Batch Arguments for NP

from Standard Bilinear Group Assumptions

Brent Waters and David Wu

Batch Arguments for NP

Boolean circuit satisfiability
L-={x€ {01} C(x,w) =1 for some w}

prover CTE 42N verifier

prover has m statements and
wants to convince verifier that
x; € L foralli € [m]

Batch Arguments for NP

Boolean circuit satisfiability
L-={x€ {01} C(x,w) =1 for some w}

prover

CTE 42N verifier

T =W ...,Wy,)
——————————————————————————————

Naive solution: send witnesses
Can the proof size be Wy, ..., Wy, and verifier checks

SEILECIRURUELNINLES ¢ (x, w,) = 1 foralli € [m]
of instances m?

oal: Amortize the Cost of NP Verification

Boolean circuit satisfiability
L-={x€ {01} C(x,w) =1 for some w}

prover

CTE 42N verifier

Proof size: || = |C| - poly(logm ,A)

) . , A : securit
“Proof size for a single instance” y
parameter

Proof size scales

sublinearly with the
number of instances

oal: Amortize the Cost of NP Verification

Boolean circuit satisfiability
L-={x€ {01} C(x,w) =1 for some w}

prover CTE 42N verifier

Proof size: || = |C| - poly(logm ,A)

Similar® requirement on verification time

*Verifier does need to read statements so we do allow a poly(4, m,n) dependence

Batch Arguments for NP

Special case of succinct non-interactive arguments for NP (SNARGS)
Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation

Batch arguments from correlation intractable hash functions
Sub-exponential DDH (in pairing-free groups) + QR (with v/m size proofs) [ClJ21a]
Learning with errors (LWE) [CJJ21Db]

Batch arguments from pairing-based assumptions
Non-standard, but falsifiable g-type assumption on bilinear groups [KPY19]

This Work

New constructions of non-interactive batch arguments for NP

Batch arguments for NP from standard assumptions over bilinear maps
k-Linear assumption (for any k = 1) in prime-order bilinear groups
Subgroup decision assumption in composite-order bilinear groups

Key feature: Construction is “low-tech”
No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs
Direct “commit-and-prove” approach a la classic NIZK construction of Groth-Ostrovsky-Sahai

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS from standard bilinear map assumptions
Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]
Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions

Previous bilinear map constructions: random oracle based [BGLS03]

A Commit-and-Prove Strategy for Batch Arguments

Letw; = (Wi’l, ...,Wi’m) be vector
of wire labels associated with wire i
across the m instances

o Prover commits to each vector of wire assignments

Requirement: |g;| = poly(4,logm)

Our construction: |g;| = poly(4)

A Commit-and-Prove Strategy for Batch Arguments

Letw; = (Wl-,l, ...,Wi’m) be vector
of wire labels associated with wire i
across the m instances

e Prover constructs the following proofs:
Input validity

Commitments to the statement wires are
correctly computed

0 Prover commits to each vector of wire assignments Commitments in our scheme are

deterministic, so verifier can directly check
w; = Wt 7y) I

Requirement: |g;| = poly(4,logm)

Our construction: |g;| = poly(4)

A Commit-and-Prove Strategy for Batch Arguments

Letw; = (Wi’l, ...,Wi’m) be vector
of wire labels associated with wire i
across the m instances

a Prover constructs the following proofs:
Input validity
Wire validity

Commitment for each wire is a commitment

0 Prover commits to each vector of wire assignments to a 0/1 vector

Requirement: |g;| = poly(4,logm)

Our construction: |g;| = poly(4)

A Commit-and-Prove Strategy for Batch Arguments

Letw; = (Wi’l, ...,Wi’m) be vector
of wire labels associated with wire i
across the m instances

a Prover constructs the following proofs:
Input validity

Wire validity

_ . _ Gate validity
o Prover commits to each vector of wire assignments For each gate, commitment to output wires is

wW;: = w W ‘ - consistent with gate operation and
L - & sl ‘ commitment to input wires

Requirement: |g;| = poly(4,logm)

Our construction: |g;| = poly(4)

