0 = 1 =

𝑖∈ 0,1 𝑛

Pr[Game0 = 1 ∧ E𝑖] Pr Game1 = 1 =

𝑖∈ 0,1 𝑛

Pr[Game1 = 1 ∧ E𝑖]

Suffices to show that for all 𝑖 ∈ 0,1 𝑛:

Pr Game1 = 1 ∧ E𝑖 ≥
1

2
⋅ Pr Game0 = 1 ∧ E𝑖 −

1

2𝑛
⋅ negl 𝜆

Observe: If 𝑖 ∈ ℒ, then Pr Game1 = 1 ∧ E𝑖 = 0 = Pr Game0 = 1 ∧ E𝑖

Step 1: Only Accept an Off-Path Proof

Formally:

Game0: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1

Game1: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑏 ≠ 𝐹 𝑘sel, 𝑥

Claim: for all 𝑖 ∉ ℒ: Pr Game1 = 1 ∧ E𝑖 ≥
1

2
⋅ Pr Game0 = 1 ∧ E𝑖 −

1

2𝑛 ⋅ negl 𝜆

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Hyb𝑖,0 for 𝑖 ∉ ℒ

Prover wins if it outputs 𝑥, 𝑏, 𝑦 where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑥 = 𝑖

Pr Hyb𝑖,0 = 1 = Pr Game0 = 1 ∧ E𝑖

Step 1: Only Accept an Off-Path Proof

Formally:

Game0: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1

Game1: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑏 ≠ 𝐹 𝑘sel, 𝑥

Claim: for all 𝑖 ∉ ℒ: Pr Game1 = 1 ∧ E𝑖 ≥
1

2
⋅ Pr Game0 = 1 ∧ E𝑖 −

1

2𝑛 ⋅ negl 𝜆

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Hyb𝑖,0 for 𝑖 ∉ ℒ

Prover wins if it outputs 𝑥, 𝑏, 𝑦 where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑥 = 𝑖

Hyb𝑖,1 for 𝑖 ∉ ℒ

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0 or 𝑥 = 𝑖, output ⊥

• Compute 𝑏 ← PRF 𝑘sel
(𝑖)

, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏, 𝑥

𝑖𝒪

Step 1: Only Accept an Off-Path Proof

Formally:

Game0: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1

Game1: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑏 ≠ 𝐹 𝑘sel, 𝑥

Claim: for all 𝑥 ∉ ℒ: Pr Game1 = 1 ∧ E𝑥 ≥
1

2
⋅ Pr Game0 = 1 ∧ E𝑥 −

1

2𝑛 ⋅ negl 𝜆

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Hyb𝑖,0 for 𝑖 ∉ ℒ

Prover wins if it outputs 𝑥, 𝑏, 𝑦 where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑥 = 𝑖

Hyb𝑖,1 for 𝑖 ∉ ℒ

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0 or 𝑥 = 𝑖, output ⊥

• Compute 𝑏 ← PRF 𝑘sel
(𝑖)

, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏, 𝑥

𝑖𝒪

• Pr Hyb𝑖,0 = 1 = Pr Game0 = 1 ∧ E𝑖

• Pr Hyb𝑖,1 = 1 ≥ Pr Hyb𝑖,0 = 1 − 2−𝑛 ⋅ negl 𝜆 (sub-exponential security of 𝑖𝒪)

Step 1: Only Accept an Off-Path Proof

Formally:

Game0: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1

Game1: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑏 ≠ 𝐹 𝑘sel, 𝑥

Claim: for all 𝑥 ∉ ℒ: Pr Game1 = 1 ∧ E𝑥 ≥
1

2
⋅ Pr Game0 = 1 ∧ E𝑥 −

1

2𝑛 ⋅ negl 𝜆

Hyb𝑖,2 for 𝑖 ∉ ℒ

Prover wins if it outputs 𝑥, 𝑏, 𝑦 where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑥 = 𝑖 and 𝑏 ≠ 𝑏′

Hyb𝑖,1 for 𝑖 ∉ ℒ

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0 or 𝑥 = 𝑖, output ⊥

• Compute 𝑏 ← PRF 𝑘sel
(𝑖)

, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏, 𝑥

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0 or 𝑥 = 𝑖, output ⊥

• Compute 𝑏 ← PRF 𝑘sel
(𝑖)

, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏, 𝑥

• Pr Hyb𝑖,0 = 1 = Pr Game0 = 1 ∧ E𝑖

• Pr Hyb𝑖,1 = 1 ≥ Pr Hyb𝑖,0 = 1 − 2−𝑛 ⋅ negl 𝜆 (sub-exponential security of 𝑖𝒪)

• Pr Hyb𝑖,2 = 1 =
1

2
⋅ Pr Hyb𝑖,1 = 1

𝑏′ ← 0,1

Step 1: Only Accept an Off-Path Proof

Formally:

Game0: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1

Game1: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑏 ≠ 𝐹 𝑘sel, 𝑥

Claim: for all 𝑥 ∉ ℒ: Pr Game1 = 1 ∧ E𝑥 ≥
1

2
⋅ Pr Game0 = 1 ∧ E𝑥 −

1

2𝑛 ⋅ negl 𝜆

Hyb𝑖,2 for 𝑖 ∉ ℒ

Prover wins if it outputs 𝑥, 𝑏, 𝑦 where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑥 = 𝑖 and 𝑏 ≠ PRF(𝑘sel, 𝑖)

Hyb𝑖,3 for 𝑖 ∉ ℒ

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0 or 𝑥 = 𝑖, output ⊥

• Compute 𝑏 ← PRF 𝑘sel
(𝑖)

, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏, 𝑥

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0 or 𝑥 = 𝑖, output ⊥

• Compute 𝑏 ← PRF 𝑘sel
(𝑖)

, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏, 𝑥

• Pr Hyb𝑖,0 = 1 = Pr Game0 = 1 ∧ E𝑖

• Pr Hyb𝑖,1 = 1 ≥ Pr Hyb𝑖,0 = 1 − 2−𝑛 ⋅ negl 𝜆 (sub-exponential security of 𝑖𝒪)

• Pr Hyb𝑖,2 = 1 =
1

2
⋅ Pr Hyb𝑖,1 = 1

• Pr Hyb𝑖,3 = 1 ≥ Pr Hyb𝑖,2 = 1 − 2−𝑛 ⋅ negl 𝜆 (sub-exponential security of PRF)

• Pr Hyb𝑖,3 = 1 = Pr Game1 = 1 ∧ E𝑖

PRF

Step 1: Only Accept an Off-Path Proof

Formally:

Game0: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1

Game1: Prover wins if it outputs 𝑥, 𝜋 = (𝑏, 𝑦) where 𝑥 ∉ ℒ and Verify 𝑥, 𝜋 = 1 and 𝑏 ≠ 𝐹 𝑘sel, 𝑥

Claim: for all 𝑖 ∉ ℒ: Pr Game1 = 1 ∧ E𝑖 ≥
1

2
⋅ Pr Game0 = 1 ∧ E𝑖 −

1

2𝑛 ⋅ negl 𝜆

• Pr Hyb𝑖,0 = 1 = Pr Game0 = 1 ∧ E𝑖

• Pr Hyb𝑖,1 = 1 ≥ Pr Hyb𝑖,0 = 1 − 2−𝑛 ⋅ negl 𝜆 (sub-exponential security of 𝑖𝒪)

• Pr Hyb𝑖,2 = 1 =
1

2
⋅ Pr Hyb𝑖,1 = 1

• Pr Hyb𝑖,3 = 1 ≥ Pr Hyb𝑖,2 = 1 − 2−𝑛 ⋅ negl 𝜆 (sub-exponential security of PRF)

• Pr Hyb𝑖,3 = 1 = Pr Game1 = 1 ∧ E𝑖

Therefore: Pr Game1 = 1 ≥
1

2
⋅ Pr Game0 = 1 − negl(𝜆)

Step 1: Only Accept an Off-Path Proof

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

𝑓 PRF 𝑘1, 𝑥1

𝑓 PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

𝑓 PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥

Observation: Prover program never computes PRF 𝑘𝑏, 𝑥

Value is pseudorandom!

