Adaptively-Sound SNARGs for NP from Indistinguishability Obfuscation

David Wu

based on joint works with Brent Waters

NP relation \mathcal{R} (with related language \mathcal{L})

Completeness:

Honest prover convinces honest verifier of true statements $\forall (x, w) \in \mathcal{R} : \Pr[\operatorname{Verify}(\operatorname{crs}, x, \pi) = 1 : \pi \leftarrow \operatorname{Prove}(\operatorname{crs}, x, w)] = 1$

Succinctness:

Proof is much shorter than sending NP witness $|\pi| = poly(\lambda, log|\mathcal{R}|)$

NP relation \mathcal{R} (with related language \mathcal{L})

Soundness: Efficient prover should not be able to convince verifier of a false statement Notion should be **adaptive**: prover can choose which statement it proves **after** it sees the CRS

NP relation \mathcal{R} (with related language \mathcal{L})

Soundness: Efficient prover should not be able to convince verifier of a false statement

Non-adaptive soundness: relaxation where prover has to declare the statement **before** seeing the CRS

NP relation \mathcal{R} (with related language \mathcal{L})

Soundness: Efficient prover should not be able to convince verifier of a false statement Non-adaptive soundness \Rightarrow adaptive soundness (via complexity leveraging) **Complexity leveraging:** $|\pi| = \text{poly}(\lambda, n)$ **Our goal:** $\text{poly}(\lambda, \log|\mathcal{R}|)$

SNARGs for NP

Constructions in idealized models

Random oracle model

Generic (or algebraic) group model

[Mic94, Val08, BCS16, BBHR19, CMS19, COS20, CY21, ...]

[Gro16, GWC19, MBKM19, CHMMVW20, Lip24, DMS24, ...]

Constructions from knowledge assumptions

[Gro10, BCCT12, GGPR13, BCIOP13, BCPR14, BISW17, ACLMT22, CLM23, ...]

Non-adaptively-sound SNARG for NP from falsifiable assumptions

Sahai-Waters [sw14]: non-adaptively-sound SNARG for NP from indistinguishability obfuscation and one-way functions

Jain-Lin-Sahai [JLS21, JLS22]: indistinguishability obfuscation from falsifiable assumptions

Adaptively-sound SNARGs for NP from falsifiable assumptions?

The Gentry-Wichs Separation

"Adaptively-sound SNARGs for NP cannot be reduced to falsifiable assumptions in a black-box manner"

Does **not** rule out reductions that are able to decide the NP relation

Strategy: rely on sub-exponential hardness

- Adversary running in $2^{\lambda^{\varepsilon}}$ time succeeds with negligible advantage
- Suppose NP relation can be decided in time 2^{n^c} for some constant c > 0
- Instantiate the scheme with security parameter $\lambda > n^{c/\varepsilon}$

Reductions of iO to falsifiable assumptions run in time $2^{\Omega(|input|)}$

In Sahai-Waters: obfuscated programs take statement x and witness w as input, so reductions run in time $2^{\Omega(|x|+|w|)}$ and the Gentry-Wichs separation does not apply

The Gentry-Wichs Separation

"Adaptively-sound SNARGs for NP cannot be reduced to falsifiable assumptions in a black-box manner"

Does not rule out reduc

Strategy: rely on sub-ex

Challenge: The size of the proof cannot grow polynomially with *n*

Can we offload the **entire** cost of complexity leveraging

- Adversary running in *(i.e., the use of sub-exponential hardness) to the CRS?*
- Suppose NP relation can be decided in time 2^n for som and c > 0
- Instantiate the scheme with security parameter $\lambda > n^{c/\epsilon}$

Reductions of iO to falsifiable assumptions run in time $2^{\Omega(|input|)}$

In Sahai-Waters: obfuscated programs take statement x and witness w as input, so reductions run in time $2^{\Omega(|x|+|w|)}$ and the Gentry-Wichs separation does not apply

Recent Progress in Adaptive Soundness

- [WW24a]: Adaptively-sound SNARGs for NP from sub-exponentially-secure *iO*, subexponentially-secure one-way functions, and re-randomizable one-way functions (e.g., from discrete log / factoring)
- [MPV24]: Sahai-Waters SNARG (from sub-exponentially-secure *iO*, sub-exponentially-secure one-way functions) is adaptively sound in the designated-verifier model
- [WZ24]: Adaptively-sound SNARGs for NP from sub-exponentially-secure *iO*, subexponentially-secure one-way functions, and lossy functions (e.g., includes LWE)
- [WW24b]: Adaptively-sound SNARGs for NP from sub-exponentially-secure *iO*, and sub-exponentially-secure one-way functions

This Talk

- [WW24a]: Adaptively-sound SNARGs for NP from sub-exponentially-secure *iO*, subexponentially-secure one-way functions, and re-randomizable one-way functions (e.g., from discrete log / factoring)
- [MPV24]: Sahai-Waters SNARG (from sub-exponentially-secure *iO*, sub-exponentially-secure one-way functions) is adaptively sound in the designated-verifier model
- [WZ24]: Adaptively-sound SNARGs for NP from sub-exponentially-secure *iO*, subexponentially-secure one-way functions, and lossy functions (e.g., includes LWE)
- [WW24b]: Adaptively-sound SNARGs for NP from sub-exponentially-secure *iO*, and sub-exponentially-secure one-way functions