A Commit-and-Prove Strategy for Batch Arguments

Letw; = (Wi’l, ...,Wi’m) be vector
of wire labels associated with wire i
across the m instances

a Prover constructs the following proofs:
Input validity
Wire validity

:)) Gate validity
0 Prover commits to each vector of wire assignments -
Output validity

w; = - ‘ Commitment to output wire is a commitment
to the all-ones vector

Requirement: |g;| = poly(4,logm)

Our construction: |g;| = poly(4)

A Commit-and-Prove Strategy for Batch Arguments

Letw; = (Wi’l, ...,Wi’m) be vector
of wire labels associated with wire i
across the m instances

a Prover constructs the following proofs:

Input validity

Wire validity

_ . _ Gate validity
0 Prover commits to each vector of wire assignments

Requirement: |g;| = poly(4,logm)

Output validity

Key idea: Validity checks are quadratic

ion: |g;| = poly(4
Our construction: |g;| = poly(4) and can be checked in the exponent

Construction from Composite-Order Groups

Pedersen multi-commitments: (without randomness)

Let G be a group of order N = pg (composite order)
Let :,, < G be the subgroup of order p and let g,, be a generator of Gz,

denotes encodings in G,

crs: sample aq, ..., a,,, < Zy
a a
output A; « g7, ..., Ay < g, "

commitment to x = (x4, ..., x,,,) € {0,1}™:

o = A1 A7 ..« AZ™ (subset product of the A;’s)

m

lox] B [Zie[m]aixi]

Proving Relations on Committed Values

common reference string Wire validity

Commitment for each wire is a commitment to a 0/1 vector
x € {0,1} if and only if x? = x

Key idea: Use pairing to check quadratic relation in the exponent

Recall: pairing is an efficiently-computable bilinear map on G:
e(9%,97) =e(g, 9™

commitment to (xl, ey Xm)
e(lED,B) —

= A7P Ay - AT Multiplies exponents in the target group

p

Proving Relations on Committed Values

common reference string Wire validity

Commitment for each wire is a commitment to a 0/1 vector
x € {0,1} if and only if x? = x

N
Approach: consider the following pairing relations:

e(o,,0,) and e(o,, I icfm]Ai)
Q y

commitment to (x4, ..., X)) Zicm] i

A =Tl =g,

(commitment to all-ones vector)

[i€[m] alxl]

X1 4X2 xm
e = ALAT A

p

Proving Relations on Committed Values

common reference string Wire validity

Commitment for each wire is a commitment to a 0/1 vector
x € {0,1} if and only if x? = x

N
Approach: consider the following pairing relations:

. e(o,,0,) and e(o,, I icfm]Ai)

commitment to (xq, ..., Xp,;)
(G,)

[i€[m] alxl]

— xl xz xm — 2 2
_ a1X1+ +amxm
_ gp non-cross terms cross terms

Proving Relations on Committed Values

common reference string Wire validity

_ Commitment for each wire is a commitment to a 0/1 vector
[al] A1 =g, /

x € {0,1} if and only if x? = x

~

: ~
Approach: consider the following pairing relations:

ol 4. =g," . e(o,,0,) and e(ax, ic[m]Ai)

(NI, () (G, Emm)
= (N < EEEm =

non-cross terms cross terms non-cross terms cross terms

ic m]“izxiz] X [Ziij“i“jxixj]

Proving Relations on Committed Values

If

_

x? = x; for all i, then)

2
i

[Ziermaixi]

[Zictm)

2,2
i Xi

]

— QDIEmeA

non-cross terms

Wire validity
Commitment for each wire is a commitment to a 0/1 vector
x € {0,1} if and only if x? = x

e(o,,0,) and e(o,,II iefm]Ai)

Approach: consider the following pairing relations:

~

J U
(ORI, M) o(Cmm o)

— [Zie[m]aizxiz]

non-cross terms

Proving Relations on Committed Values

If x? = x; for all i, then) wire validity
Commitment for each wire is a commitment to a 0/1 vector

ZX']
Ll x € {0,1} if and only if x? = x

[Ziermai

N
Approach: consider the following pairing relations:

\ / . e(o,,0,) and e(o,,II iefm]Ai)

c(CEEEY), EMND) -«)

