Distributed Broadcast Encryption from Lattices

David Wu joint work with Jeffrey Champion

Ciphertext specifies a set of users

Functionality: Users in the set can decrypt

[FN93]

[FN93]

Functionality: Users in the set can decrypt

[FN93]

Functionality: Users in the set can decrypt

Broadcast encryption without a central authority

Users generate public/private keys independently (as in public-key encryption)

[BZ14]

Broadcast encryption without a central authority

Encrypt(pp, { pk_i }_{*i*∈*s*}, *m*) \rightarrow ct Decrypt(pp, { pk_i }_{i∈S}, sk, ct) $\rightarrow m$ public parameters Can encrypt a message m to any set of public keys **Efficiency:** $|ct| = |m| + \text{poly}(\lambda, \log|S|)$ Any secret key associated with broadcast set can decrypt Decryption does require knowledge of public keys in

Broadcast encryption without a central authority

broadcast set

Encrypt(pp, {pk_{*i*}}_{*i*∈*s*}, *m*) \rightarrow ct

Decrypt(pp, {pk_{*i*}}_{*i*∈*s*}, *sk*, *ct*) \rightarrow *m*

Security: Users outside the set learn nothing about message (even if they collude)

Constructions of Distributed Broadcast Encryption

- Indistinguishability obfuscation (and OWF) [BZ14]
- Witness encryption (and leveled HE) [FWW23]
- Registered attribute-based encryption [FWW23]
- Pairing-based assumptions (BDHE or k -Lin) [KMW23, GKPW24]

Constructions from lattice assumptions?

Broadcast encryption without a central authority

Lattice-Based Distributed Broadcast

public-key directory $(1, pk₁)$ $\hat{\mathbf{r}}$ $(2, pk₂)$ A $(3, pk_3)$ A $(4, pk_4)$ $(5, pk_5)$

Lattice-based **centralized broadcast** encryption currently known from

- Lattice-based (no explicit assumption) [BV22]
- Public-coin evasive LWE [Wee22]
- ℓ -succinct LWE [Wee24]

These schemes construct a succinct ciphertext-policy ABE

For **distributed broadcast**, only lattice instantiation goes through witness encryption [FWW23]

• Requires **private-coin** evasive LWE [Tsa22, VWW22]

This work: distributed broadcast encryption from ℓsuccinct LWE

ℓ**-Succinct LWE Assumption**

LWE is hard with respect to A given a trapdoor T *for a related matrix* D_{ℓ}

$$
\begin{bmatrix}\nA \leftarrow \mathbb{Z}_q^{n \times m} \\
U_i \leftarrow \mathbb{Z}_q^{n \times m}\n\end{bmatrix}\n\begin{bmatrix}\nA \cdots & A \cdots & B\end{bmatrix}\n\begin{bmatrix}\nU_1 \\
\vdots \\
U_\ell\n\end{bmatrix}\nT =\n\begin{bmatrix}\nG \cdots \\
G\n\end{bmatrix}\n\begin{bmatrix}\nG = I_n \otimes [1, 2, \ldots, 2^{\lfloor \log q \rfloor}]\n\end{bmatrix}
$$

 $\boldsymbol{A}, \boldsymbol{S}^\text{T} \boldsymbol{A} + \boldsymbol{e}^\text{T} \big) \approx \big(\boldsymbol{A}, \boldsymbol{z}^\text{T} \big) \quad \text{given $\boldsymbol{U}_1, ..., \boldsymbol{U}_\ell$}, \boldsymbol{T}$

Falsifiable!

$$
A \leftarrow \mathbb{Z}_q^{n \times m}, \mathbf{U}_i \leftarrow \mathbb{Z}_q^{n \times m}, \mathbf{s} \leftarrow \mathbb{Z}_q^n, \mathbf{e} \leftarrow \chi^m, \mathbf{z} \leftarrow \mathbb{Z}_q^m
$$

[Wee24]

ℓ**-Succinct LWE Assumption**

LWE is hard with respect to A given a trapdoor \bf{T} *for a related matrix* \bf{D}_{ℓ}