The Sahai-Waters SNARG

CRS contains **two** obfuscated programs

Prove(x, w):

- If $\mathcal{R}(x, w) = 1$, output $\pi = PRF(k, x)$
- Otherwise, output ⊥

Verify(x, π):

- If $f(\pi) = f(PRF(k, x))$, output 1
- Otherwise, output 0
- \mathcal{R} is an NP relation (fixed)
- PRF is a (puncturable) pseudorandom function
- *f* is a one-way function
- PRF key k hard-wired inside both programs

PRF(k, x) is a signature on the statement (technically, a MAC)

Check $f(\pi) = f(PRF(k, x))$ instead of $\pi = PRF(k, x)$ to facilitate punctured programming proof

The Sahai-Waters SNARG

CRS contains two obfuscated programs

Prove(x, w):

- If $\mathcal{R}(x, w) = 1$, output $\pi = PRF(k, x)$
- Otherwise, output ⊥

Verify(x, π):

- If $f(\pi) = f(\operatorname{PRF}(k, x))$, output 1
- Otherwise, output 0
- \mathcal{R} is an NP relation (fixed)
- PRF is a (puncturable) pseudorandom function
- *f* is a one-way function
- PRF key k hard-wired inside both programs

Will rely on indistinguishability obfuscation

if
$$C_0 \equiv C_1$$
, then $i\mathcal{O}(C_0) \approx i\mathcal{O}(C_1)$

Obfuscations of two functionally-equivalent programs are computationally indistinguishable

CRS contains two obfuscated programs

Prove(x, w):

- If $\mathcal{R}(x, w) = 1$, output $\pi = PRF(k, x)$
- Otherwise, output ⊥

Verify(x, π):

- If $f(\pi) = f(\operatorname{PRF}(k, x))$, output 1
- Otherwise, output 0
- \mathcal{R} is an NP relation (fixed)
- PRF is a (puncturable) pseudorandom function
- *f* is a one-way function
- PRF key k hard-wired inside both programs

Assume PRF is puncturable

Puncture at
$$x^*$$

PRF key k
PRF key k

Correctness: $\forall x \neq x^*$: $PRF(k, x) = PRF(k^{(x^*)}, x)$

Security: $PRF(k, x^*)$ is pseudorandom given $k^{(x^*)}$

Non-adaptive soundness: adversary commits to statement x^* at the beginning

Prove(x, w):

- If $\mathcal{R}(x, w) = 1$, output $\pi = PRF(k, x)$
- Otherwise, output \bot

Verify(x, π):

- If $f(\pi) = f(\operatorname{PRF}(k, x))$, output 1
- Otherwise, output 0

Real programs

Non-adaptive soundness: adversary commits to statement x^* at the beginning

Real programs

Replace k with punctured key $k^{(x^*)}$ and hard-code $y^* = PRF(k, x^*)$

Non-adaptive soundness: adversary commits to statement x^* at the beginning

hard-code $y^* = PRF(k, x^*)$

Non-adaptive soundness: adversary commits to statement x^* at the beginning

Prove(x, w):

- If $\mathcal{R}(x, w) = 1$, output $\pi = PRF(k^{(x^*)}, x)$
- Otherwise, output \perp

Verify(x, π):

- If $x = x^*$ and $f(\pi) = f(y^*)$, output 1
- If $x \neq x^*$ and $f(\pi) = f(PRF(k^{(x^*)}, x))$, output 1
- Otherwise, output 0

To win, adversary must produce π such that $f(\pi) = f(y^*)$ where y^* is uniform!

Such an adversary breaks security of the one-way function!

Sample $y^* \leftarrow \{0,1\}^{\lambda}$

Understanding Sahai-Waters

CRS contains two obfuscated programs

Prove(x, w):

- If $\mathcal{R}(x, w) = 1$, output $\pi = PRF(k, x)$
- Otherwise, output ⊥

Verify(x, π):

- If $f(\pi) = f(\operatorname{PRF}(k, x))$, output 1
- Otherwise, output 0

Key properties:

- Proof in Sahai-Waters is a preimage of a one-way function
- Non-adaptive adversary tells us where the adversary will invert (i.e., the point x^*)
- Reduction embeds a fresh OWF challenge at x^* , so successful adversary breaks OWF

CRS contains two obfuscated programs

Prove(x, w):

- If $\mathcal{R}(x, w) = 1$, output $\pi = PRF(k, x)$
- Otherwise, output ⊥

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Verify(x, π):

- If $f(\pi) = f(PRF(k, x))$, output 1
- Otherwise, output 0

Skipping to the End...