When x? = x;, difference between these terms is

Augment CRS with cross-terms
a;a;j ;)
[aiaj] Bij=g, = Vi#]j

Give prover ability to
eliminate cross-terms only

Proving Relations on Committed Values

Prover now computes additional group component in the base group

Pair with g,,
—

e(gp, V)

c(CHZEN) ENNR) o (CEEED,CERED)

When x? = x;, difference between these terms is
Augment CRS with cross-terms
a;a;j ;)
[aiaj] Bij=g, = Vi#]j

Give prover ability to
eliminate cross-terms only

Proving Relations on Committed Values

Prover now computes additional group component in the base group

Pair with g,,
—

e(gp, V)

Overall verification relation: e(o,,0,) = e(ax,A)e(gp, V) A = iem4;

Proving Relations on Committed Values

Prover now computes additional group component in the base group

Pair with g,,
—
e(gp, V)
Overall verification relation: e¢(0,,0,) = e(0,, A)e(gp, V) A = iepm)A4;

Non-cross terms ensure that x7 = x;

Proving Relations on Committed Values

Prover now computes additional group component in the base group

Pair with g,,
—
e(gp, V)
Overall verification relation: e¢(0,,0,) = e(0,, A)e(gp, V) A = iepm)A4;

Non-cross terms ensure that x7 = x;
Correction factor to correct for cross terms

Proving Relations on Committed Values

Common reference string: Gate validity

e For each gate, commitment to output wires is consistent
[a] (]

with gate operation and commitment to input wires

foralli € [m]:w3; =1 —wq;wy;

aidi . .
[alaj] Bi,j = gp T Vi *]
Relation is quadratic in the inputs

Commitment to (xy, ..., X;): Can leverage similar approach as before
Ziemyaixi]
Oy = A7PAY? - AT

a1X1+"'+(Xme
p

Proof Size

Letw; = (Wl-,l, ...,Wi’m) be vector
of wire labels associated with wire i

e Prover constructs the following proofs:

Input validity
i Wire validity One group element
} Gate validity One group element

o Prover commits to each vector of wire assignments

Commitment size: |g;| = poly(1) Overall proof size (t wires, s gates):
Single group element (2t +s) - poly(1) = |C]| - poly(4)

Output validity

Is This Sound?

Common reference string:

[a] (]

Ay = ggl Ap = ggm

la; + - a,,] ESRLECk

Commitment to (x4, ..., X;):

|Ziepmyaixi]

O = AJPA? - AL

a1X1+"'+(Xme
p

Soundness requires some care:
Groth-Ostrovsky-Sahai NIZK based on similar
commit-and-prove strategy

Soundness in GOS is possible by extracting a witness
from the commitment

For a false statement, no witness exists

Our setting: commitments are succinct — cannot extract a
full witness

Solution: “local extractability” [KPY19] or “somewhere
extractability” [CJJ21]

Somewhere Soundness

CRS will have two modes: If proof i verifies, then we can extract

a witness w; such that C(x;, w;) =1

Normal mode: used in the real scheme

Extracting on index i: supports witness extraction for instance i (given a trapdoor)

CRS in the two modes are computationally indistinguishable

Similar to “dual-mode” proof systems and somewhere statistically binding hash functions

Implies non-adaptive soundness

Local Extraction

l *—1 i l *+1

Move slot i to full group

Extracting rr.\:)de Phe gp i*—1 gp g gplﬂ gom
(extracton i)

A1 i Airpq

Subgroup decision assumption [BGNO5]:

Random element in subgroup (G,)

~y
~w

Random element in full group (G)

Local Extraction

CRS in extraction mode (for index i):

1—1 i l+1
a _ ; a
--

Trapdoor: g, (generator of G)

Can extract by projecting into G,

Extracted bit for a commitment g is 1 if ¢ has a (non-zero) component in G,

Correctness of Extraction

Consider wire validity check:

e(0y, 0x) = e(o-x:A)e(gp» V)

Correctness of Extraction

Consider wire validity check:

e(0y, 0x) = e(o_x:A)e(gp» V)

Adversary chooses commitment g, and proof I/

Correctness of Extraction

Consider wire validity check:
e(0y, 0,) = e(oy, A)e(gp: V)
Adversary chooses commitment g, and proof I/

Generator g,, and aggregated component A part of the CRS (honestly-generated)

If this relation holds, it must hold in both
the order-p subgroup and the order-g subgroup of G