[Wee24]

$$
\left(\pmb{A},\pmb{s}^{\text{T}}\pmb{A}+\pmb{e}^{\text{T}}\right)\approx\left(\pmb{A},\pmb{z}^{\text{T}}\right)\text{given }\pmb{D}_{\ell}=\left[\pmb{I}_{\ell}\otimes\pmb{A}\mid\pmb{U}\right]\text{and trapdoor for }\pmb{D}_{\ell}
$$

Special cases that is implied by LWE:

- $\ell = 1$
- $\,$ if \boldsymbol{U} is very wide (i.e., if $\boldsymbol{U} \in \mathbb{Z}_q^{\ell n \times \ell m})$ Applications typically require large ℓ and narrow \boldsymbol{U} (e.g., $\boldsymbol{U} \in \mathbb{Z}_q^{\ell n \times m})$
- Falsifiable, instance-independent assumption, implied by public-coin evasive LWE + LWE
- Trapdoor useful for compression: CP-ABE with short ciphertexts [Wee24], functional commitments for circuits [WW23]

Previous lattice-based broadcast encryption all constructed a CP-ABE scheme

We take a more direct approach (similar to earlier pairing-based approaches)

 W_1, r_1

Public parameters: A, B, \boldsymbol{p} where $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{Z}_q^{n \times m}$ and $\boldsymbol{p} \in \mathbb{Z}_q^n$

To encrypt a bit $b \in \{0,1\}$ to a set $S \subseteq [\ell]$:

$$
c_1^{\mathrm{T}} \approx s^{\mathrm{T}} A
$$

Each user associated with **public** matrix $\boldsymbol{W}_i \in \mathbb{Z}_q^{n \times m}$ and vector $\boldsymbol{r}_i \in \mathbb{Z}_q^m$

 $\bigvee \ W_2, r_2$

$$
c_2^{\mathrm{T}} \approx s^{\mathrm{T}} \left(B + \sum_{i \in S} W_i \right)
$$

$$
c_3 \approx s^{\mathrm{T}} p + \mu \cdot [q/2]
$$

 $\mathbf{S} \cdot \mathbf{p} + \mu \cdot \left[q / 2 \right]$ Noise terms not shown

Public parameters: A , B , p and (W_1, r_1) , ... , (W_{ℓ}, r_{ℓ})

 c_1^{T} sk_i – $c_2^{\mathrm{T}} r_i \approx s^{\mathrm{T}} p - \sum$ j∈S\{i $\bm{s}^{\text{T}}\bm{W}_j\bm{r}_i$

Ciphertext encrypting a bit $b \in \{0,1\}$ to the set $S \subseteq [\ell]$:

$$
c_1^{\mathrm{T}} \approx s^{\mathrm{T}} A \qquad \xrightarrow{\text{multiply by sk}_i} \qquad c_1^{\mathrm{T}} s k_i \approx s^{\mathrm{T}} (p + B r_i + W_i r_i)
$$
\n
$$
c_2^{\mathrm{T}} \approx s^{\mathrm{T}} \left(B + \sum_{j \in S} W_j \right) \qquad \xrightarrow{\text{multiply by } r_i} \qquad c_2^{\mathrm{T}} r_i \approx s^{\mathrm{T}} \left(B r_i + \sum_{j \in S} W_j r_i \right)
$$
\n
$$
c_3 \approx s^{\mathrm{T}} p + \mu \cdot [q/2] \qquad \qquad \xrightarrow{\text{This requires } r_i \text{ be short}}
$$

Goal: user $i \in S$ should be able to recover μ

Secret key for user *i*: short vector that recodes from A to $p + Br_i + W_i r_i$

$$
sk_i \leftarrow A^{-1}(p + Br_i + W_i r_i)
$$

sk_i is a (short) preimage of $p + Br_i + W_i r_i$

Public parameters: A , B , p and (W_1, r_1) , ... , (W_{ℓ}, r_{ℓ})

Ciphertext encrypting a bit $b \in \{0,1\}$ to the set $S \subseteq [\ell]$:

$$
\boldsymbol{c}_1^{\mathrm{T}} \boldsymbol{\mathrm{s}} \boldsymbol{\mathrm{k}}_i - \boldsymbol{c}_2^{\mathrm{T}} \boldsymbol{r}_i \approx \boldsymbol{s}^{\mathrm{T}} \boldsymbol{p} - \sum_{j \in S \setminus \{i\}} \boldsymbol{s}^{\mathrm{T}} \boldsymbol{W}_j \boldsymbol{r}_i
$$