Step 2: Change the Off-Path Targets

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

𝑓 PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

𝑓 PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Observation: Prover program never computes PRF 𝑘𝑏, 𝑥

𝑓 PRF 𝑘𝑏, 𝑥 ≈ Rerand 𝑦∗; PRF 𝑘𝑏, 𝑥

Switch “off-path” verification targets to be

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥

𝑓 PRF 𝑘1, 𝑥1

Step 2: Change the Off-Path Targets

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

Rerand 𝑦∗; PRF 𝑘1, 𝑥1

𝑓 PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

𝑓 PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Formally argued using 𝑁 = 2𝑛 hybrids

Observation: Prover program never computes PRF 𝑘𝑏, 𝑥

𝑓 PRF 𝑘𝑏, 𝑥 ≈ Rerand 𝑦∗; PRF 𝑘𝑏, 𝑥

Switch “off-path” verification targets to be

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥

Step 2: Change the Off-Path Targets

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

Rerand 𝑦∗; PRF 𝑘1, 𝑥1

Rerand 𝑦∗; PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

𝑓 PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Formally argued using 𝑁 = 2𝑛 hybrids

Observation: Prover program never computes PRF 𝑘𝑏, 𝑥

𝑓 PRF 𝑘𝑏, 𝑥 ≈ Rerand 𝑦∗; PRF 𝑘𝑏, 𝑥

Switch “off-path” verification targets to be

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥

Step 2: Change the Off-Path Targets

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

Rerand 𝑦∗; PRF 𝑘1, 𝑥1

Rerand 𝑦∗; PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

Rerand 𝑦∗; PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Observation: Prover program never computes PRF 𝑘𝑏, 𝑥

𝑓 PRF 𝑘𝑏, 𝑥 ≈ Rerand 𝑦∗; PRF 𝑘𝑏, 𝑥

Formally argued using 𝑁 = 2𝑛 hybrids

Switch “off-path” verification targets to be

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥

Step 2: Change the Off-Path Targets

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

Rerand 𝑦∗; PRF 𝑘1, 𝑥1

Rerand 𝑦∗; PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

Rerand 𝑦∗; PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥
Verify 𝑥, 𝜋 :
• Parse 𝜋 = 𝑏, 𝑦
• Output 1 if

• 𝑏 = PRF 𝑘sel, 𝑥 and 𝑓 𝑦 = 𝑓 PRF 𝑘𝑏, 𝑥

• 𝑏 ≠ PRF(𝑘sel, 𝑥) and 𝑓 𝑦 = 𝑓 Rerand 𝑦∗; PRF 𝑘𝑏, 𝑥

• Otherwise, output 0

𝑦∗ is a random instance for the OWF

Step 2: Change the Off-Path Targets

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

Rerand 𝑦∗; PRF 𝑘1, 𝑥1

Rerand 𝑦∗; PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

Rerand 𝑦∗; PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓 𝑦 = 𝑓 Rerand 𝑦∗; PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥

Step 2: Change the Off-Path Targets

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

Rerand 𝑦∗; PRF 𝑘1, 𝑥1

Rerand 𝑦∗; PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

Rerand 𝑦∗; PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓(𝑦) = 𝑓 PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓 𝑦 = 𝑓 Rerand 𝑦∗; PRF 𝑘𝑏, 𝑥 and 𝑏 ≠ PRF 𝑘sel, 𝑥

By the rerandomization property, any such
𝑦 yields a preimage of the challenge 𝑦∗

Step 2: Change the Off-Path Targets

𝑥1

𝑥2

⋮

𝑥𝑁

Verification targets

𝑓 PRF 𝑘0, 𝑥1

Rerand 𝑦∗; PRF 𝑘1, 𝑥1

Rerand 𝑦∗; PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

Rerand 𝑦∗; PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Each transition only relies on security of 𝑖𝒪, punctured
PRF, and rerandomizability of one-way function.

There are 𝑁 = 2𝑛 hybrids so security parameter of 𝑖𝒪 and
punctured PRF grow with 𝑛; one-way function is perfectly
or statistically rerandomizable, so we do not incur cost of

complexity leveraging

Final proof is a bit and a single preimage of the OWF:
poly 𝜆 bits, independent of 𝑛

CRS size is poly 𝜆, 𝑛 − necessary to absorb the
exponential security loss incurred by the 𝑁 = 2𝑛 hybrids

Avoiding Rerandomization

Previous approach needed the OWF to be statistically rerandomizable

Rerandomizability seems to be an algebraic property (not known how to build from 𝑖𝒪 and OWFs)

Waters-Zhandry [WZ24]: Can relax rerandomizable PRF to a lossy function

Lossy functions also not known from 𝑖𝒪 and OWFs

Can we get adaptive soundness just from 𝑖𝒪 and OWFs?

