Distributed Broadcast Encryption from Lattices

#### David Wu joint work with Jeffrey Champion





# Ciphertext specifies a set of users



Functionality: Users in the set can decrypt



[FN93]

[FN93]

#### Functionality: Users in the set can decrypt



[FN93]

#### Functionality: Users in the set can decrypt









Broadcast encryption without a central authority



Users generate public/private keys independently (as in public-key encryption)

[BZ14]

Broadcast encryption without a central authority



public parameters Encrypt(pp,  $\{pk_i\}_{i \in S}, m$ )  $\rightarrow$  ct Can encrypt a message *m* to any set of public keys **Efficiency:**  $|ct| = |m| + poly(\lambda, log|S|)$ Decrypt(pp,  $\{pk_i\}_{i \in S}$ , sk, ct)  $\rightarrow m$ Any secret key associated with broadcast set can decrypt Decryption does require knowledge of public keys in

Broadcast encryption without a central authority

broadcast set





Encrypt(pp,  $\{pk_i\}_{i \in S}, m) \rightarrow ct$ 

 $\text{Decrypt}(\text{pp}, \{\text{pk}_i\}_{i \in S}, \text{sk}, \text{ct}) \to m$ 

**Security:** Users outside the set learn nothing about message (even if they collude)

**Constructions of Distributed Broadcast Encryption** 

- Indistinguishability obfuscation (and OWF) [BZ14]
- Witness encryption (and leveled HE) [FWW23]
- Registered attribute-based encryption [FWW23]
- Pairing-based assumptions (BDHE or *k*-Lin) [KMW23, GKPW24]

Constructions from lattice assumptions?

Broadcast encryption without a central authority

#### Lattice-Based Distributed Broadcast

public-key directory  $(1, pk_1)$  $(2, pk_2)$  $(3, pk_3)$ A  $(4, pk_4)$  $(5, pk_5)$ 

Lattice-based **centralized broadcast** encryption currently known from

- Lattice-based (no explicit assumption) [BV22]
- Public-coin evasive LWE [Wee22]
- *l*-succinct LWE [Wee24]

These schemes construct a succinct ciphertext-policy ABE

For **distributed broadcast**, only lattice instantiation goes through witness encryption [FWW23]

• Requires private-coin evasive LWE [Tsa22, VWW22]

**This work:** distributed broadcast encryption from  $\ell$ -succinct LWE

#### $\ell$ -Succinct LWE Assumption

LWE is hard with respect to A given a trapdoor T for a related matrix  $D_{\ell}$ 

$$\begin{array}{c|c}
\boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m} \\
\boldsymbol{U}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m} \\
\boldsymbol{U}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}
\end{array}
\qquad \begin{array}{c|c}
\boldsymbol{A} & \boldsymbol{U}_{1} \\
\vdots \\
\boldsymbol{U}_{\ell}
\end{array} \qquad \boldsymbol{T} = \begin{bmatrix} \boldsymbol{G} & & \\ & \ddots & \\ & \boldsymbol{G} \end{bmatrix} \\
\begin{array}{c|c}
\boldsymbol{G} = \boldsymbol{I}_{n} \otimes [1, 2, \dots, 2^{\lfloor \log q \rfloor}] \\
\end{array}$$

 $(A, s^{\mathrm{T}}A + e^{\mathrm{T}}) \approx (A, z^{\mathrm{T}})$  given  $U_1, \dots, U_{\ell}, T$ 

Falsifiable!

$$A \leftarrow \mathbb{Z}_q^{n \times m}$$
,  $U_i \leftarrow \mathbb{Z}_q^{n \times m}$ ,  $s \leftarrow \mathbb{Z}_q^n$ ,  $e \leftarrow \chi^m$ ,  $z \leftarrow \mathbb{Z}_q^m$ 

[Wee24]

# $\ell$ -Succinct LWE Assumption

LWE is hard with respect to A given a trapdoor T for a related matrix  $D_{\ell}$ 