Sahai-Waters (non-adaptively sound)

Prove(x, w):

- If $\mathcal{R}(x, w) = 1$, output $\pi = PRF(k, x)$
- Otherwise, output ⊥

Verify(x, π):

- If $f(\pi) = f(\operatorname{PRF}(k, x))$, output 1
- Otherwise, output 0

This talk (adaptively sound)

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow PRF(k_{sel}, x)$

• Output
$$\pi = (b, \text{PRF}(k_b, x))$$

Verify(x, π):

• Parse
$$\pi = (b, y)$$

• If
$$y = PRF(k_b, x)$$
, output 1

• Otherwise, output 0

Skipping to the End...

CRS contains two obfuscated programs

Prove(x, w):

Verify(x, π):

• If $\mathcal{R}(x, w) = 1$, output $\pi = PRF(k, x)$

• If $f(\pi) = f(PRF(k, x))$, output 1

• Otherwise, output ⊥

Otherwise, output 0

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Attempt 1: Use a single challenge $y^* \leftarrow \{0,1\}^{\lambda}$

CRS contains two obfuscated programs

Prove(y w)

- If R(x Ignore for now! RF(
- Otherwise, output ⊥

Verify (x, π) : • If $f(\pi) = f(y^*)$, output 1

• Otherwise, output 0

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Attempt 1: Use a single challenge $y^* \leftarrow \{0,1\}^{\lambda}$

Not indistinguishable from real verification program (where there are many distinct targets)

CRS contains two obfuscated programs

Prove(x w)

- If R(x Ignore for now! RF(
- Otherwise, output ⊥

Verify (x, π) : • If $f(\pi) = f(y^*)$, output 1

• Otherwise, output 0

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Rerandomizable one-way function:

 $\operatorname{Rerand}(y^*;r) \to \tilde{y}$

- Distribution of \tilde{y} identical to fresh challenge
- Solution to \tilde{y} implies solution for y

CRS contains **two** obfuscated programs

Prove(x w)

- If $\mathcal{R}(x | \mathbf{gnore for now!} | \mathbf{RF}(x))$
- Otherwise, output ⊥

Verify(x, π):

- If $f(\pi) = f(\mathbf{y}^*)$, output 1
- Otherwise, output 0

Our approach: embed a one-way function challenge on all inputs, so no matter where adversary inverts, reduction is successful

Rerandomizable one-way function:

 $\operatorname{Rerand}(y^*;r) \to \tilde{y}$

- Distribution of \tilde{y} identical to fresh challenge
- Solution to $ilde{y}$ implies solution for y^*

Construction from discrete log:

- Discrete log problem: given $y^* = g^x$, find x
- Rerand $(y^*; r)$: Output $y^* \cdot g^r$
- Given z where $g^z = y^* \cdot g^r$ and r, recover x = z r

Suffices to have **perfect** random self-reduction

CRS contains two obfuscated programs

Prove(x w)

- If R(x Ignore for now! RF(k
- Otherwise, output ⊥

Verify(x, π):

- If $f(\pi) = f\left(\operatorname{Rerand}(y^*; \operatorname{PRF}(k, x))\right)$, output 1
- Otherwise, output 0

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Attempt 2: Use a different re-randomized challenge on every input

Proof on **any** statement yields a solution to f

Problem: how does the honest prover algorithm construct proofs?

The Two-Challenge Approach

CRS contains two obfuscated programs

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow PRF(k_{sel}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Verify(x, π):

- Parse $\pi = (b, y)$
- If $f(y) = f(PRF(k_b, x))$, output 1
- Otherwise, output 0

Our approach: embed a one-way function challenge on **all** inputs, so no matter where adversary inverts, reduction is successful

Key idea: Every statement will be associated with **two** challenges and prover program will output solution to one of them

Selector $PRF(k_{sel}, \cdot)$ chooses bit $b \in \{0, 1\}$

Both $(0, PRF(k_0, x))$ and $(1, PRF(k_1, x))$ are valid proofs, and prover program outputs **one** of them (determined by selector PRF)

Proving Adaptive Security

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow PRF(k_{sel}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary wins if it outputs $x, \pi = (b, y)$ where $f(y) = f(PRF(k_b, x))$

Statements

Proving Adaptive Security

$$x_{1} < f(PRF(k_{0}, x_{1}))$$

$$f(PRF(k_{1}, x_{1}))$$

$$x_{2} < f(PRF(k_{0}, x_{2}))$$

$$f(PRF(k_{1}, x_{2}))$$
:

$$x_N < f(\operatorname{PRF}(k_0, x_N)) \\ f(\operatorname{PRF}(k_1, x_N))$$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary wins if it outputs $x, \pi = (b, y)$ where $f(y) = f(PRF(k_b, x))$

Take any false statement $x \notin \mathcal{L}$

By PRF security, the value of $PRF(k_{sel}, x)$ is pseudorandom

If adversary produces a proof $\pi = (b, y)$ on x, then $\Pr[b = \Pr[k_{sel}, x)] \approx 1/2$ Otherwise, adversary distinguishes $\Pr[k_{sel}, x)$