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑓 PRF 𝑘0, 𝑥1

𝑓 PRF 𝑘1, 𝑥1

𝑓 PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

𝑓 PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

𝑥1

𝑥2

⋮

𝑥𝑁

𝑓 PRF 𝑘0, 𝑥1

Rerand 𝑦∗; PRF 𝑘1, 𝑥1

Rerand 𝑦∗; PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

Rerand 𝑦∗; PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

Verifier program checks if

𝑓 𝑦 = 𝑓 PRF 𝑘𝑏, 𝑥

Verifier program checks if

𝑓 𝑦 = 𝑓 Rerand 𝑦∗ ; PRF 𝑘𝑏, 𝑥

What if we just planted
the same challenge

everywhere?

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑓 PRF 𝑘0, 𝑥1

𝑓 PRF 𝑘1, 𝑥1

𝑓 PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

𝑓 PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

𝑥1

𝑥2

⋮

𝑥𝑁

𝑓 PRF 𝑘0, 𝑥1

𝑓 𝑦∗

𝑓 𝑦∗

𝑓 PRF 𝑘1, 𝑥2

𝑓 𝑦∗

𝑓 PRF 𝑘1, 𝑥𝑁

Verifier program checks if

𝑓 𝑦 = 𝑓 PRF 𝑘𝑏, 𝑥

Verifier program checks if
𝑓 𝑦 = 𝑓 𝑦∗

What if we just planted
the same challenge

everywhere?

Can no longer argue
indistinguishability

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑓 PRF 𝑘0, 𝑥1

𝑓 PRF 𝑘1, 𝑥1

𝑓 PRF 𝑘0, 𝑥2

𝑓 PRF 𝑘1, 𝑥2

𝑓 PRF 𝑘0, 𝑥𝑁

𝑓 PRF 𝑘1, 𝑥𝑁

𝑥1

𝑥2

⋮

𝑥𝑁

𝑓 PRF 𝑘0, 𝑥1

𝑓 𝑦∗

𝑓 𝑦∗

𝑓 PRF 𝑘1, 𝑥2

𝑓 𝑦∗

𝑓 PRF 𝑘1, 𝑥𝑁

Verifier program checks if

𝑓 𝑦 = 𝑓 PRF 𝑘𝑏, 𝑥

Verifier program checks if
𝑓 𝑦 = 𝑓 𝑦∗

What if we just planted
the same challenge

everywhere?

Can no longer argue
indistinguishability

Need a different way to embed 𝑓 𝑦∗

Before: PRF outputs the OWF challenge so we need a different
challenge for each statement