Need a way to remove the cross terms $W_i r_i$

$$
c_1^{\mathrm{T}} \approx s^{\mathrm{T}} A \qquad \xrightarrow{\text{multiply by sK}_i} \qquad c_1^{\mathrm{T}} s k_i \approx s^{\mathrm{T}} (p + B r_i + W_i r_i)
$$
\n
$$
c_2^{\mathrm{T}} \approx s^{\mathrm{T}} \left(B + \sum_{j \in S} W_j \right) \qquad \xrightarrow{\text{multiply by } r_i} \qquad c_2^{\mathrm{T}} r_i \approx s^{\mathrm{T}} \left(B r_i + \sum_{j \in S} W_j r_i \right)
$$
\n
$$
c_3 \approx s^{\mathrm{T}} p + \mu \cdot [q/2] \qquad \qquad \xrightarrow{\text{This requires } r_i \text{ be short}}
$$

Goal: user $i \in S$ should be able to recover μ

Secret key for user i: short vector that recodes from A to $p + Br_i + W_i r_i$

multiply by the skin \mathbf{H}_in

$$
sk_i \leftarrow A^{-1}(p + Br_i + W_i r_i)
$$

sk_i is a (short) preimage of $p + Br_i + W_i r_i$

Public parameters: $\pmb{A}, \pmb{B}, \pmb{p}$ and $(\pmb{W}_1, \pmb{r}_1), ..., (\pmb{W}_{\ell}, \pmb{r}_{\ell})$ and $\pmb{A}^{-1}\big(\pmb{W}_i\pmb{r}_j\big)$

Ciphertext encrypting a bit $b \in \{0,1\}$ to the set $S \subseteq [\ell]$:

$$
c_1^{\mathrm{T}} \approx s^{\mathrm{T}} A \qquad \xrightarrow{\text{multiply by sk}_i} c_1^{\mathrm{T}} s k_i \approx s^{\mathrm{T}} (p + B r_i + W_i r_i)
$$

$$
c_2^{\mathrm{T}} \approx s^{\mathrm{T}} \left(B + \sum_{j \in S} W_j \right) \qquad \xrightarrow{\text{multiply by } r_i} \qquad c_2^{\mathrm{T}} r_i \approx s^{\mathrm{T}} \left(B r_i + \sum_{j \in S} W_j r_i \right)
$$

$$
c_3 \approx s^{\mathrm{T}} p + \mu \cdot [q/2]
$$

Decryption:

$$
\mathbf{c}_1^{\mathrm{T}} \mathbf{s} \mathbf{k}_i - \mathbf{c}_2^{\mathrm{T}} \mathbf{r}_i \approx \mathbf{s}^{\mathrm{T}} \mathbf{p} - \sum_{j \in S \setminus \{i\}} \mathbf{s}^{\mathrm{T}} \mathbf{W}_j \mathbf{r}_i
$$

Suffices to recover μ from c_3

 c_1^{T} sk_i + c_1^{T} > j∈S\{i $\mathbf{c}_1^{\mathrm{T}} \mathbf{s} \mathbf{k}_i - \mathbf{c}_2^{\mathrm{T}} \mathbf{r}_i \approx \mathbf{s}^{\mathrm{T}} \mathbf{p} - \sum_{i} \mathbf{s}^{\mathrm{T}} \mathbf{W}_j \mathbf{r}_i$

Public parameters: $\pmb{A}, \pmb{B}, \pmb{p}$ and $(\pmb{W}_1, \pmb{r}_1), ..., (\pmb{W}_{\ell}, \pmb{r}_{\ell})$ and $\pmb{A}^{-1}\big(\pmb{W}_i\pmb{r}_j\big)$

Ciphertext encrypting a bit $b \in \{0,1\}$ to the set $S \subseteq [\ell]$:

This is a **centralized** broadcast encryption scheme

Sampling cross-terms $\pmb{A}^{-1}\big(\pmb{W}_i\pmb{r}_j\big)$ and secret keys $\text{sk}_i \leftarrow \pmb{A}^{-1}(\pmb{p} + \pmb{B}\pmb{r}_i + \pmb{W}_i\pmb{r}_i)$ require knowledge of the trapdoor for \boldsymbol{A}

Distributing the Setup

Challenge: No one can know a trapdoor for

Approach: Each user will choose their own \boldsymbol{W}_i , everything else will be in the public parameters

Public parameters: $A, B, p, r_1, ..., r_\ell$

 W_3

But user *i* does not have a trapdoor for A...