Proving Adaptive Security

Ta

B

If

0

$$x_{1} < f(PRF(k_{0}, x_{1}))$$

$$f(PRF(k_{1}, x_{1}))$$

$$x_{2} < f(PRF(k_{0}, x_{2}))$$

$$f(PRF(k_{1}, x_{2}))$$

$$x_N < f(PRF(k_0, x_N)) \\ f(PRF(k_1, x_N))$$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary wins if it outputs $x, \pi = (b, y)$ where $f(y) = f(PRF(k_b, x))$

Consider adaptive soundness game where adversary wins only when the adversary outputs a statement xand a proof where $\pi = (b, y)$ and $b \neq PRF(k_{sel}, x)$

Only decreases adversary's advantage by factor of 2

$$x_{1} \begin{pmatrix} f(PRF(k_{0}, x_{1})) \\ f(PRF(k_{1}, x_{1})) \\ f(PRF(k_{0}, x_{2})) \\ f(PRF(k_{0}, x_{2})) \\ f(PRF(k_{1}, x_{2})) \\ \vdots \\ x_{N} \begin{pmatrix} f(PRF(k_{0}, x_{N})) \\ f(PRF(k_{0}, x_{N})) \\ f(PRF(k_{1}, x_{N})) \end{pmatrix}$$

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_b, x))$ and $b \neq PRF(k_{sel}, x)$

Verification targets

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$

Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$ and $b \neq F(k_{sel}, x)$

Claim:
$$\Pr[\text{Game}_1 = 1] \ge \frac{1}{2} \cdot \Pr[\text{Game}_0 = 1] - \operatorname{negl}(\lambda)$$

Define event E_i to be the event that prover chooses statement $i \in \{0,1\}^n$

$$\Pr[\text{Game}_{1} = 1] = \sum_{i \in \{0,1\}^{n}} \Pr[\text{Game}_{1} = 1 \land \text{E}_{i}] \qquad \Pr[\text{Game}_{0} = 1] = \sum_{i \in \{0,1\}^{n}} \Pr[\text{Game}_{0} = 1 \land \text{E}_{i}]$$

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Verify(x, π):

- Parse $\pi = (b, y)$
- If $f(y) = f(PRF(k_b, x))$, output 1
- Otherwise, output 0

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$

Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$ and $b \neq F(k_{sel}, x)$

Claim:
$$\Pr[\text{Game}_1 = 1] \ge \frac{1}{2} \cdot \Pr[\text{Game}_0 = 1] - \operatorname{negl}(\lambda)$$

Define event E_i to be the event that prover chooses statement $i \in \{0,1\}^n$

$$\Pr[\text{Game}_1 = 1] = \sum_{i \in \{0,1\}^n} \Pr[\text{Game}_1 = 1 \land E_i] \qquad \Pr[\text{Game}_0 = 1] = \sum_{i \in \{0,1\}^n} \Pr[\text{Game}_0 = 1 \land E_i]$$

Suffices to show that for all $i \in \{0,1\}^n$:

$$\Pr[\text{Game}_1 = 1 \land \text{E}_i] \ge \frac{1}{2} \cdot \Pr[\text{Game}_0 = 1 \land \text{E}_i] - \frac{1}{2^n} \cdot \operatorname{negl}(\lambda)$$

Will require sub-exponential hardness!

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$

Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$ and $b \neq F(k_{sel}, x)$

Claim:
$$\Pr[\text{Game}_1 = 1] \ge \frac{1}{2} \cdot \Pr[\text{Game}_0 = 1] - \operatorname{negl}(\lambda)$$

Define event E_i to be the event that prover chooses statement $i \in \{0,1\}^n$

$$\Pr[\text{Game}_1 = 1] = \sum_{i \in \{0,1\}^n} \Pr[\text{Game}_1 = 1 \land E_i] \qquad \Pr[\text{Game}_0 = 1] = \sum_{i \in \{0,1\}^n} \Pr[\text{Game}_0 = 1 \land E_i]$$

Suffices to show that for all $i \in \{0,1\}^n$:

$$\Pr[\text{Game}_1 = 1 \land \text{E}_i] \ge \frac{1}{2} \cdot \Pr[\text{Game}_0 = 1 \land \text{E}_i] - \frac{1}{2^n} \cdot \operatorname{negl}(\lambda)$$

Observe: If $i \in \mathcal{L}$, then $Pr[Game_1 = 1 \land E_i] = 0 = Pr[Game_0 = 1 \land E_i]$

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $\operatorname{Verify}(x, \pi) = 1$ Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $\operatorname{Verify}(x, \pi) = 1$ and $b \neq F(k_{\operatorname{sel}}, x)$ **Claim:** for all $i \notin \mathcal{L}$: $\Pr[\operatorname{Game}_1 = 1 \land \operatorname{E}_i] \ge \frac{1}{2} \cdot \Pr[\operatorname{Game}_0 = 1 \land \operatorname{E}_i] - \frac{1}{2^n} \cdot \operatorname{negl}(\lambda)$

Hyb_{*i*,0} for $i \notin \mathcal{L}$

$$Pr[Hyb_{i,0} = 1] = Pr[Game_0 = 1 \land E_i]$$

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Prover wins if it outputs x, b, y where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$ and x = i