New approach: use PRF to blind a single OWF challenge

Avoiding Rerandomization

𝑦 is a valid proof for 𝑥𝑖 if it
corresponds to one of the two paths

𝑥1

𝑥2

⋮

𝑥𝑁

𝑦 = PRF 𝑘0, 𝑥1

𝑦 = PRF 𝑘1, 𝑥1

𝑦 = PRF 𝑘0, 𝑥2

𝑦 = PRF 𝑘1, 𝑥2

𝑦 = PRF 𝑘0, 𝑥𝑁

𝑦 = PRF 𝑘1, 𝑥𝑁

consider adversary
successful only if it provides

“off-path” target

𝑥1

𝑥2

⋮

𝑥𝑁

𝑦 = PRF 𝑘0, 𝑥1

𝑦 = PRF 𝑘1, 𝑥1

𝑦 = PRF 𝑘0, 𝑥2

𝑦 = PRF 𝑘1, 𝑥2

𝑦 = PRF 𝑘0, 𝑥𝑁

𝑦 = PRF 𝑘1, 𝑥𝑁

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑦 = PRF 𝑘0, 𝑥1

𝑦 = PRF 𝑘1, 𝑥1

𝑦 = PRF 𝑘1, 𝑥1

𝑦 = PRF 𝑘1, 𝑥2

𝑦 = PRF 𝑘1, 𝑥1

𝑦 = PRF 𝑘1, 𝑥𝑁

First, rewrite 𝑦 = PRF 𝑘𝑏 , 𝑥𝑖 as

𝑦 ⊕ PRF 𝑘𝑏 , 𝑥𝑖 ⊕ 𝑦∗ = 𝑦∗

“off-path” verification targets

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑦 = PRF 𝑘0, 𝑥1

𝑦 ⊕ PRF 𝑘1, 𝑥1 ⊕ 𝑦∗ = 𝑦∗

𝑦 ⊕ PRF 𝑘0, 𝑥2 ⊕ 𝑦∗ = 𝑦∗

𝑦 = PRF 𝑘1, 𝑥2

𝑦 ⊕ PRF 𝑘0, 𝑥𝑁 ⊕ 𝑦∗ = 𝑦∗

𝑦 = PRF 𝑘1, 𝑥𝑁

First, rewrite 𝑦 = PRF 𝑘𝑏 , 𝑥𝑖 as

𝑦 ⊕ PRF 𝑘𝑏 , 𝑥𝑖 ⊕ 𝑦∗ = 𝑦∗

Prover program never computes PRF 𝑘𝑏 , 𝑥

By punctured PRF security:
PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ ≈ PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where
𝑦 ⊕ PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ = 𝑦∗ and 𝑏 ≠ PRF 𝑘sel, 𝑥

“off-path” verification targets

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑦 = PRF 𝑘0, 𝑥1

𝑦 ⊕ PRF 𝑘1, 𝑥1 = 𝑦∗

𝑦 ⊕ PRF 𝑘0, 𝑥2 ⊕ 𝑦∗ = 𝑦∗

𝑦 = PRF 𝑘1, 𝑥2

𝑦 ⊕ PRF 𝑘0, 𝑥𝑁 ⊕ 𝑦∗ = 𝑦∗

𝑦 = PRF 𝑘1, 𝑥𝑁

First, rewrite 𝑦 = PRF 𝑘𝑏 , 𝑥𝑖 as

𝑦 ⊕ PRF 𝑘𝑏 , 𝑥𝑖 ⊕ 𝑦∗ = 𝑦∗

Prover program never computes PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where
𝑦 ⊕ PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ = 𝑦∗ and 𝑏 ≠ PRF 𝑘sel, 𝑥

“off-path” verification targets

By punctured PRF security:
PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ ≈ PRF 𝑘𝑏 , 𝑥

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑦 = PRF 𝑘0, 𝑥1

𝑦 ⊕ PRF 𝑘1, 𝑥1 = 𝑦∗

𝑦 ⊕ PRF 𝑘0, 𝑥2 = 𝑦∗

𝑦 = PRF 𝑘1, 𝑥2

𝑦 ⊕ PRF 𝑘0, 𝑥𝑁 ⊕ 𝑦∗ = 𝑦∗

𝑦 = PRF 𝑘1, 𝑥𝑁

First, rewrite 𝑦 = PRF 𝑘𝑏 , 𝑥𝑖 as

𝑦 ⊕ PRF 𝑘𝑏 , 𝑥𝑖 ⊕ 𝑦∗ = 𝑦∗

Prover program never computes PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where
𝑦 ⊕ PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ = 𝑦∗ and 𝑏 ≠ PRF 𝑘sel, 𝑥

“off-path” verification targets

By punctured PRF security:
PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ ≈ PRF 𝑘𝑏 , 𝑥

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑦 = PRF 𝑘0, 𝑥1

𝑦 ⊕ PRF 𝑘1, 𝑥1 = 𝑦∗

𝑦 ⊕ PRF 𝑘0, 𝑥2 = 𝑦∗

𝑦 = PRF 𝑘1, 𝑥2

𝑦 ⊕ PRF 𝑘0, 𝑥𝑁 = 𝑦∗

𝑦 = PRF 𝑘1, 𝑥𝑁

First, rewrite 𝑦 = PRF 𝑘𝑏 , 𝑥𝑖 as

𝑦 ⊕ PRF 𝑘𝑏 , 𝑥𝑖 ⊕ 𝑦∗ = 𝑦∗

Prover program never computes PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where
𝑦 ⊕ PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ = 𝑦∗ and 𝑏 ≠ PRF 𝑘sel, 𝑥

“off-path” verification targets

By punctured PRF security:
PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ ≈ PRF 𝑘𝑏 , 𝑥