[Wee24]

$$(A, s^{\mathrm{T}}A + e^{\mathrm{T}}) \approx (A, z^{\mathrm{T}})$$
 given  $D_{\ell} = [I_{\ell} \otimes A \mid U]$  and trapdoor for  $D_{\ell}$ 

Special cases that is implied by LWE:

- $\ell = 1$
- if U is very wide (i.e., if  $U \in \mathbb{Z}_q^{\ell n \times \ell m}$ ) Applications typically require large  $\ell$  and narrow U (e.g.,  $U \in \mathbb{Z}_q^{\ell n \times m}$ )
- Falsifiable, instance-independent assumption, implied by public-coin evasive LWE + LWE
- Trapdoor useful for compression: CP-ABE with short ciphertexts [Wee24], functional commitments for circuits [WW23]

Previous lattice-based broadcast encryption all constructed a CP-ABE scheme

We take a more direct approach (similar to earlier pairing-based approaches)

 $W_1, r_1$ 

Public parameters: A, B, p where A,  $B \in \mathbb{Z}_q^{n imes m}$  and  $p \in \mathbb{Z}_q^n$ 

o encrypt a bit 
$$b \in \{0,1\}$$
 to a set  $S \subseteq [\ell]$ :

$$\boldsymbol{c}_1^{\mathrm{T}} \approx \boldsymbol{s}^{\mathrm{T}} \boldsymbol{A}$$



Each user associated with **public** matrix  $W_i \in \mathbb{Z}_q^{n imes m}$  and vector  $r_i \in \mathbb{Z}_q^m$ 

 $W_2, r_2$ 

$$\boldsymbol{c}_{2}^{\mathrm{T}} \approx \boldsymbol{s}^{\mathrm{T}} \left( \boldsymbol{B} + \sum_{i \in S} \boldsymbol{W}_{i} \right)$$
$$\boldsymbol{c}_{2} \approx \boldsymbol{s}^{\mathrm{T}} \boldsymbol{p} + \boldsymbol{\mu} \cdot |\boldsymbol{q}/2|$$

Noise terms not shown

Public parameters: A, B, p and  $(W_1, r_1), \dots, (W_\ell, r_\ell)$ 

 $\boldsymbol{c}_{1}^{\mathrm{T}}\mathrm{sk}_{i} - \boldsymbol{c}_{2}^{\mathrm{T}}\boldsymbol{r}_{i} \approx \boldsymbol{s}^{\mathrm{T}}\boldsymbol{p} - \sum_{j \in S \setminus \{i\}} \boldsymbol{s}^{\mathrm{T}}\boldsymbol{W}_{j}\boldsymbol{r}_{i}$ 

Ciphertext encrypting a bit  $b \in \{0,1\}$  to the set  $S \subseteq [\ell]$ :

**Goal:** user  $i \in S$  should be able to recover  $\mu$ 

Secret key for user *i*: short vector that recodes from *A* to  $p + Br_i + W_ir_i$ 

$$\mathrm{sk}_i \leftarrow A^{-1}(p + Br_i + W_ir_i)$$

 $sk_i$  is a (short) preimage of  $p + Br_i + W_ir_i$ 

ort

Public parameters: A, B, p and  $(W_1, r_1), \dots, (W_\ell, r_\ell)$ 

Ciphertext encrypting a bit  $b \in \{0,1\}$  to the set  $S \subseteq [\ell]$ :

$$\boldsymbol{c}_1^{\mathrm{T}} \mathrm{sk}_i - \boldsymbol{c}_2^{\mathrm{T}} \boldsymbol{r}_i \approx \boldsymbol{s}^{\mathrm{T}} \boldsymbol{p} - \sum_{j \in S \setminus \{i\}} \boldsymbol{s}^{\mathrm{T}} \boldsymbol{W}_j \boldsymbol{r}_i$$

Need a way to remove the cross terms  $W_i r_i$ 

**Goal:** user  $i \in S$  should be able to recover  $\mu$ 

Secret key for user *i*: short vector that recodes from *A* to  $p + Br_i + W_ir_i$ 

maultiply by alt

$$\mathrm{sk}_i \leftarrow A^{-1}(p + Br_i + W_ir_i)$$

 $sk_i$  is a (short) preimage of  $p + Br_i + W_ir_i$ 

Public parameters: A, B, p and  $(W_1, r_1), \dots, (W_\ell, r_\ell)$  and  $A^{-1}(W_i r_j)$ 