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $\operatorname{Verify}(x, \pi) = 1$ Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $\operatorname{Verify}(x, \pi) = 1$ and $b \neq F(k_{\operatorname{sel}}, x)$ **Claim:** for all $i \notin \mathcal{L}$: $\Pr[\operatorname{Game}_1 = 1 \land \operatorname{E}_i] \ge \frac{1}{2} \cdot \Pr[\operatorname{Game}_0 = 1 \land \operatorname{E}_i] - \frac{1}{2^n} \cdot \operatorname{negl}(\lambda)$

Hyb_{*i*,0} for $i \notin \mathcal{L}$

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_b, x))$

Hyb_{*i*,1} for $i \notin \mathcal{L}$

Prove(x, w):

• If $\mathcal{R}(x, w) = 0$ or x = i, output \bot

• Compute
$$b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)$$

• Output
$$\pi = (b, \text{PRF}(k_b, x))$$

Prover wins if it outputs x, b, y where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$ and x = i

iO

- $\Pr[Hyb_{i,0} = 1] = \Pr[Game_0 = 1 \land E_i]$
- $\Pr[\text{Hyb}_{i,1} = 1] \ge \Pr[\text{Hyb}_{i,0} = 1] 2^{-n} \cdot \operatorname{negl}(\lambda)$

(sub-exponential security of iO)

Hyb_{*i*,0} for $i \notin \mathcal{L}$

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Hyb_{*i*,1} for $i \notin \mathcal{L}$

Prove(x, w):

• If $\mathcal{R}(x, w) = 0$ or x = i, output \bot

• Compute
$$b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)$$

• Output $\pi = (b, \text{PRF}(k_b, x))$

Prover wins if it outputs x, b, y where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$ and x = i

iO

- $\Pr[Hyb_{i,0} = 1] = \Pr[Game_0 = 1 \land E_i]$
- $\Pr[\text{Hyb}_{i,1} = 1] \ge \Pr[\text{Hyb}_{i,0} = 1] 2^{-n} \cdot \operatorname{negl}(\lambda)$
- $\Pr[Hyb_{i,2} = 1] = \frac{1}{2} \cdot \Pr[Hyb_{i,1} = 1]$

(sub-exponential security of iO)

Hyb_{*i*,2} for $i \notin \mathcal{L}$

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$ or x = i, output \bot
- Compute $b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)$
- Output $\pi = (b, PRF(k_b, x))$

Hyb_{*i*,1} for $i \notin \mathcal{L}$

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$ or x = i, output \bot
- Compute $b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)$

• Output
$$\pi = (b, \text{PRF}(k_b, x))$$

 $b' \leftarrow \{0,1\}$

Prover wins if it outputs x, b, y where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$ and x = i and $b \neq b'$

- $\Pr[Hyb_{i,0} = 1] = \Pr[Game_0 = 1 \land E_i]$
- $\Pr[\text{Hyb}_{i,1} = 1] \ge \Pr[\text{Hyb}_{i,0} = 1] 2^{-n} \cdot \operatorname{negl}(\lambda)$
- $\Pr[Hyb_{i,2} = 1] = \frac{1}{2} \cdot \Pr[Hyb_{i,1} = 1]$
- $\Pr[\text{Hyb}_{i,3} = 1] \ge \Pr[\text{Hyb}_{i,2} = 1] 2^{-n} \cdot \operatorname{negl}(\lambda)$
- $\Pr[Hyb_{i,3} = 1] = \Pr[Game_1 = 1 \land E_i]$

(sub-exponential security of $i\mathcal{O}$)

(sub-exponential security of PRF)

Hyb_{*i*,2} for $i \notin \mathcal{L}$

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$ or x = i, output \bot
- Compute $b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)$
- Output $\pi = (b, PRF(k_b, x))$

Hyb_{*i*,3} for $i \notin \mathcal{L}$

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$ or x = i, output \bot
- Compute $b \leftarrow \text{PRF}\left(k_{\text{sel}}^{(i)}, x\right)$
- Output $\pi = (b, \text{PRF}(k_b, x))$

Prover wins if it outputs x, b, y where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$ and x = i and $b \neq PRF(k_{sel}, i)$

PRF

- $\Pr[Hyb_{i,0} = 1] = \Pr[Game_0 = 1 \land E_i]$
- $\Pr[\text{Hyb}_{i,1} = 1] \ge \Pr[\text{Hyb}_{i,0} = 1] 2^{-n} \cdot \operatorname{negl}(\lambda)$
- $\Pr[Hyb_{i,2} = 1] = \frac{1}{2} \cdot \Pr[Hyb_{i,1} = 1]$
- $\Pr[Hyb_{i,3} = 1] \ge \Pr[Hyb_{i,2} = 1] 2^{-n} \cdot \operatorname{negl}(\lambda)$
- $\Pr[Hyb_{i,3} = 1] = \Pr[Game_1 = 1 \land E_i]$

(sub-exponential security of iO)