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑦 = PRF 𝑘0, 𝑥1

𝑦 ⊕ PRF 𝑘1, 𝑥1 = 𝑦∗

𝑦 ⊕ PRF 𝑘0, 𝑥2 = 𝑦∗

𝑦 = PRF 𝑘1, 𝑥2

𝑦 ⊕ PRF 𝑘0, 𝑥𝑁 = 𝑦∗

𝑦 = PRF 𝑘1, 𝑥𝑁

First, rewrite 𝑦 = PRF 𝑘𝑏 , 𝑥𝑖 as

𝑦 ⊕ PRF 𝑘𝑏 , 𝑥𝑖 ⊕ 𝑦∗ = 𝑦∗

Prover program never computes PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where
𝑦 ⊕ PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ = 𝑦∗ and 𝑏 ≠ PRF 𝑘sel, 𝑥

Let 𝑓 be an injective OWF
Then 𝑧 = 𝑧′ ⇔ 𝑓 𝑧 = 𝑓 𝑧′

“off-path” verification targets

By punctured PRF security:
PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ ≈ PRF 𝑘𝑏 , 𝑥

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑦 = PRF 𝑘0, 𝑥1

𝑓 𝑦 ⊕ PRF 𝑘1, 𝑥1 = 𝑓 𝑦∗

𝑓 𝑦 ⊕ PRF 𝑘0, 𝑥2 = 𝑓 𝑦∗

𝑦 = PRF 𝑘1, 𝑥2

𝑓 𝑦 ⊕ PRF 𝑘0, 𝑥𝑁 = 𝑓 𝑦∗

𝑦 = PRF 𝑘1, 𝑥𝑁

First, rewrite 𝑦 = PRF 𝑘𝑏 , 𝑥𝑖 as

𝑦 ⊕ PRF 𝑘𝑏 , 𝑥𝑖 ⊕ 𝑦∗ = 𝑦∗

Prover program never computes PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where
𝑦 ⊕ PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ = 𝑦∗ and 𝑏 ≠ PRF 𝑘sel, 𝑥

Let 𝑓 be an injective OWF
Then 𝑧 = 𝑧′ ⇔ 𝑓 𝑧 = 𝑓 𝑧′

“off-path” verification targets

By punctured PRF security:
PRF 𝑘𝑏 , 𝑥 ⊕ 𝑦∗ ≈ PRF 𝑘𝑏 , 𝑥

Avoiding Rerandomization

𝑥1

𝑥2

⋮

𝑥𝑁

𝑦 = PRF 𝑘0, 𝑥1

𝑓 𝑦 ⊕ PRF 𝑘1, 𝑥1 = 𝑓 𝑦∗

𝑓 𝑦 ⊕ PRF 𝑘0, 𝑥2 = 𝑓 𝑦∗

𝑦 = PRF 𝑘1, 𝑥2

𝑓 𝑦 ⊕ PRF 𝑘0, 𝑥𝑁 = 𝑓 𝑦∗

𝑦 = PRF 𝑘1, 𝑥𝑁

Every statement has two possible proofs:
one that is output by the Prove program and one that is not

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Adversary only wins if it outputs 𝑥, 𝑏, 𝑦 where

𝑓 𝑦 ⊕ PRF 𝑘𝑏, 𝑥 = 𝑓 𝑦∗ and 𝑏 ≠ PRF 𝑘sel, 𝑥

Adversary only wins if it outputs an encryption of
a preimage to 𝑓 𝑦∗ ; reduction only needs a

single instance 𝑓(𝑦∗) of the OWF!“off-path” verification targets

Summary

CRS contains two obfuscated programs

Prove 𝑥, 𝑤 :
• If ℛ 𝑥, 𝑤 = 0, output ⊥
• Compute 𝑏 ← PRF 𝑘sel, 𝑥

• Output 𝜋 = 𝑏, PRF 𝑘𝑏 , 𝑥

Verify 𝑥, 𝜋 :
• Parse 𝜋 = 𝑏, 𝑦
• If 𝑦 = PRF 𝑘𝑏 , 𝑥 , output 1
• Otherwise, output 0

Scheme relies on sub-exponential secure
𝑖𝒪 and sub-exponential secure OWFs

Construction as described relies on
injective one-way function

[BPW16]: 𝑖𝒪 + OWFs ⇒ (keyed) injective OWFs

Alternatively, observe that injective one-way function
only shows up in the security proof

Suffices to build injective OWF with an inefficient
sampler (implied by vanilla OWFs)

[see paper for details]

Summary

This work: Adaptively-sound SNARGs for NP from sub-exponentially-secure 𝑖𝒪 and sub-
exponentially-secure one-way functions

Large CRS (crs = poly 𝜆, ℛ), short proofs (𝜋 = poly 𝜆)

Reduction to falsifiable assumptions runs in time 2Ω 𝑥 + 𝑤

Upcoming work [DWW24]: fully succinct SNARGs for batch NP from sub-exponentially-secure
𝑖𝒪, sub-exponentially secure one-way functions, and rerandomizable one-way functions

Open problems:
• Adaptively-sound SNARGs for NP without 𝑖𝒪 (e.g., from LWE)?
• Non-adaptively-sound SNARGs for NP from a polynomial-time falsifiable assumption?