Consider first a simpler problem:

Sample \bm{W}_i together with short \bm{y}_{ij} such that for all $j \in [\ell]$: $\enspace A\bm{y}_{ij} = \bm{W}_i\bm{r}_j$

Distributing the Setup

Sample \bm{W}_i together with short \bm{y}_{ij} such that for all $j \in [\ell]$: $\;\; A\bm{y}_{ij} = \bm{W}_i\bm{r}_j$

$$
A \leftarrow \mathbb{Z}_q^{n \times m}
$$
\n
$$
B \leftarrow \mathbb{Z}_q^{n \times m}
$$
\n
$$
Z_1 \leftarrow \mathbb{Z}_q^{n \times m}
$$
\n
$$
\forall t \in [k], j \in [\ell]:
$$
\n
$$
\vdots
$$
\n
$$
u_{tj} \leftarrow A^{-1}(Z_t r_j)
$$
\n
$$
Z_k \leftarrow \mathbb{Z}_q^{n \times m}
$$
\n
$$
= \text{Public parameters}
$$

Sample $d \leftarrow \{0,1\}^k$

$$
\boldsymbol{W}_i = \sum_{t \in [k]} d_t \boldsymbol{Z}_t
$$

Then
$$
\mathbf{A} \cdot \sum_{t \in [k]} d_t \mathbf{u}_{tj} = \sum_{t \in [k]} d_t \mathbf{Z}_t \mathbf{r}_j = \mathbf{W}_i \mathbf{r}_j
$$

 \mathbf{y}_{ij}

Public parameters contain "pre-sampled" public keys, and a user key is a random combination of the pre-sampled keys

A More General View

Sample \bm{W}_i together with short \bm{y}_{ij} such that for all $j \in [\ell]$: $\;\; A\bm{y}_{ij} = \bm{W}_i\bm{r}_j$

Approach can be described more compactly as sampling a solution to the linear system

$$
\begin{bmatrix} A & & & & & -Z_1r_1 & \cdots & -Z_kr_1 \\ & \ddots & & & & \\ & & A & & -Z_1r_\ell & \cdots & -Z_kr_\ell \end{bmatrix} \begin{bmatrix} y_{i1} \\ \vdots \\ y_{i\ell} \\ d_1 \\ \vdots \\ d_k \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}
$$

Then, for all $j \in [\ell]$:

$$
A y_{ij} - \sum_{t \in [k]} d_t Z_t r_j = 0 \quad \Rightarrow \quad A y_{ij} = W_i r_j \qquad \qquad W_i = \sum_{t \in [k]} d_t Z_t
$$

A More General View

Sample \bm{W}_i together with short \bm{y}_{ij} such that for all $j \in [\ell]$: $\;\; A\bm{y}_{ij} = \bm{W}_i\bm{r}_j$

Approach can be described more compactly as sampling a solution to the linear system

 −1¹ ⋯ −¹ ⋱ ⋮ ⋱ ⋮ −1^ℓ ⋯ −^ℓ ⋮ ℓ 1 ⋮ ⋮ = More compactly: = ¹ ² ⋯ | − ⊗ ¹ ⋱ ⋮ − ⊗ ^ℓ 1 ⋮ ℓ = = ⊗ = ⊗ = ⊗

 Γ V_{i1} 1

Distributing the Setup

Challenge: No one can know a trapdoor for

Approach: Each user will choose their own \boldsymbol{W}_i , everything else will be in the public parameters