(sub-exponential security of PRF)

Formally:

Game₀: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$

Game₁: Prover wins if it outputs $x, \pi = (b, y)$ where $x \notin \mathcal{L}$ and $Verify(x, \pi) = 1$ and $b \neq F(k_{sel}, x)$

Claim: for all $i \notin \mathcal{L}$: $\Pr[\text{Game}_1 = 1 \land \text{E}_i] \ge \frac{1}{2} \cdot \Pr[\text{Game}_0 = 1 \land \text{E}_i] - \frac{1}{2^n} \cdot \operatorname{negl}(\lambda)$ **Therefore:** $\Pr[\text{Game}_1 = 1] \ge \frac{1}{2} \cdot \Pr[\text{Game}_0 = 1] - \operatorname{negl}(\lambda)$

$$x_{1} \checkmark f(PRF(k_{0}, x_{1}))$$

$$f(PRF(k_{1}, x_{1}))$$

$$x_{2} \checkmark f(PRF(k_{0}, x_{2}))$$

$$f(PRF(k_{1}, x_{2}))$$

 $x_N < f(\operatorname{PRF}(k_0, x_N)) \\ f(\operatorname{PRF}(k_1, x_N))$

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_b, x))$ and $b \neq PRF(k_{sel}, x)$

Observation: Prover program *never* computes $PRF(k_b, x)$

Value is pseudorandom!

Verification targets

$$x_{1} < f(PRF(k_{0}, x_{1}))$$

$$f(PRF(k_{1}, x_{1}))$$

$$x_{2} < f(PRF(k_{0}, x_{2}))$$

$$f(PRF(k_{1}, x_{2}))$$

 $x_N < f(PRF(k_0, x_N)) \\ f(PRF(k_1, x_N))$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_b, x))$ and $b \neq PRF(k_{sel}, x)$

Formally argued using $N = 2^n$ hybrids

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_b, x))$ and $b \neq PRF(k_{sel}, x)$

Formally argued using $N = 2^n$ hybrids

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, \text{PRF}(k_b, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_b, x))$ and $b \neq PRF(k_{sel}, x)$

Formally argued using $N = 2^n$ hybrids

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_b, x))$ and $b \neq PRF(k_{sel}, x)$

$$x_{1} < f(PRF(k_{0}, x_{1}))$$

$$Rerand(y^{*}; PRF(k_{1}, x_{1}))$$

$$x_{2} < Rerand(y^{*}; PRF(k_{0}, x_{2}))$$

$$f(PRF(k_{1}, x_{2}))$$

$$Rerand(y^{*}; PRF(k_{0}, x_{N}))$$

$$x_{N} < Rerand(y^{*}; PRF(k_{0}, x_{N}))$$

$$f(PRF(k_{1}, x_{N}))$$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Verify (x, π) : • Parse $\pi = (b, y)$ • Output 1 if • $b = PRF(k_{sel}, x)$ and $f(y) = f(PRF(k_b, x))$ • $b \neq PRF(k_{sel}, x)$ and $f(y) = f(Rerand(y^*; PRF(k_b, x)))$ • Otherwise, output 0

 y^* is a random instance for the OWF

$$x_{1} \begin{pmatrix} f(PRF(k_{0}, x_{1})) \\ Rerand(y^{*}; PRF(k_{1}, x_{1})) \end{pmatrix}$$
$$x_{2} \begin{pmatrix} Rerand(y^{*}; PRF(k_{0}, x_{2})) \\ f(PRF(k_{1}, x_{2})) \end{pmatrix}$$

$$x_N < \frac{\operatorname{Rerand}(y^*; \operatorname{PRF}(k_0, x_N))}{f(\operatorname{PRF}(k_1, x_N))}$$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_b, x))$ and $b \neq PRF(k_{sel}, x)$

Adversary only wins if it outputs x, b, y where $f(y) = f\left(\text{Rerand}(y^*; \text{PRF}(k_b, x))\right)$ and $b \neq \text{PRF}(k_{\text{sel}}, x)$

$$x_{1} \checkmark \begin{cases} f(PRF(k_{0}, x_{1})) \\ Rerand(y^{*}; PRF(k_{1}, x_{1})) \end{cases}$$
$$x_{2} \checkmark Rerand(y^{*}; PRF(k_{0}, x_{2})) \\ f(PRF(k_{1}, x_{2})) \end{cases}$$

$$x_N < \frac{\operatorname{Rerand}(y^*; \operatorname{PRF}(k_0, x_N))}{f(\operatorname{PRF}(k_1, x_N))}$$

Verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary only wins if it outputs x, b, y where $f(y) = f(PRF(k_b, x))$ and $b \neq PRF(k_{sel}, x)$