Ciphertext encrypting a bit  $b \in \{0,1\}$  to the set  $S \subseteq [\ell]$ :

$$c_{1}^{\mathrm{T}} \approx s^{\mathrm{T}}A \qquad \xrightarrow{\text{multiply by } \mathrm{sk}_{i}} \qquad c_{1}^{\mathrm{T}} \mathrm{sk}_{i} \approx s^{\mathrm{T}}(p + Br_{i} + W_{i}r_{i})$$

$$c_{2}^{\mathrm{T}} \approx s^{\mathrm{T}}\left(B + \sum_{j \in S} W_{j}\right) \qquad \xrightarrow{\text{multiply } \mathrm{by } r_{i}} \qquad c_{2}^{\mathrm{T}}r_{i} \approx s^{\mathrm{T}}\left(Br_{i} + \sum_{j \in S} W_{j}r_{i}\right)$$

$$c_{3} \approx s^{\mathrm{T}}p + \mu \cdot \lfloor q/2 \rfloor$$

**Decryption:** 

$$c_1^{\mathrm{T}} \mathrm{sk}_i - c_2^{\mathrm{T}} r_i \approx s^{\mathrm{T}} p - \sum_{j \in S \setminus \{i\}} s^{\mathrm{T}} W_j r_i$$



Suffices to recover  $\mu$  from  $c_3$ 

 $\boldsymbol{c}_{1}^{\mathrm{T}}\mathrm{sk}_{i} + \boldsymbol{c}_{1}^{\mathrm{T}}\sum_{i \in \mathrm{SV}\{i\}} \boldsymbol{A}^{-1}(\boldsymbol{W}_{j}\boldsymbol{r}_{i}) - \boldsymbol{c}_{2}^{\mathrm{T}}\boldsymbol{r}_{i} \approx \boldsymbol{s}^{\mathrm{T}}\boldsymbol{p}$ 

Public parameters: A, B, p and  $(W_1, r_1), \dots, (W_\ell, r_\ell)$  and  $A^{-1}(W_i r_j)$ 

Ciphertext encrypting a bit  $b \in \{0,1\}$  to the set  $S \subseteq [\ell]$ :



This is a **centralized** broadcast encryption scheme

Sampling cross-terms  $A^{-1}(W_i r_j)$  and secret keys  $sk_i \leftarrow A^{-1}(p + Br_i + W_i r_i)$  require knowledge of the trapdoor for A

# **Distributing the Setup**

**Challenge:** No one can know a trapdoor for **A** 

**Approach:** Each user will choose their own  $W_i$ , everything else will be in the public parameters

Public parameters:  $\pmb{A}, \pmb{B}, \pmb{p}, \pmb{r}_1, \dots, \pmb{r}_\ell$ 





$$W_2$$

 $W_3$ 

Secret key:  $Ay_{i,i} = p + Br_i + W_ir_i$ 

But user *i* does **not** have a trapdoor for *A*...

Consider first a simpler problem:

Sample  $W_i$  together with short  $y_{ij}$  such that for all  $j \in [\ell]$ :  $Ay_{ij} = W_i r_j$ 

#### **Distributing the Setup**

Sample  $W_i$  together with short  $y_{ij}$  such that for all  $j \in [\ell]$ :  $Ay_{ij} = W_i r_j$ 

$$A \leftarrow \mathbb{Z}_{q}^{n \times m} \qquad B \leftarrow \mathbb{Z}_{q}^{n \times m} \qquad p \qquad r_{1} \cdots r_{\ell}$$
$$Z_{1} \leftarrow \mathbb{Z}_{q}^{n \times m}$$
$$\vdots \qquad \forall t \in [k], j \in [\ell]:$$
$$u_{tj} \leftarrow A^{-1}(Z_{t}r_{j})$$
$$Z_{k} \leftarrow \mathbb{Z}_{q}^{n \times m}$$
Public parameters