Public parameters: \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{p} , \boldsymbol{r}_1 , ... , \boldsymbol{r}_ℓ , \boldsymbol{V}_ℓ , trapdoor for \boldsymbol{V}_ℓ

$$
W_{1}
$$
\n
$$
V_{\ell} = \begin{bmatrix} A & & & & \\ & \ddots & & & \\ & & A & -Z(I \otimes r_{1}) \\ & & & A & -Z(I \otimes r_{\ell}) \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \text{denerate a secret key and cross-terms} \\ & \forall i \neq j : A y_{i,j} = W_{i} r_{j} \\ & & A y_{i,i} = p + B r_{i} + W_{i} r_{i} \end{bmatrix}
$$
\n
$$
W_{2}
$$
\n
$$
W_{3}
$$
\n
$$
W_{4}
$$
\n
$$
= \begin{bmatrix} A & & & \\ & \ddots & & \\ & & A & -Z(I \otimes r_{i}) \end{bmatrix} \begin{bmatrix} y_{i1} \\ \vdots \\ y_{i\ell} \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ p + B r_{i} \\ \vdots \\ 0 \end{bmatrix} \cdot \begin{bmatrix} \text{conv } i \\ \text{conv } i \\ \text{set } W_{i} = Z(d \otimes I) \end{bmatrix}
$$

For correctness, each user also needs to

Public parameters: \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{p} , \boldsymbol{r}_1 , ... , \boldsymbol{r}_ℓ , \boldsymbol{V}_ℓ , trapdoor for \boldsymbol{V}_ℓ

Selective security $S \subseteq [\ell]$ pp, $\{{\rm pk}_i\}_{i\in S}$, ct Adversary Challenger

Adversary declares challenge set upfront

How do we simulate the public keys and the challenge ciphertext?

$$
c_1^{\mathrm{T}} \approx s^{\mathrm{T}} A
$$

$$
\boldsymbol{c}_2^{\mathrm{T}} \approx \boldsymbol{s}^{\mathrm{T}} \left(\boldsymbol{B} + \sum_{j \in S} \boldsymbol{W}_j \right)
$$

 $c_3 \approx s^{\mathrm{T}} p + \mu \cdot \left[q/2 \right]$

Public parameters: \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{p} , \boldsymbol{r}_1 , ... , \boldsymbol{r}_ℓ , \boldsymbol{V}_ℓ , trapdoor for \boldsymbol{V}_ℓ

How do we simulate the public keys and the challenge ciphertext?

$$
c_1^{\mathrm{T}} \approx s^{\mathrm{T}} A
$$

$$
c_2^{\mathrm{T}} \approx s^{\mathrm{T}} \left(B + \sum_{j \in S} W_j \right)
$$

$$
c_3 \approx s^{\mathrm{T}} p + \mu \cdot [q/2]
$$

$$
pk_i: \boldsymbol{W}_i, \{y_{ij}\}_{j \neq i} \text{ where } \boldsymbol{Ay}_{ij} = \boldsymbol{W}_i \boldsymbol{r}_j
$$

Can be sampled using trapdoor for V_{ℓ} \bm{V}_ℓ . y_{i1} \vdots $y_{i\ell}$ \boldsymbol{d} = $\boldsymbol{0}$ $\ddot{\cdot}$ $\boldsymbol{p}+\boldsymbol{Br}_{i}$ $\ddot{\cdot}$ $\begin{bmatrix} 0 & \end{bmatrix}$ $W_i = Z(d \otimes I)$

Public parameters: \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{p} , \boldsymbol{r}_1 , ... , \boldsymbol{r}_ℓ , \boldsymbol{V}_ℓ , trapdoor for \boldsymbol{V}_ℓ

How do we simulate the public keys and the challenge ciphertext?

$$
c_1^{\mathrm{T}} \approx s^{\mathrm{T}} A
$$

\n
$$
c_2^{\mathrm{T}} \approx s^{\mathrm{T}} \left(B + \sum_{j \in S} W_j \right)
$$

\n
$$
c_3 \approx s^{\mathrm{T}} p + \mu \cdot \lfloor q/2 \rfloor \qquad \text{Set } p = Ar
$$

$$
pk_i: \boldsymbol{W}_i, \{y_{ij}\}_{j \neq i} \text{ where } \boldsymbol{Ay}_{ij} = \boldsymbol{W}_i \boldsymbol{r}_j
$$

Can be sampled using trapdoor for V_{ℓ} \bm{V}_ℓ . y_{i1} \vdots $y_{i\ell}$ \boldsymbol{d} = $\boldsymbol{0}$ $\ddot{\cdot}$ $\boldsymbol{p}+\boldsymbol{Br}_{i}$ $\ddot{\cdot}$ $\begin{bmatrix} 0 & \end{bmatrix}$ $W_i = Z(d \otimes I)$