Key property: e(gp, V) is always in the order-p subgroup; adversary cannot influence the
verification relation in the order-g subgroup

Write o, = g5 94

In the order-g subgroup, exponents must satisfy:

Siem] % t? = tr mod q

Write A = g, 9q

Correctness of Extraction

Consider wire validity check:
e(0y, 0,) = e(oy, A)e(gp: V)
Adversary chooses commitment g, and proof I/

Generator g,, and aggregated component A part of the CRS (honestly-generated)

If this relation holds, it must hold in both
the order-p

N rOLLD a¥a aYaWaVdala a Nyrorin ot (.
If wire validity checks pass, then t = b;r where b; € {0,1}

Key property: e(gp, V) is alwi
\Zgiilec T N(CIEII W NI RGINe](sl Observe: b; € {0,1} is also the extracted bit

Write o, = g5 94

In the order-g subgroup, exponents must satisfy:

Siem] % t? = tr mod q

Write A = g, 9q

Correctness of Extraction

Consider gate validity check:
e(aWB,A)e(awl, O'WZ) =e(A,A)e(g,, W)

Adversary chooses commitment oy, , 0,,, d,, and proof W

Generator g,, and aggregated component A part of the CRS (honestly-generated)

Similar analysis shows that extracted bits satisfy b; = 1 — b;yb, = NAND(b4, b,)

[See paper for details]

A Commit-and-Prove Strategy for Batch Arguments

Letw; = (Wi’l, ...,Wi’m) be vector
of wire labels associated with wire i
across the m instances

a Prover constructs the following proofs:

Input validity

Wire validity

_ . _ Gate validity
0 Prover commits to each vector of wire assignments

Requirement: |g;| = poly(4,logm)

Output validity

Key idea: Validity checks are quadratic

ion: |g;| = poly(4
Our construction: |g;| = poly(4) and can be checked in the exponent

From Composite-Order to Prime-Order

Batch argument for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

G = (Gp X (G:rq composite-order group
Simulate subgroups
with subspaces

k-Linear assumption (for any k = 1) in prime-order asymmetric bilinear groups

Conclusion:

Reducing CRS Size

Common reference string: Size of CRS is m? - poly(4)

=
Can rely on recursive composition to reduce CRS size:

. . - . o DoA) = poly(D)
Bi> §Bi3 Bim
’ ’ ’ for any constant € > 0
- . .
’ ’ Similar approach as [KPY19]

Application to RAM Delegation (“SNARGs for P”)

succinct argument for

Choudhuri et al. [c121] showed: e .
polynomial-time computations

Somewhere Delegation
extractable scheme for RAM
commitment programs

Batch argument

for NP*

succinct vector commitment that
allows extracting on single index

*Needs a split verification property [see paper for details]

Application to RAM Delegation (“SNARGs for P”)

succinct argument for

Choudhuri et al. [c121] showed: e .
polynomial-time computations

Somewhere Delegation
Batch argument
for NP* extractable scheme for RAM
commitment programs
This work succinct vector commitment that
(from k-Lin) allows extracting on single index

*Needs a split verification property [see paper for details]

Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [c1121] showed:

Somewhere Delegation
Batch argument
for NP* extractable scheme for RAM
commitment programs
This work This work + [OPWW15]
(from k-Lin) (from SXDH)

*Needs a split verification property [see paper for details]

Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [c1)21] showed:

Somewhere Delegation
Batch argument
for NP* extractable scheme for RAM
commitment programs
This work This work + [OPWW15]
(from k-Lin) (from SXDH)

Corollary. RAM delegation from SXDH on prime-order pairing groups
To verify a time-T RAM computation:

* CRS size: crs| = T¢ - poly(4) for any constant & > 0
* Proof size: | = poly(4,logT)
« Verification time: |Verify| = poly(4,logT)

Previous pairing constructions: non-standard assumptions [KPY19] or quadratic CRS [GZ21]

Summary

Batch arguments for NP from standard assumptions over bilinear maps

Key feature: Construction is “low-tech”
Direct “commit-and-prove” approach like classic pairing-based proof systems

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS

Corollary: Aggregate signature with bounded aggregation in the plain model

https://eprint.iacr.org/2022/336
Thank you!