By the rerandomization property, any such y yields a preimage of the challenge y^*

where

 $f(y) = f\left(\operatorname{Rerand}(y^*; \operatorname{PRF}(k_b, x))\right) \text{ and } b \neq \operatorname{PRF}(k_{\operatorname{sel}}, x)$

$$x_{1} \checkmark f(PRF(k_{0}, x_{1}))$$

$$Rerand(y^{*}; PRF(k_{1}, x_{1}))$$

$$x_{2} \checkmark Rerand(y^{*}; PRF(k_{0}, x_{2}))$$

$$f(PRF(k_{1}, x_{2}))$$

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow PRF(k_{sel}, x)$
- Output $\pi = (b, PRF(k_b, x))$

 $x_N < \frac{\operatorname{Rerand}(y^*; \operatorname{PRF}(k_0, x_N))}{f(\operatorname{PRF}(k_1, x_N))}$

Verification targets

٠

Final proof is a bit and a single preimage of the OWF: poly(λ) bits, independent of n

CRS size is $poly(\lambda, n)$ — necessary to absorb the exponential security loss incurred by the $N = 2^n$ hybrids

Previous approach needed the OWF to be statistically rerandomizable

Rerandomizability seems to be an *algebraic* property (not known how to build from *iO* and OWFs) Waters-Zhandry [wz24]: Can relax rerandomizable PRF to a lossy function Lossy functions also not known from *iO* and OWFs

Can we get adaptive soundness just from iO and OWFs?

y is a valid proof for x_i if it corresponds to one of the two paths

$$y = PRF(k_0, x_1)$$

$$y = PRF(k_1, x_1)$$

$$y = PRF(k_1, x_1)$$

$$y = PRF(k_1, x_2)$$

$$y = PRF(k_1, x_2)$$

$$y = PRF(k_1, x_1)$$

$$y = PRF(k_1, x_1)$$

$$y = PRF(k_1, x_N)$$

First, rewrite $y = PRF(k_b, x_i)$ as $y \bigoplus PRF(k_b, x_i) \bigoplus y^* = y^*$

$$x_{1} \bigvee y \in PRF(k_{0}, x_{1})$$

$$y \oplus PRF(k_{1}, x_{1}) \oplus y^{*} = y^{*}$$

$$x_{2} \bigvee y \oplus PRF(k_{0}, x_{2}) \oplus y^{*} = y^{*}$$

$$y = PRF(k_{1}, x_{2})$$

$$\vdots$$

$$x_{N} \bigvee y \oplus PRF(k_{0}, x_{N}) \oplus y^{*} = y^{*}$$

$$y \oplus PRF(k_{0}, x_{N}) \oplus y^{*} = y^{*}$$

First, rewrite $y = PRF(k_b, x_i)$ as $y \bigoplus PRF(k_b, x_i) \bigoplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \bigoplus PRF(k_b, x) \bigoplus y^* = y^*$ and $b \neq PRF(k_{sel}, x)$

Prover program *never* computes $PRF(k_b, x)$

By punctured PRF security: $PRF(k_b, x) \bigoplus y^* \approx PRF(k_b, x)$

$$x_{1} \swarrow y \oplus PRF(k_{0}, x_{1})$$

$$y \oplus PRF(k_{1}, x_{1}) = y^{*}$$

$$x_{2} \checkmark y \oplus PRF(k_{0}, x_{2}) \oplus y^{*} = y^{*}$$

$$y = PRF(k_{1}, x_{2})$$

$$\vdots$$

$$x_{N} \checkmark y \oplus PRF(k_{0}, x_{N}) \oplus y^{*} = y^{*}$$

$$y \oplus PRF(k_{1}, x_{N})$$

First, rewrite $y = PRF(k_b, x_i)$ as $y \bigoplus PRF(k_b, x_i) \bigoplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \bigoplus PRF(k_b, x) \bigoplus y^* = y^*$ and $b \neq PRF(k_{sel}, x)$

Prover program *never* computes $PRF(k_b, x)$

By punctured PRF security: $PRF(k_b, x) \bigoplus y^* \approx PRF(k_b, x)$

$$y = PRF(k_0, x_1)$$

$$x_1 \qquad y \oplus PRF(k_1, x_1) = y^*$$

$$x_2 \qquad y \oplus PRF(k_0, x_2) = y^*$$

$$y = PRF(k_1, x_2)$$

$$\vdots$$

$$x_N \qquad y \oplus PRF(k_0, x_N) \oplus y^* = y^*$$

$$y = PRF(k_1, x_N)$$

First, rewrite $y = PRF(k_b, x_i)$ as $y \bigoplus PRF(k_b, x_i) \bigoplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \bigoplus PRF(k_b, x) \bigoplus y^* = y^*$ and $b \neq PRF(k_{sel}, x)$

Prover program *never* computes $PRF(k_b, x)$

By punctured PRF security: $PRF(k_b, x) \oplus y^* \approx PRF(k_b, x)$

$$y = PRF(k_0, x_1)$$

$$x_1 \qquad y \oplus PRF(k_1, x_1) = y^*$$

$$x_2 \qquad y \oplus PRF(k_0, x_2) = y^*$$

$$y = PRF(k_1, x_2)$$

$$\vdots$$

$$x_N \qquad y \oplus PRF(k_0, x_N) = y^*$$

$$y \oplus PRF(k_0, x_N) = y^*$$

"off-path" verification targets

First, rewrite $y = PRF(k_b, x_i)$ as $y \bigoplus PRF(k_b, x_i) \bigoplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \bigoplus PRF(k_b, x) \bigoplus y^* = y^*$ and $b \neq PRF(k_{sel}, x)$

