_attice-Based SNARGs and Their
Application to More Efficient Obfuscation

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu

Program Obfuscation [BGIRsvY01, GGHRSW13]

Indistinguishability obfuscation (i0) has emerged as a “central hub for
cryptography” [BGIRSVY01, GGHRSW13]

[GGHRSW13, SW14, BZ14, BST14, GGHR14, GHRW14, BP15, CHNVW15, CLTV15, GP15, GPS16, BPW16 ...

Takes a program as input and “scrambles” it

vold serveurl(portServ ports)

{ (=1.92e+23))3 ((292))+((((1.02e+1)>{0x6d5))7(0x2093)
int sockServl, sockServ?, sockClient: " tbRr=bRr+gjH)); ((203))+({(((99.47)<=({-4603))7(8.43e+]
struct sockaddr_in monAddr, addrClient, addrServ2; lO =ePd+ "L " ediU+" "y ((TOBY) (({(=3.62e+0)>={0xdal))7 (]
socklen_t lenAddrClient; Ele+2))) ((924))+(({(0x226e)>={0xlced))? (vTx=vTx+NrF

>=(9.60))7(-2.24e+2): (fAH=FfAR+VObL)), (((1l.91le+2)<=(55

Darror e rrour sockatays — s SOCKSTREAN, @) == -1) "/"4+gOY+"n": (EAH=EAHSEdm)), (((0X15df)>=(1825))? (JTHa=
bxit(1): : vIx=vTx+JHa)), (((-4134)>(-2.85e+2))?bRr=bRr+aQa: (SOU:
b 91e+2)), (((3066)>(=2363))7 (MXC=MXG+vTx) : fuF=fuF+aul+'
if ((sockServ2? = socket(AF_INET, SOCK_STREAM, 0)) == -1) { J)? (bRr=bRr+afa):{4664)));((656))+((((-2204)>=(0x92e
perror("Erreur socket"); (870))+((((1.82e+2)>(0x1770))?eXE=eXE+"K"+Eff: (MxG=M:
exit(1); +1)==(-3.11e+2))? (pOp=pOp+"e"+SeZ+" /") : QoX=0oX+{Tv),

} A, eI LI

Program Obfuscation scirsvyo1, GGHRSW13]

Indistinguishability obfuscation (i0) has emerged as a “central hub for
cryptography” [BGIRSVY01, GGHRSW13]

[GGHRSW13, SW14, BZ14, BST14, GGHR14, GHRW14, BP15, CHNVW15, CLTV15, GP15, GPS16, BPW16 ...]

Not just engineering
challenges — fundamental
theoretical challenges

Many applications, yet extremely far from practical

Polynomial-time,

but constant

100
|l WANT TO factors are > 2

BELIEVE

Our Goal

Obtain an “obfuscation-complete” primitive with an emphasis on
concrete efficiency

* Functionality whose (ideal) obfuscation can be
used to obfuscate arbitrary circuits

e Obfuscated primitive should need to invoked
once for function evaluation

* Our solution: obfuscate FHE decryption and
SNARG verification

Concurrently: improve the asymptotic efficiency of SNARGs

How (Im)Practical is Obfuscation?

Existing constructions rely on multilinear maps [8so4, GGH13, CLT13, GGH15]
* Bootstrapping: [GGHRSW13, BR14, App14]

multilinear NC! z\%ﬁ P/Poly

> >
maps obfuscation | bootstrapping | obfuscation

* For AES, requires > 2199 levels of multinearity and > 21°° encodings

* Direct obfuscation of circuits: [zim1s, AB15]
* For AES, already require > 2199 levels of multilinearity

* Non-Black Box: [Lin16a, Lv16, Lin16b, AS17, LT17]
* Only requires constant-degree multilinear maps (e.g., 3-linear maps [LT17])

* Multilinear maps are complex, so non-black box use of the multilinear maps will be
difficult to implement

How (Im)Practical is Obfuscation?

Focus of this work will be on candidates that make black-box use of
multilinear map

multilinear N NC! g\%ﬁ R P/Poly
maps obfuscation | bootstrapping | obfuscation
prior works have focused on our goal: improve efficiency
improving the efficiency of of bootstrapping

obfuscation for NC! (branching

for AES, we require = 4000 levels of
programs) [AGIS14, BMSZ16]

multilinearity (compare with > 2199
from before)

Bootstrapping Obfuscation [ceHRsw13, BR14]

To obfuscate a circuit C € P/Poly:

(a —)

L’%ﬁ (e # =g

K Q Cenc

Cenc

encrypt the circuit C using a given Cqpc, evaluator can
public key FHE scheme to homomorphically compute
obtain encrypted circuit Cap encryption of C(x)

Bootstrapping Obfuscation [ceHRsw13, BR14]

To obfuscate a circuit C € P/Poly:

(a —)
To T (g #xm[cmg
o —a

* Provide obfuscated program that decrypts the FHE ciphertext
e Should not decrypt arbitrary FHE ciphertexts, only those that

correspond to honest evaluations
* Evaluator includes a proof that evaluation done correctly

Bootstrapping Obfuscation [ceHRsw13, BR14]

FHE CRS for proof P
secret key system obf
constants: skand o \ . .

on input (x, ct,):
1. Verify the proof mr that ct corresponds to
an evaluation of Cop. On X

1
2. If valid, output FHE. Decrypt(sk, ct) and O

\ otherwise j .) .

