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Batch Arguments for NP

prover verifier

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

prover has 𝑚 statements and 
wants to convince verifier that 

𝑥𝑖 ∈ ℒ𝐶 for all 𝑖 ∈ 𝑚



Batch Arguments for NP

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋 = 𝑤1, … , 𝑤𝑚

Naïve solution: send witnesses 
𝑤1, … , 𝑤𝑚 and verifier checks 
𝐶 𝑥𝑖 , 𝑤𝑖 = 1 for all 𝑖 ∈ [𝑚]

Can the proof size be 
sublinear in the number 

of instances 𝑚?

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤



Goal: Amortize the Cost of NP Verification

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋

Proof size: 𝜋 = 𝐶 ⋅ poly log𝑚 , 𝜆

𝜆 : security 
parameter

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤

“Proof size for a single instance”

Proof size scales 
sublinearly with the 
number of instances



Goal: Amortize the Cost of NP Verification

prover verifier

Boolean circuit satisfiability

𝑥1, … , 𝑥𝑚

𝜋

Similar* requirement on verification time

ℒ𝐶 = 𝑥 ∈ 0,1 𝑛: 𝐶 𝑥, 𝑤 = 1 for some 𝑤

Proof size: 𝜋 = 𝐶 ⋅ poly log𝑚 , 𝜆

*Verifier does need to read statements so we do allow a poly 𝜆,𝑚, 𝑛 dependence



Batch Arguments for NP

Special case of succinct non-interactive arguments for NP (SNARGs)
Constructions rely on idealized models or knowledge assumptions or indistinguishability obfuscation

Batch arguments from pairing-based assumptions
Non-standard, but falsifiable 𝑞-type assumption on bilinear groups [KPY19]

Batch arguments from correlation intractable hash functions
Sub-exponential DDH (in pairing-free groups) + QR (with 𝑚 size proofs)

Learning with errors (LWE) [CJJ21b]

[CJJ21a]



This Work

New constructions of non-interactive batch arguments for NP

Batch arguments for NP from standard assumptions over bilinear maps
𝑘-Linear assumption (for any 𝑘 ≥ 1) in prime-order bilinear groups

Subgroup decision assumption in composite-order bilinear groups

Key feature: Construction is “low-tech”
No heavy tools like correlation-intractable hash functions or probabilistically-checkable proofs

Direct “commit-and-prove” approach à la classic NIZK construction of Groth-Ostrovsky-Sahai

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS from standard bilinear map assumptions

Previous bilinear map constructions: need non-standard assumptions [KPY19] or have long CRS [GZ21]

Corollary: Aggregate signature with bounded aggregation from standard bilinear map assumptions

Previous bilinear map constructions: random oracle based [BGLS03]



A Commit-and-Prove Strategy for Batch Arguments
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Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖
across the 𝑚 instances

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

Our construction: 𝜎𝑖 = poly(𝜆)
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Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

Input validity

Commitments to the statement wires are 
correctly computed

Commitments in our scheme are 
deterministic, so verifier can directly check

Our construction: 𝜎𝑖 = poly(𝜆)
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Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector
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Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

For each gate, commitment to output wires is 
consistent with gate operation and 
commitment to input wires

Input validity

Wire validity
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Our construction: 𝜎𝑖 = poly(𝜆)
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Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector
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Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

Commitment to output wire is a commitment 
to the all-ones vector

Our construction: 𝜎𝑖 = poly(𝜆)
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Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector
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Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

Input validity

Wire validity
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Output validity

Our construction: 𝜎𝑖 = poly(𝜆)
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Key idea: Validity checks are quadratic 
and can be checked in the exponent



Construction from Composite-Order Groups

Pedersen multi-commitments: (without randomness)

crs: sample 𝛼1, … , 𝛼𝑚 ← ℤ𝑁
output 𝐴1 ← 𝑔𝑝

𝛼1 , … , 𝐴𝑚 ← 𝑔𝑝
𝛼𝑚

Let 𝔾 be a group of order 𝑁 = 𝑝𝑞 (composite order)

commitment to 𝒙 = 𝑥1, … , 𝑥𝑚 ∈ 0,1 𝑚:

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2 ⋯𝐴𝑚
𝑥𝑚

Let 𝔾𝑝 ⊂ 𝔾 be the subgroup of order 𝑝 and let 𝑔𝑝 be a generator of 𝔾𝑝

(subset product of the 𝐴𝑖’s)

𝛼1 𝛼2 ⋯ 𝛼𝑚

denotes encodings in 𝔾𝑝

𝜎𝒙 Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖=



𝑒 ,

Proving Relations on Committed Values

commitment to (𝑥1, … , 𝑥𝑚)

common reference string

𝜎𝒙

𝑥 ∈ 0,1 if and only if 𝑥2 = 𝑥

Commitment for each wire is a commitment to a 0/1 vector

Wire validity

Key idea: Use pairing to check quadratic relation in the exponent

Recall: pairing is an efficiently-computable bilinear map on 𝔾:

𝑒 𝑔𝑥, 𝑔𝑦 = 𝑒 𝑔, 𝑔 𝑥𝑦

= 𝐴1
𝑥1𝐴2

𝑥2 ⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

𝛼1

⋮

𝛼𝑚

𝐴1 = 𝑔𝑝
𝛼1

𝐴𝑚 = 𝑔𝑝
𝛼𝑚

Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖
𝑥 𝑦 𝑥𝑦

Multiplies exponents in the target group



Proving Relations on Committed Values

commitment to (𝑥1, … , 𝑥𝑚)

common reference string

𝜎𝒙

𝑥 ∈ 0,1 if and only if 𝑥2 = 𝑥

Commitment for each wire is a commitment to a 0/1 vector

Wire validity

= 𝐴1
𝑥1𝐴2

𝑥2 ⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

𝛼1

⋮

𝛼𝑚

𝐴1 = 𝑔𝑝
𝛼1

𝐴𝑚 = 𝑔𝑝
𝛼𝑚

Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖

Approach: consider the following pairing relations:

𝑒 𝜎𝒙, 𝜎𝒙 and 𝑒 𝜎𝒙, Π𝑖∈ 𝑚 𝐴𝑖

𝐴 = Π𝑖∈ 𝑚 𝐴𝑖 = 𝑔𝑝
Σ𝑖∈ 𝑚 𝛼𝑖

(commitment to all-ones vector)
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𝑥 ∈ 0,1 if and only if 𝑥2 = 𝑥

Commitment for each wire is a commitment to a 0/1 vector

Wire validity

Approach: consider the following pairing relations:

𝑒 𝜎𝒙, 𝜎𝒙 and 𝑒 𝜎𝒙, Π𝑖∈ 𝑚 𝐴𝑖
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When 𝑥𝑖
2 = 𝑥𝑖, difference between these terms is

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗 𝛼𝑖𝛼𝑗

Give prover ability to 
eliminate cross-terms only

Augment CRS with cross-terms

If 𝑥𝑖
2 = 𝑥𝑖 for all 𝑖, then

Σ𝑖∈ 𝑚 𝛼𝑖
2𝑥𝑖

Σ𝑖∈ 𝑚 𝛼𝑖
2𝑥𝑖

2

𝐵𝑖,𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗 ∀𝑖 ≠ 𝑗
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𝑒 ,Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖 Σ𝑖∈ 𝑚 𝛼𝑖 𝑒 ,Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖 Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖

When 𝑥𝑖
2 = 𝑥𝑖, difference between these terms is

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗

Prover now computes additional group component in the base group

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗 Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗
Pair with 𝑔𝑝

𝑉 = 𝐵
𝑖,𝑗

𝑥𝑖−𝑥𝑖𝑥𝑗
𝑒 𝑔𝑝, 𝑉

𝛼𝑖𝛼𝑗 𝐵𝑖,𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗 ∀𝑖 ≠ 𝑗

Give prover ability to 
eliminate cross-terms only

Augment CRS with cross-terms



Proving Relations on Committed Values

Prover now computes additional group component in the base group

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗 Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗
Pair with 𝑔𝑝

𝑉 = 𝐵
𝑖,𝑗

𝑥𝑖−𝑥𝑖𝑥𝑗
𝑒 𝑔𝑝, 𝑉

Overall verification relation: 𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒 𝑔𝑝, 𝑉 𝐴 = Π𝑖∈ 𝑚 𝐴𝑖
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Prover now computes additional group component in the base group
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Non-cross terms ensure that 𝑥𝑖
2 = 𝑥𝑖
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Prover now computes additional group component in the base group

Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗 Σ𝑖≠𝑗𝛼𝑖𝛼𝑗 𝑥𝑖 − 𝑥𝑖𝑥𝑗
Pair with 𝑔𝑝

𝑉 = 𝐵
𝑖,𝑗

𝑥𝑖−𝑥𝑖𝑥𝑗
𝑒 𝑔𝑝, 𝑉

Overall verification relation: 𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒 𝑔𝑝, 𝑉 𝐴 = Π𝑖∈ 𝑚 𝐴𝑖

Non-cross terms ensure that 𝑥𝑖
2 = 𝑥𝑖

Correction factor to correct for cross terms



Proving Relations on Committed Values

Common reference string:

For each gate, commitment to output wires is consistent 
with gate operation and commitment to input wires

Gate validity

for all 𝑖 ∈ [𝑚]: 𝑤3,𝑖 = 1 − 𝑤1,𝑖𝑤2,𝑖

NAND
𝒘3

𝒘2

𝒘1

Relation is quadratic in the inputs

𝛼1 ⋯ 𝛼𝑚
𝐴1 = 𝑔𝑝

𝛼1 𝐴𝑚 = 𝑔𝑝
𝛼𝑚

𝛼1 +⋯𝛼𝑚 𝐴 = Π𝑖∈ 𝑚 𝐴𝑖

𝛼𝑖𝛼𝑗 𝐵𝑖,𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗 ∀𝑖 ≠ 𝑗

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2 ⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖

Commitment to (𝒙𝟏, … , 𝒙𝒎): Can leverage similar approach as before



Proof Size

Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

Commitment size: 𝜎𝑖 = poly(𝜆)
Single group element

One group element

One group element

Overall proof size (𝒕 wires, 𝒔 gates):
2𝑡 + 𝑠 ⋅ poly 𝜆 = 𝐶 ⋅ poly 𝜆

NAND

NAND

NAND

𝒘5
𝒘2

𝒘3

𝒘4

𝒘6

𝒘1

𝒘7



Is This Sound?

Soundness requires some care:

Groth-Ostrovsky-Sahai NIZK based on similar 
commit-and-prove strategy

Soundness in GOS is possible by extracting a witness 
from the commitment

For a false statement, no witness exists

Our setting: commitments are succinct – cannot extract a 
full witness

Solution: “local extractability” [KPY19] or “somewhere 
extractability” [CJJ21]

𝛼1 ⋯ 𝛼𝑚
𝐴1 = 𝑔𝑝

𝛼1 𝐴𝑚 = 𝑔𝑝
𝛼𝑚

𝛼1 +⋯𝛼𝑚 𝐴 = Π𝑖∈ 𝑚 𝐴𝑖

𝛼𝑖𝛼𝑗 𝐵𝑖,𝑗 = 𝑔𝑝
𝛼𝑖𝛼𝑗 ∀𝑖 ≠ 𝑗

𝜎𝒙 = 𝐴1
𝑥1𝐴2

𝑥2 ⋯𝐴𝑚
𝑥𝑚

= 𝑔𝑝
𝛼1𝑥1+⋯+𝛼𝑚𝑥𝑚

Σ𝑖∈ 𝑚 𝛼𝑖𝑥𝑖

Common reference string:

Commitment to (𝒙𝟏, … , 𝒙𝒎):



Somewhere Soundness

CRS will have two modes:
Normal mode: used in the real scheme

Extracting on index 𝒊: supports witness extraction for instance 𝑖 (given a trapdoor)

CRS in the two modes are computationally indistinguishable

Similar to “dual-mode” proof systems and somewhere statistically binding hash functions