Sample  $d \leftarrow \{0,1\}^k$ 

$$\boldsymbol{W}_i = \sum_{t \in [k]} d_t \boldsymbol{Z}_t$$

Then 
$$\boldsymbol{A} \cdot \underbrace{\sum_{t \in [k]} d_t \boldsymbol{u}_{tj}}_{\boldsymbol{y}_{ij}} = \sum_{t \in [k]} d_t \boldsymbol{Z}_t \boldsymbol{r}_j = \boldsymbol{W}_i \boldsymbol{r}_j$$

Public parameters contain "pre-sampled" public keys, and a user key is a random combination of the pre-sampled keys

#### A More General View

Sample  $W_i$  together with short  $y_{ij}$  such that for all  $j \in [\ell]$ :  $Ay_{ij} = W_i r_j$ 

Approach can be described more compactly as sampling a solution to the linear system

$$\begin{bmatrix} A & & | -Z_1r_1 & \cdots & -Z_kr_1 \\ & \ddots & & \vdots \\ & & A & | -Z_1r_\ell & \cdots & -Z_kr_\ell \end{bmatrix} \begin{bmatrix} \mathbf{y}_{i1} \\ \vdots \\ \mathbf{y}_{i\ell} \\ d_1 \\ \vdots \\ d_k \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$

Then, for all  $j \in [\ell]$ :

$$Ay_{ij} - \sum_{t \in [k]} d_t Z_t r_j = 0 \implies Ay_{ij} = W_i r_j \qquad W_i = \sum_{t \in [k]} d_t Z_t$$

#### A More General View

Sample  $W_i$  together with short  $y_{ij}$  such that for all  $j \in [\ell]$ :  $Ay_{ij} = W_i r_j$ 

Approach can be described more compactly as sampling a solution to the linear system

A

$$\begin{bmatrix} A & & | & -Z_1 r_1 & \cdots & -Z_k r_1 \\ \vdots & \ddots & \vdots \\ & & | & -Z_1 r_\ell & \cdots & -Z_k r_\ell \end{bmatrix} \begin{bmatrix} y_{il} \\ d_1 \\ \vdots \\ d_k \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
  
More compactly:  $Z = \begin{bmatrix} Z_1 & | & Z_2 & | & \cdots & | & Z_k \end{bmatrix}$ 
$$\begin{bmatrix} A & & | & -Z(I \otimes r_1) \\ \vdots \\ & & -Z(I \otimes r_\ell) \end{bmatrix} \begin{bmatrix} y_{i1} \\ \vdots \\ y_{i\ell} \\ d \end{bmatrix} = 0 \longrightarrow Ay_{ij} = Z(I \otimes r_j)d = Z(d \otimes I)r_j$$
$$W_i = Z(d \otimes I)$$

**Γν**; 1 **Γ** 

# **Distributing the Setup**

**Challenge:** No one can know a trapdoor for **A** 

**Approach:** Each user will choose their own  $W_i$ , everything else will be in the public parameters

Public parameters:  $A, B, p, r_1, ..., r_\ell, V_\ell$ , trapdoor for  $V_\ell$ 

$$W_{1} \qquad V_{\ell} = \begin{bmatrix} A & & | -Z(I \otimes r_{1}) \\ \vdots & & | -Z(I \otimes r_{\ell}) \end{bmatrix}$$

$$\begin{cases} W_{2} & W_{2} \\ W_{3} & \begin{bmatrix} A & & | -Z(I \otimes r_{1}) \\ \vdots & & | -Z(I \otimes r_{\ell}) \end{bmatrix} \begin{bmatrix} y_{i1} \\ \vdots \\ y_{i\ell} \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ p + Br_{i} \\ \vdots \\ 0 \end{bmatrix}$$

$$K_{i} = Z(d \otimes I)$$

For correctness each user also needs to

Public parameters:  $A, B, p, r_1, ..., r_\ell, V_\ell$ , trapdoor for  $V_\ell$ 

| $\int A$       |     | $ -Z(I\otimes r_1) $                    | Suppose LWE is hard with respect                         |
|----------------|-----|-----------------------------------------|----------------------------------------------------------|
| $V_{\ell} =  $ | ••• |                                         | to $oldsymbol{A}$ given trapdoor for $oldsymbol{V}_\ell$ |
|                |     | $A \mid -Z(I \otimes r_{\ell}) \rfloor$ | $s^{\mathrm{T}}A \approx \mathrm{random}$                |