Thank you!
(or extend Gentry-Wichs to rule this out)

	Slide 1: Adaptively-Sound SNARGs for NP from Indistinguishability Obfuscation
	Slide 2: Succinct Non-Interactive Arguments (SNARGs)
	Slide 3: Succinct Non-Interactive Arguments (SNARGs)
	Slide 4: Succinct Non-Interactive Arguments (SNARGs)
	Slide 5: Succinct Non-Interactive Arguments (SNARGs)
	Slide 6: SNARGs for NP
	Slide 7: The Gentry-Wichs Separation
	Slide 8: The Gentry-Wichs Separation
	Slide 9: Recent Progress in Adaptive Soundness
	Slide 10: This Talk
	Slide 11: The Sahai-Waters SNARG
	Slide 12: The Sahai-Waters SNARG
	Slide 13: Non-Adaptive Soundness for Sahai-Waters
	Slide 14: Non-Adaptive Soundness for Sahai-Waters
	Slide 15: Non-Adaptive Soundness for Sahai-Waters
	Slide 16: Non-Adaptive Soundness for Sahai-Waters
	Slide 17: Non-Adaptive Soundness for Sahai-Waters
	Slide 18: Understanding Sahai-Waters
	Slide 19: Adaptive SNARG Blueprint
	Slide 20: Skipping to the End…
	Slide 21: Skipping to the End…
	Slide 22: Adaptive SNARG Blueprint
	Slide 23: Adaptive SNARG Blueprint
	Slide 24: Adaptive SNARG Blueprint
	Slide 25: Adaptive SNARG Blueprint
	Slide 26: Adaptive SNARG Blueprint
	Slide 27: The Two-Challenge Approach
	Slide 28: Proving Adaptive Security
	Slide 29: Proving Adaptive Security
	Slide 30: Proving Adaptive Security
	Slide 31: Step 1: Only Accept an Off-Path Proof
	Slide 32: Step 1: Only Accept an Off-Path Proof
	Slide 33: Step 1: Only Accept an Off-Path Proof
	Slide 34: Step 1: Only Accept an Off-Path Proof
	Slide 35: Step 1: Only Accept an Off-Path Proof
	Slide 36: Step 1: Only Accept an Off-Path Proof
	Slide 37: Step 1: Only Accept an Off-Path Proof
	Slide 38: Step 1: Only Accept an Off-Path Proof
	Slide 39: Step 1: Only Accept an Off-Path Proof
	Slide 40: Step 1: Only Accept an Off-Path Proof
	Slide 41: Step 1: Only Accept an Off-Path Proof
	Slide 42: Step 2: Change the Off-Path Targets
	Slide 43: Step 2: Change the Off-Path Targets
	Slide 44: Step 2: Change the Off-Path Targets
	Slide 45: Step 2: Change the Off-Path Targets
	Slide 46: Step 2: Change the Off-Path Targets
	Slide 47: Step 2: Change the Off-Path Targets
	Slide 48: Step 2: Change the Off-Path Targets
	Slide 49: Step 2: Change the Off-Path Targets
	Slide 50: Avoiding Rerandomization
	Slide 51: Avoiding Rerandomization
	Slide 52: Avoiding Rerandomization
	Slide 53: Avoiding Rerandomization
	Slide 54: Avoiding Rerandomization
	Slide 55: Avoiding Rerandomization
	Slide 56: Avoiding Rerandomization
	Slide 57: Avoiding Rerandomization
	Slide 58: Avoiding Rerandomization
	Slide 59: Avoiding Rerandomization
	Slide 60: Avoiding Rerandomization
	Slide 61: Avoiding Rerandomization
	Slide 62: Avoiding Rerandomization
	Slide 63: Summary
	Slide 64: Summary