If proof 𝜋 verifies, then we can extract 
a witness 𝑤𝑖 such that 𝐶 𝑥𝑖 , 𝑤𝑖 = 1

Implies non-adaptive soundness



Local Extraction

Normal mode: 𝑔𝑝
𝛼1 ⋯ 𝑔𝑝

𝛼𝑖∗−1 𝑔𝑝
𝛼𝑖∗ 𝑔𝑝

𝛼𝑖∗+1 ⋯ 𝑔𝑝
𝛼𝑚

Extracting mode: 𝑔𝑝
𝛼1 ⋯ 𝑔𝑝

𝛼𝑖∗−1 𝑔𝑝
𝛼𝑖∗𝑔𝑞

𝑟 𝑔𝑝
𝛼𝑖∗+1 ⋯ 𝑔𝑝

𝛼𝑚

𝐴1 𝐴𝑖∗−1 𝐴𝑖∗+1𝐴𝑖∗ 𝐴𝑚

Move slot 𝑖∗ to full group

Subgroup decision assumption [BGN05]:

(extract on 𝑖∗)

Random element in subgroup (𝔾𝑝)

Random element in full group (𝔾)
≈

𝐴1 𝐴𝑖∗−1 𝐴𝑖∗+1𝐴𝑖∗ 𝐴𝑚



Local Extraction

CRS in extraction mode (for index 𝑖∗):

𝑔𝑝
𝛼1 ⋯ 𝑔𝑝

𝛼𝑖∗−1 𝑔𝑝
𝛼𝑖∗𝑔𝑞

𝑟 𝑔𝑝
𝛼𝑖∗+1 ⋯ 𝑔𝑝

𝛼𝑚

𝐴1 𝐴𝑖∗−1 𝐴𝑖∗+1𝐴𝑖∗ 𝐴𝑚

Can extract by projecting into 𝔾𝑞

Trapdoor: 𝑔𝑞 (generator of 𝔾𝑞)

Extracted bit for a commitment 𝝈 is 1 if 𝝈 has a (non-zero) component in 𝔾𝑞



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)
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Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

Adversary chooses commitment 𝜎𝒙 and proof 𝑉



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

Adversary chooses commitment 𝜎𝒙 and proof 𝑉

Generator 𝑔𝑝 and aggregated component 𝐴 part of the CRS (honestly-generated)

If this relation holds, it must hold in both
the order-𝑝 subgroup and the order-𝑞 subgroup of 𝔾𝑇

Write 𝜎𝒙 = 𝑔𝑝
𝑠𝑔𝑞

𝑡

Key property: 𝑒 𝑔𝑝, 𝑉 is always in the order-𝑝 subgroup; adversary cannot influence the 

verification relation in the order-𝑞 subgroup

Write 𝐴 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

𝑔𝑞
𝑟

In the order-𝑞 subgroup, exponents must satisfy:
𝑡2 = 𝑡𝑟 mod 𝑞



Correctness of Extraction

Consider wire validity check:

𝑒 𝜎𝒙, 𝜎𝒙 = 𝑒 𝜎𝒙, 𝐴 𝑒(𝑔𝑝, 𝑉)

Adversary chooses commitment 𝜎𝒙 and proof 𝑉

Generator 𝑔𝑝 and aggregated component 𝐴 part of the CRS (honestly-generated)

If this relation holds, it must hold in both
the order-𝑝 subgroup and the order-𝑞 subgroup of 𝔾𝑇

Write 𝜎𝒙 = 𝑔𝑝
𝑠𝑔𝑞

𝑡

Key property: 𝑒 𝑔𝑝, 𝑉 is always in the order-𝑝 subgroup; adversary cannot influence the 

verification relation in the order-𝑞 subgroup

Write 𝐴 = 𝑔𝑝
σ𝑖∈ 𝑚 𝛼𝑖

𝑔𝑞
𝑟

In the order-𝑞 subgroup, exponents must satisfy:
𝑡2 = 𝑡𝑟 mod 𝑞

If wire validity checks pass, then 𝑡 = 𝑏𝑖𝑟 where 𝑏𝑖 ∈ 0,1

Observe: 𝑏𝑖 ∈ 0,1 is also the extracted bit



Correctness of Extraction

Consider gate validity check:

𝑒 𝜎𝑤3
, 𝐴 𝑒 𝜎𝑤1

, 𝜎𝑤2
= 𝑒 𝐴, 𝐴 𝑒(𝑔𝑝,𝑊)