Selective securityChallengerAdversary $S \subseteq [\ell]$  $\mathcal{I} \subseteq [\ell]$  $\mathcal{I} \subseteq [\ell]$  $\mathcal{I} \subseteq [\ell]$  $\mathcal{I} \subseteq [\ell]$ 

Adversary declares challenge set upfront

How do we simulate the public keys and the challenge ciphertext?

$$\boldsymbol{c}_1^{\mathrm{T}} \approx \boldsymbol{s}^{\mathrm{T}} \boldsymbol{A}$$

$$\boldsymbol{c}_{2}^{\mathrm{T}} \approx \boldsymbol{s}^{\mathrm{T}} \left( \boldsymbol{B} + \sum_{j \in S} \boldsymbol{W}_{j} \right)$$

 $c_3 \approx \mathbf{s}^{\mathrm{T}} \mathbf{p} + \mu \cdot \lfloor q/2 \rfloor$ 

Public parameters:  $A, B, p, r_1, ..., r_\ell, V_\ell$ , trapdoor for  $V_\ell$ 

|              | A |    | $-Z(I\otimes r_1)$      | Suppose LWE is hard with respect   |
|--------------|---|----|-------------------------|------------------------------------|
| $V_{\ell} =$ | • | •. |                         | to $A$ given trapdoor for $V_\ell$ |
| -            |   | A  | $-Z(I\otimes r_{\ell})$ | $s^{T}A \approx random$            |

How do we simulate the public keys and the challenge ciphertext?

$$c_1^{\mathrm{T}} \approx s^{\mathrm{T}} A$$

$$c_2^{\mathrm{T}} \approx s^{\mathrm{T}} \left( B + \sum_{j \in S} W_j \right)$$

$$c_3 \approx s^{\mathrm{T}} p + \mu \cdot \lfloor q/2 \rfloor$$

pk<sub>i</sub>: 
$$\boldsymbol{W}_i$$
,  $\{\boldsymbol{y}_{ij}\}_{j\neq i}$  where  $\boldsymbol{A}\boldsymbol{y}_{ij} = \boldsymbol{W}_i\boldsymbol{r}_j$ 

Can be sampled using trapdoor for  $V_{\ell}$  $V_{\ell} \cdot \begin{bmatrix} y_{i1} \\ \vdots \\ y_{i\ell} \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ p + Br_i \\ \vdots \\ 0 \end{bmatrix} \quad W_i = Z(d \otimes I)$ 

Public parameters:  $A, B, p, r_1, ..., r_\ell, V_\ell$ , trapdoor for  $V_\ell$ 

|              | A |    | $-Z(I\otimes r_1)$      | Suppose LWE is hard with respect   |
|--------------|---|----|-------------------------|------------------------------------|
| $V_{\ell} =$ | • | •. |                         | to $A$ given trapdoor for $V_\ell$ |
| -            |   | A  | $-Z(I\otimes r_{\ell})$ | $s^{T}A \approx random$            |

How do we simulate the public keys and the challenge ciphertext?

$$c_{1}^{\mathrm{T}} \approx s^{\mathrm{T}}A$$

$$c_{2}^{\mathrm{T}} \approx s^{\mathrm{T}}\left(B + \sum_{j \in S} W_{j}\right)$$

$$c_{3} \approx s^{\mathrm{T}}p + \mu \cdot \lfloor q/2 \rfloor \qquad \text{Set } p = Ar$$

pk<sub>i</sub>: 
$$\boldsymbol{W}_i$$
,  $\{\boldsymbol{y}_{ij}\}_{j\neq i}$  where  $\boldsymbol{A}\boldsymbol{y}_{ij} = \boldsymbol{W}_i\boldsymbol{r}_j$ 