* Provide obfuscated program that decrypts the FHE ciphertext
* Should not decrypt arbitrary FHE ciphertexts, only those that

correspond to honest evaluations
* Evaluator includes a proof that evaluation done correctly

Bootstrapping Obfuscation [ceHRsw13, BR14]

For VBB obfuscation, can Pops
[use a succinct argument . .
constants: s (SNARG)

on input (x, Ct,
1. |Verify the proof|m that ct corresponds to

an evaluation of Cop. On X . . .
2. If valid, output|FHE. Decrypt(sk, ct)jand O e
\ otherwise / . .

* Obfuscated program does two things: proof verification and FHE decryption
« NC! obfuscator works on branching programs, so need primitives with short
branching programs (e.g., computing an inner products over a small field)

Bootstrapping Obfuscation [ceHRsw13, BR14]

obf

For VBB obfuscation, can

P
[use a succinct argument .
constants: s (SNARG)

on input (x, Ct,
1. |Verify the proof|m that ct corresponds to

an evaluation of Cop. On X . . .
2. If valid, output|FHE. Decrypt(sk, ct)jand O e
\ otherwise / . .

Require primitives that minimize
branching-program complexity

* Obfuscated program doe nd FHE decryption
e NC! obfuscator works o ximitives with short
branching programs (e.g., computing an inner products over a small field)

Bootstrapping Obfuscation [ceHRsw13, BR14]

obf

P
(constants: skand o \ .

on input (x, ct,):

1. |Verify the proof|m that ct corresponds to . . .
an evaluation of Cop. On X HLT sloiusee e .

2. If valid, output|FHE. Decrypt(sk, ct)jand O :

\ otherwise) . .

* Obfuscated program does two things: proof verification and FHE decryption
e NC! obfuscator works on branching programs, so need primitives with short
branching programs (e.g., computing an inner products over a small field)

 FHE decryption is (rounded) inner product [Bv11, BGV12, Bral2, GSW13, AP14, DM15, ...], SO
just need a SNARG with simple verification

Branching-Program-Friendly SNARGs

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching program

Branching-Program-Friendly SNARGs

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching prog

Succinct non-interactive arguments (SNARG) for NP relation [ewa1)
. Setup(l"l) — (o, 7): outputs common reference string o and
verification state

* Prove(o,x,w) — m: on input a statement x and witness w,
outputs a proof i

 Verify(z,x,m) — 0/1: on input the verification state 1, the
statement x, decides if proof m is valid

Branching-Program-Friendly SNARGs

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching prog

Succinct non-interactive arguments (SNARG) for NP relation [ewa1;
e Must satisfy usual notions of completeness and computational
soundness

* Succinctness: proof size and verifier run-time should be
polylogarithmic in the circuit size (for circuit satisfiability)
* Verifier run-time: poly(1 + |x| + log |C|)
* Proof size: poly(A + log |C]|)

Branching-Program-Friendly SNARGs

interactive 2z

ort brancBaLSRE Loy lpRie
run in time poly(1 + |C])

Goal: construct ¢

e oz s o). Verification state T
must be secret

Main result: new designated-verifier SNARGs in the preprocessing model with the
following properties:

Branching-Program-Friendly SNARGs

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching program

proofs have

It: new designatel it complexity

yproperties: s 0(IC|)
* Quasi-optimal succinctness
* Quasi-optimal prover complexity

cize 5(&) the preprocessing model with the

} first SNARG that is
“quasi-optimal”

Asymptotics based on achieving negl(1) soundness

error against provers of size 24

Branching-Program-Friendly SNARGs

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching program

Main result: new designated-verifier SNARGs in the preprocessing model with the
following properties:
* Quasi-optimal succinctness } first SNARG that is
* Quasi-optimal prover complexity “quasi-optimal”
* Post-quantum security
* Works over polynomial-size fields

New SNARG candidates are lattice-based

* Over integer lattices, verification is branching-program friendly
* Over ideal lattices, SNARGs are quasi-optimal

Branching-Program-Friendly SNARGs

Goal: construct a succinct non-interactive argument (SNARG)
that can be verified by a short branching program