Prover program *never* computes $PRF(k_b, x)$

By punctured PRF security: $PRF(k_b, x) \oplus y^* \approx PRF(k_b, x)$

$$y = PRF(k_0, x_1)$$

$$x_1 \qquad y \oplus PRF(k_1, x_1) = y^*$$

$$x_2 \qquad y \oplus PRF(k_0, x_2) = y^*$$

$$y = PRF(k_1, x_2)$$

$$\vdots$$

$$x_N \qquad y \oplus PRF(k_0, x_N) = y^*$$

$$y \oplus PRF(k_0, x_N) = y^*$$

"off-path" verification targets

First, rewrite $y = PRF(k_b, x_i)$ as $y \bigoplus PRF(k_b, x_i) \bigoplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \bigoplus PRF(k_b, x) \bigoplus y^* = y^*$ and $b \neq PRF(k_{sel}, x)$

Prover program *never* computes $PRF(k_b, x)$

By punctured PRF security: $PRF(k_b, x) \oplus y^* \approx PRF(k_b, x)$

Let f be an injective OWF Then $z = z' \Leftrightarrow f(z) = f(z')$

$$x_{1} \checkmark f(y \oplus PRF(k_{0}, x_{1})) = f(y^{*})$$

$$x_{2} \checkmark f(y \oplus PRF(k_{0}, x_{2})) = f(y^{*})$$

$$y = PRF(k_{1}, x_{2})$$

$$\vdots$$

$$x_{N} \checkmark f(y \oplus PRF(k_{0}, x_{N})) = f(y^{*})$$

$$y = PRF(k_{1}, x_{N})$$

"off-path" verification targets

First, rewrite $y = PRF(k_b, x_i)$ as $y \bigoplus PRF(k_b, x_i) \bigoplus y^* = y^*$

Adversary only wins if it outputs x, b, y where $y \bigoplus PRF(k_b, x) \bigoplus y^* = y^*$ and $b \neq PRF(k_{sel}, x)$

Prover program *never* computes $PRF(k_b, x)$

By punctured PRF security: $PRF(k_b, x) \oplus y^* \approx PRF(k_b, x)$

Let f be an injective OWF Then $z = z' \Leftrightarrow f(z) = f(z')$

$$x_{1} \swarrow f(y \oplus PRF(k_{0}, x_{1})) = f(y^{*})$$

$$x_{2} \swarrow f(y \oplus PRF(k_{0}, x_{2})) = f(y^{*})$$

$$y = PRF(k_{1}, x_{2})$$

$$\vdots$$

$$x_{N} \checkmark f(y \oplus PRF(k_{0}, x_{N})) = f(y^{*})$$

$$y = PRF(k_{1}, x_{N})$$

"off-path" verification targets

Every statement has **two** possible proofs: one that is output by the Prove program and one that is not

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Adversary only wins if it outputs x, b, y where $f(y \bigoplus \text{PRF}(k_b, x)) = f(y^*)$ and $b \neq \text{PRF}(k_{\text{sel}}, x)$

Adversary only wins if it outputs an **encryption** of a preimage to $f(y^*)$; reduction only needs a single instance $f(y^*)$ of the OWF!

Summary

CRS contains two obfuscated programs

Prove(x, w):

- If $\mathcal{R}(x, w) = 0$, output \bot
- Compute $b \leftarrow \text{PRF}(k_{\text{sel}}, x)$
- Output $\pi = (b, PRF(k_b, x))$

Verify(x, π):

- Parse $\pi = (b, y)$
- If $y = PRF(k_b, x)$, output 1
- Otherwise, output 0

Scheme relies on sub-exponential secure iO and sub-exponential secure OWFs

Construction as described relies on injective one-way function

[BPW16]: $i\mathcal{O}$ + OWFs \Rightarrow (keyed) injective OWFs

Alternatively, observe that injective one-way function only shows up in the security proof

Suffices to build injective OWF with an *inefficient* sampler (implied by vanilla OWFs)

[see paper for details]

Summary

This work: Adaptively-sound SNARGs for NP from sub-exponentially-secure *iO* and sub-exponentially-secure one-way functions

Large CRS ($|crs| = poly(\lambda, |\mathcal{R}|)$), short proofs ($|\pi| = poly(\lambda)$)

Reduction to falsifiable assumptions runs in time $2^{\Omega(|x|+|w|)}$

Upcoming work [DWW24]: fully succinct SNARGs for batch NP from sub-exponentially-secure iO, sub-exponentially secure one-way functions, and rerandomizable one-way functions

Open problems:

- Adaptively-sound SNARGs for NP without iO (e.g., from LWE)?
- Non-adaptively-sound SNARGs for NP from a polynomial-time falsifiable assumption?

(or extend Gentry-Wichs to rule this out)

Thank you!