Can be sampled using trapdoor for  $V_{\ell}$  $V_{\ell} \cdot \begin{bmatrix} y_{i1} \\ \vdots \\ y_{i\ell} \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ p + Br_i \\ \vdots \\ 0 \end{bmatrix} \quad W_i = Z(d \otimes I)$ 

Public parameters:  $A, B, p, r_1, ..., r_\ell, V_\ell$ , trapdoor for  $V_\ell$ 

|              | A  |   | $\left  -Z(I \otimes r_1) \right $ | Suppose LWE is hard with respect   |
|--------------|----|---|------------------------------------|------------------------------------|
| $V_{\ell} =$ | •. |   |                                    | to $A$ given trapdoor for $V_\ell$ |
| -            |    | A | $-Z(I\otimes r_{\ell})$            | $s^{T}A \approx random$            |

How do we simulate the public keys and the challenge ciphertext?

Public parameters:  $A, B, p, r_1, ..., r_\ell, V_\ell$ , trapdoor for  $V_\ell$ 

|              | A   | $-Z(I \otimes r_1)$                     | Suppose LWE is hard with respect          |
|--------------|-----|-----------------------------------------|-------------------------------------------|
| $V_{\ell} =$ | ••• |                                         | to <b>A</b> given trapdoor for $V_{\ell}$ |
| -            |     | $A \mid -Z(I \otimes r_{\ell}) \rfloor$ | $s^{T}A \approx random$                   |

How do we simulate the public keys and the challenge ciphertext?

$$c_{1}^{\mathrm{T}} \approx s^{\mathrm{T}}A \qquad pk_{i}: W_{i}, \{y_{ij}\}_{j\neq i} \text{ where } Ay_{ij} = W_{i}r_{j}$$

$$c_{2}^{\mathrm{T}} \approx s^{\mathrm{T}}AR \qquad \text{Set } B = AR - \sum_{j \in S} W_{j} \qquad \text{Can be sampled using trapdoor for } V_{\ell}$$

$$c_{3} \approx s^{\mathrm{T}}Ar + \mu \cdot \lfloor q/2 \rfloor \qquad \text{Set } p = Ar \qquad V_{\ell} \cdot \begin{bmatrix} y_{i1} \\ \vdots \\ y_{i\ell} \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ p + Br_{i} \\ \vdots \\ 0 \end{bmatrix} \qquad W_{i} = Z(d \otimes I)$$

Public parameters:  $A, B, p, r_1, ..., r_\ell, V_\ell$ , trapdoor for  $V_\ell$ 

$$V_{\ell} = \begin{bmatrix} A & & -Z(I \otimes r_{1}) \\ \vdots & & \\ -Z(I \otimes r_{\ell}) \end{bmatrix}$$
How do we simulate the  

$$c_{1}^{T} \approx s^{T}A$$

$$c_{2}^{T} \approx s^{T}AR$$

$$c_{3} \approx s^{T}Ar + \mu \cdot \lfloor q/2 \rfloor$$
Set  $p = Ar$ 

$$E_{1}^{T} = Ar$$

$$E_{2}^{T} = Ar$$

$$E_{2$$

Public parameters:  $A, B, p, r_1, ..., r_\ell, V_\ell$ , trapdoor for  $V_\ell$ 

|              | A |    |   | $-Z(I \otimes r_1)$   | Suppose LWE is hard with respect          |
|--------------|---|----|---|-----------------------|-------------------------------------------|
| $V_{\ell} =$ |   | •. |   |                       | to $A$ given trapdoor for $V_\ell$        |
| -            |   |    | A | $-Z(I\otimes r_\ell)$ | $s^{\mathrm{T}}A \approx \mathrm{random}$ |

How do we simulate the public keys and the challenge ciphertext?