Adversary chooses commitment 𝜎𝑤1
, 𝜎𝑤2

, 𝜎𝑤3
and proof 𝑊

Generator 𝑔𝑝 and aggregated component 𝐴 part of the CRS (honestly-generated)

Similar analysis shows that extracted bits satisfy 𝑏3 = 1 − 𝑏1𝑏2 = NAND 𝑏1, 𝑏2
[See paper for details]



A Commit-and-Prove Strategy for Batch Arguments

Let 𝒘𝑖 = 𝑤𝑖,1, … , 𝑤𝑖,𝑚 be vector

of wire labels associated with wire 𝑖
across the 𝑚 instances

1

𝑤𝑖,1 𝑤𝑖,2 ⋯ 𝑤𝑖,𝑚𝒘𝑖 = 𝜎𝑖

Prover commits to each vector of wire assignments

Requirement: 𝜎𝑖 = poly(𝜆, log𝑚)

2 Prover constructs the following proofs:

Input validity

Wire validity

Gate validity

Output validity

Our construction: 𝜎𝑖 = poly(𝜆)

NAND

NAND

NAND

𝒘5
𝒘2

𝒘3

𝒘4

𝒘6

𝒘1

𝒘7

Key idea: Validity checks are quadratic 
and can be checked in the exponent



From Composite-Order to Prime-Order

Batch argument for NP from standard assumptions over bilinear maps

Subgroup decision assumption in composite-order bilinear groups

𝔾 ≅ 𝔾𝑝 × 𝔾𝑞 composite-order group𝔾 ≅ 𝔾𝑝 × 𝔾𝑞

Simulate subgroups
with subspaces

𝑘-Linear assumption (for any 𝑘 ≥ 1) in prime-order asymmetric bilinear groups

Conclusion:



Reducing CRS Size

𝐴1 𝐴2 ⋯ 𝐴𝑚

Common reference string:

𝐵1,2 𝐵1,𝑚⋯

𝐵2,𝑚⋯

⋮

Size of CRS is 𝑚2 ⋅ poly(𝜆)

Can rely on recursive composition to reduce CRS size:
𝑚2 ⋅ poly 𝜆 → 𝑚𝜀 ⋅ poly 𝜆

for any constant 𝜀 > 0

Similar approach as [KPY19]

𝐵1,3

𝐵2,3

⋱

𝐵𝑚−1,𝑚



Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [CJJ21] showed:

Batch argument 
for NP*

Somewhere 
extractable 

commitment

Delegation 
scheme for RAM 

programs

succinct vector commitment that 
allows extracting on single index

succinct argument for 
polynomial-time computations

*Needs a split verification property [see paper for details]



Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [CJJ21] showed:

Batch argument 
for NP*

Somewhere 
extractable 

commitment

Delegation 
scheme for RAM 

programs

succinct vector commitment that 
allows extracting on single index

succinct argument for 
polynomial-time computations

This work
(from 𝑘-Lin)

*Needs a split verification property [see paper for details]



Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [CJJ21] showed:
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Somewhere 
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commitment
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scheme for RAM 
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Application to RAM Delegation (“SNARGs for P”)

Choudhuri et al. [CJJ21] showed:

Batch argument 
for NP*

Somewhere 
extractable 

commitment

Delegation 
scheme for RAM 

programs

This work + [OPWW15]
(from SXDH)

This work
(from 𝑘-Lin)

Corollary. RAM delegation from SXDH on prime-order pairing groups
To verify a time-𝑇 RAM computation:

• CRS size: crs = 𝑇𝜀 ⋅ poly 𝜆 for any constant 𝜀 > 0
• Proof size: 𝜋 = poly 𝜆, log 𝑇
• Verification time: Verify = poly 𝜆, log 𝑇

Previous pairing constructions: non-standard assumptions [KPY19] or quadratic CRS [GZ21]



Summary

Batch arguments for NP from standard assumptions over bilinear maps

Key feature: Construction is “low-tech”

Direct “commit-and-prove” approach like classic pairing-based proof systems

Corollary: RAM delegation (i.e., “SNARG for P”) with sublinear CRS

Corollary: Aggregate signature with bounded aggregation in the plain model

Thank you!

https://eprint.iacr.org/2022/336