Public parameters: \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{p} , \boldsymbol{r}_1 , ..., \boldsymbol{r}_ℓ , \boldsymbol{V}_ℓ , trapdoor for \boldsymbol{V}_ℓ

How do we simulate the public keys and the challenge ciphertext?

$$
c_1^{\mathrm{T}} \approx s^{\mathrm{T}} A
$$

\n
$$
c_2^{\mathrm{T}} \approx s^{\mathrm{T}} \left(B + \sum_{j \in S} W_j \right)
$$

\n
$$
c_3 \approx s^{\mathrm{T}} A r + \mu \cdot [q/2]
$$

\n
$$
\frac{\text{Set } B = AR - \sum_{j \in S} W_j}{\text{Set } p = Ar}
$$

\n
$$
v_{\ell} \cdot \begin{bmatrix} y_{i1} \\ \vdots \\ y_{i\ell} \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ p + Br_i \\ \vdots \\ p_{i\ell} \end{bmatrix}
$$

\n
$$
w_i = Z(d \otimes I)
$$

Public parameters: \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{p} , \boldsymbol{r}_1 , ... , \boldsymbol{r}_ℓ , \boldsymbol{V}_ℓ , trapdoor for \boldsymbol{V}_ℓ

How do we simulate the public keys and the challenge ciphertext?

$$
c_1^T \approx s^T A
$$

\n
$$
c_2^T \approx s^T AR
$$

\n
$$
c_3 \approx s^T Ar + \mu \cdot [q/2]
$$

\n
$$
\begin{array}{ccc}\n\text{Set } B = AR - \sum_{j \in S} W_j \\
\text{Set } p = Ar\n\end{array}
$$

\n
$$
\begin{array}{ccc}\n\text{Can be sampled using trapdoor for } V_\ell \\
\downarrow \\
\downarrow \\
\downarrow d\n\end{array}
$$

\n
$$
V_\ell \cdot \begin{bmatrix}\ny_{i1} \\
y_{i\ell} \\
y_{i\ell} \\
d\n\end{bmatrix} = \begin{bmatrix}\n0 \\
\vdots \\
p + Br_i \\
\vdots \\
p_i = Z(d \otimes I)\n\end{bmatrix}
$$

Public parameters: \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{p} , \boldsymbol{r}_1 , ... , \boldsymbol{r}_ℓ , \boldsymbol{V}_ℓ , trapdoor for \boldsymbol{V}_ℓ

$$
V_{\ell} = \begin{bmatrix} A & & & -Z(I \otimes r_{1}) \\ & \vdots & & & \\ & & -Z(I \otimes r_{\ell}) \end{bmatrix}
$$
 There's a **circularity** here!
\n
$$
A \begin{bmatrix} -Z(I \otimes r_{1}) & & & \\ -Z(I \otimes r_{\ell}) & & & \\ & & & \text{public key components } W_{i}, y_{ij} \text{ depend on } B, \text{ so we cannot\nprogram } B \text{ to be a function of } W_{i}
$$
\n
$$
c_{1}^{T} \approx s^{T} A
$$
\n
$$
c_{2}^{T} \approx s^{T} A R
$$
\n
$$
c_{3}^{T} \approx s^{T} A R
$$
\n
$$
c_{4}^{T} \approx s^{T} A R
$$
\n
$$
c_{5}^{T} \approx s^{T} A R
$$
\n
$$
c_{6}^{T} \approx s^{T} A R
$$
\n
$$
c_{7}^{T} \approx s^{T} A R
$$
\n
$$
c_{8}^{T} \approx s^{T} A R
$$
\n
$$
c_{9}^{T} \approx s^{T} A R
$$
\n
$$
c_{1}^{T} \approx s^{T} A R
$$
\n
$$
c_{2}^{T} \approx s^{T} A R
$$
\n
$$
c_{3}^{T} \approx s^{T} A R
$$
\n
$$
c_{4}^{T} \approx s^{T} A R
$$
\n
$$
c_{5}^{T} \approx s^{T} A R
$$
\n
$$
c_{6}^{T} \approx s^{T} A R
$$
\n
$$
c_{7}^{T} \approx s^{T} A R
$$
\n
$$
c_{8}^{T} \approx s^{T} A R
$$
\n
$$
c_{9}^{T} \approx s^{T} A R
$$
\n
$$
c_{1}^{T} \approx s^{T} A R
$$
\n
$$
c_{1}^{T} \approx s^{T} A R
$$
\n
$$
c_{2}^{T} \approx s^{T} A R
$$
\n
$$
c_{3}^{T} \approx s^{T} A R
$$
\n
$$
c_{4}^{T} \approx s^{T} A R
$$
\n
$$
c_{5}^{T} \approx s
$$