$$c_{1}^{T} \approx s^{T}A$$

$$p_{i}^{T}$$
Distributions of  $y_{ij}$  for  $j \neq i$  and of  $d$  is statistically indistinguishable to original distribution
$$c_{2}^{T} \approx s^{T}AR$$

$$Set B = AR - \sum_{j \in S} W_{j}$$

$$v_{\ell} \cdot \begin{bmatrix} y_{i1} \\ \vdots \\ y_{i\ell} \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ p + Br_{i} \\ \vdots \\ 0 \end{bmatrix} \xrightarrow{Target 0 \text{ in } all \text{ blocks}}$$

$$w_{i} = Z(d \otimes I)$$

Public parameters:  $A, B, p, r_1, ..., r_\ell, V_\ell$ , trapdoor for  $V_\ell$ 

|              | A  | $ -Z(I\otimes r_1) $    | No more circularity!                                                                         |
|--------------|----|-------------------------|----------------------------------------------------------------------------------------------|
| $V_{\ell} =$ | •. |                         | • First sample $oldsymbol{W}_i$ using $oldsymbol{V}_\ell$                                    |
|              | A  | $-Z(I\otimes r_{\ell})$ | • Then set $\boldsymbol{B} = \boldsymbol{A}\boldsymbol{R} - \sum_{j \in S} \boldsymbol{W}_j$ |

How do we simulate the public keys and the challenge ciphertext?

$$c_{1}^{T} \approx s^{T}A \qquad pk_{i}: W_{i}, \{y_{ij}\}_{j\neq i} \text{ where } Ay_{ij} = W_{i}r_{j}$$

$$c_{2}^{T} \approx s^{T}AR \qquad \text{Set } B = AR - \sum_{j \in S} W_{j} \qquad \text{Can be sampled using trapdoor for } V_{\ell}$$

$$c_{3} \approx s^{T}Ar + \mu \cdot \lfloor q/2 \rfloor \qquad \text{Set } p = Ar \qquad V_{\ell} \cdot \begin{bmatrix} y_{i1} \\ \vdots \\ y_{i\ell} \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \end{bmatrix} \qquad \text{Target 0 in all blocks}$$

$$W_{i} = Z(d \otimes I)$$

# **Completing the Proof**

Public parameters:  $A, B, p, r_1, ..., r_\ell, V_\ell$ , trapdoor for  $V_\ell$ 

$$V_{\ell} = \begin{bmatrix} A & & & | -Z(I \otimes r_1) \\ & \ddots & & | \\ & & A & | -Z(I \otimes r_{\ell}) \end{bmatrix}$$

Suppose LWE is hard with respect to A given trapdoor for  $V_{\ell}$  $s^{\mathrm{T}}A \approx \mathrm{random}$ 

This is not the  $\ell$ -succinct LWE trapdoor!

$$\boldsymbol{D}_{\ell} = \begin{bmatrix} \boldsymbol{A} & & & & \boldsymbol{U}_{1} \\ & \ddots & & & & \vdots \\ & & \boldsymbol{A} & \boldsymbol{U}_{\ell} \end{bmatrix}$$

Distribution of  $Z(I \otimes r_i)$  not independent uniform (given  $Z, r_1, ..., r_\ell$ )

Given a trapdoor for  $D_{\ell'}$  where  $\ell' \ge O(\ell n \log q)$ , we can derive  $Z, r_1, ..., r_{\ell}$  and a trapdoor for the matrix  $V_{\ell}$  (with polynomial loss in parameters)

[see paper for details]

# Summary



Distributed broadcast encryption for  $\ell$  users from  $\ell'$ succinct LWE where  $\ell' \ge \ell \cdot O(\lambda \log \ell)$  **Public parameter size:**  $\ell^2 \cdot poly(\lambda, \log \ell)$  **User public key size:**  $\ell \cdot poly(\lambda, \log \ell)$ **Ciphertext size:**  $poly(\lambda, \log \ell)$ 

#### **Open problems:**

- Scheme with short CRS and public keys
- Proving security from plain LWE
- Cryptanalysis of  $\ell$ -succinct LWE

Broadcast encryption without a central authority

Thank you!