Public parameters: \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{p} , \boldsymbol{r}_1 , ... , \boldsymbol{r}_ℓ , \boldsymbol{V}_ℓ , trapdoor for \boldsymbol{V}_ℓ

How do we simulate the public keys and the challenge ciphertext?

$$
c_1^T \approx s^T A
$$

\n
$$
p
$$

\nDistributions of y_{ij} for $j \neq i$ and of d is statistically indistinguishable to original distribution
\n
$$
c_3 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_4 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_5 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_6 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_7 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_8 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_9 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_1 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_2 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_3 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_4 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_5 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_7 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_8 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_9 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_1 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_2 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_3 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_4 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_5 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_7 \approx s^T A r + \mu \cdot [q/2]
$$

\n
$$
c_8 \approx s^T A r + \mu \cdot [q/2]
$$

\n

Public parameters: \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{p} , \boldsymbol{r}_1 , ... , \boldsymbol{r}_ℓ , \boldsymbol{V}_ℓ , trapdoor for \boldsymbol{V}_ℓ

How do we simulate the public keys and the challenge ciphertext?

$$
c_1^T \approx s^T A
$$

\n
$$
c_2^T \approx s^T AR
$$

\n
$$
c_3 \approx s^T Ar + \mu \cdot [q/2]
$$

\n
$$
\begin{array}{|l|l|}\n\hline\n\text{Set } B = AR - \sum_{j \in S} W_j\n\end{array}
$$

\n
$$
V_{\ell} \cdot \begin{bmatrix} y_{i1} \\ y_{i\ell} \\ y_{i\ell} \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

\n
$$
\text{Target 0 in all blocks}
$$

\n
$$
W_i = Z(d \otimes I)
$$

Completing the Proof

Public parameters: \boldsymbol{A} , \boldsymbol{B} , \boldsymbol{p} , \boldsymbol{r}_1 , ... , \boldsymbol{r}_ℓ , \boldsymbol{V}_ℓ , trapdoor for \boldsymbol{V}_ℓ

$$
V_{\ell} = \begin{bmatrix} A & & & -Z(I \otimes r_1) \\ & \ddots & & \vdots \\ & & A & -Z(I \otimes r_{\ell}) \end{bmatrix}
$$

Suppose LWE is hard with respect to A given trapdoor for V_{ℓ} $\boldsymbol{s}^{\mathrm{T}}\boldsymbol{A} \approx \text{random}$

This is not the ℓ -succinct LWE trapdoor!

$$
D_{\ell} = \begin{bmatrix} A & & & & U_1 \\ & \ddots & & & \\ & & A & U_{\ell} \end{bmatrix}
$$

Distribution of $Z(I \otimes r_i)$ not independent uniform (given $\pmb{Z}, \pmb{r}_1, ..., \pmb{r}_\ell)$ Given a trapdoor for $\boldsymbol{D}_{\ell'}$ where $\ell' \geq O(\ell n \log q)$, we can derive \overline{Z} , r_1 , ..., r_{ℓ} and a trapdoor for the matrix \boldsymbol{V}_ℓ (with polynomial loss in parameters)

[see paper for details]

Summary

Distributed broadcast encryption for ℓ users from ℓ' succinct LWE where $\ell' \geq \ell \cdot O(\lambda \log \ell)$ **Public parameter size:** $\ell^2 \cdot \text{poly}(\lambda, \log \ell)$ **User public key size:** $\ell \cdot \text{poly}(\lambda, \log \ell)$ **Ciphertext size:** $poly(\lambda, \log \ell)$

Open problems:

- Scheme with short CRS and public keys
- Proving security from plain LWE
- Cryptanalysis of ℓ -succinct LWE

Broadcast encryption without a central authority

Thank you!