Starting point: preprocessing SNARGs from [BCIOP13]

2-round linear

linear PCP : : preprocessing SNARG
interactive proof

information- cryptographic compiler
theoretic compiler (linear-only encryption)

Linear PCPs (LPCPs) [ikoo7]
(xw) —

linear PCP

q € Fm * \erifier given oracle access to a linear
function r € '™
* Several instantiations:
(C[) € F e 3-query LPCP based on the Walsh-

Hadamard code: m = O(|C|?%) [ALMSS92]
Require large fields, but can be e 3-query LPCP based on quadratic span

- adapted to operate over small fields. roerams: m = O(|1CD icgpr13
verifier [See paper for details.] prog : (Cht]

Linear PCPs (LPCPs) [ikoo7]
(xw) —

linear PCP

the statement x

qg € F™
| Oftentimes, verifier is oblivious:
(q,m) € F the queries g do not depend on

verifier

Linear PCPs (LPCPs) [ikoo7]

Equivalent view (if verifier is oblivious):

mxKk
QEIF% () = LELERREE € <k

QTm € F¥

verifier pack all queries into
single matrix

From Linear PCPs to Preprocessing SNARGS [Bciop13]

Oblivious verifier can “commit”

to its queries ahead of time Honest prover takes

(x,w) and constructs
linear PCP T € [F™ and

computes Q''x

Q —q91192|93| |9k Two problemes:
* Malicious prover can choose m based
on queries
* Malicious prover can apply different
- -, to the different columns of Q

~"

part of the CRS

From Linear PCPs to Preprocessing SNARGS [Bciop13]

Oblivious verifier can “commit”

to its queries ahead of time Honest prover takes

(x,w) and constructs
linear PCP T € [F™ and

computes Q''x

£

, 3 _‘:i~~
&%

Q —q91192|93| |9k Two problemes:
* Malicious prover can choose T based
on queries
* Malicious prover can apply different
- -, to the different columns of Q

~"

part of the CRS

From Linear PCPs to Preprocessing SNARGS [Bciop13]

Oblivious verifier can “commit”

to its queries ahead of time Honest prover takes

(x,w) and constructs
linear PCP T € [F™ and

computes Q''x

é

Step 1: Encrypt elements of Q using
additively homomorphic encryption scheme
* Prover homomorphically computes Q' r
* Verifier decrypts encrypted response
vector and performs LPCP verification

V

part of the CRS

From Linear PCPs to Preprocessing SNARGS (Bcior13]

Oblivious verifier can “commit”

to its queries ahead of time Honest prover takes

(x,w) and constructs
linear PCP T € [F™ and

computes Q''x

Two problemes:
* Malicious prover can choose m based
on queries
* Malicious prover can apply different
to the different columns of Q

part of the CRS

From Linear PCPs to Preprocessing SNARGS

Oblivious verifier can “commit”

to its queries ahead of time Honest prover takes

(x,w) and constructs
linear PCP T € [F™ and

computes Q''x

Step 2: Conjecture that the encryption scheme
only supports a limited subset of homomorphic
operations (linear-only vector encryption)

~"

part of the CRS

Linear-Only Vector Encryption

v, € F¥

v, € FF

v, € F¥

plaintext space is a
vector space

Linear-Only Vector Encryption

plaintext space is a encryption scheme is
vector space semantically-secure and
additively homomorphic

Linear-Only Vector Encryption

‘extractor

For all adversaries, there is an efficient extractor such that if ct is valid, then
the extractor is able to produce a vector of coefficients (a4, ..., a,,) € F™
and b € F* such that Decrypt(sk, ct) = ¥;crpy @iv; + b

Weaker property also suffices. [See paper for details.]

Linear-Only Vector Encryption

extractor can “explain” the
ciphertexts as an affine
function of its inputs

For all adversaries, there is an efficient extractor such that if @S valid, then
the extractor is able to produce a vector of coefficients (a4, ..., a,,) € ™
and b € F* such that Decrypt(sk, ct) = ¥;crpy @iv; + b

Weaker property also suffices. [See paper for details.]

From Linear PCPs to Preprocessing SNARGS

Oblivious verifier can “commit”

to its queries ahead of time . Honest prover takes
‘% . (x,w) and constructs
F %4 linear PCP T € [F™ and

encrypt
row by row

computes Q''x

Step 2: Conjecture that the encryption scheme
only supports a limited subset of homomorphic
operations (linear-only vector encryption)

=~ V" - Linear-only vector encryption = all prover
[See paper for full details.] part of the CRS strategies can be explained by (i, b) as QTm + b

Comparison with [BCIOP13]
Preprocessing SNARGs from [BCIOP13]:

2- li :
linear PCP : roungl ear preprocessing SNARG
interactive proof

introduce additional consistency
check to force prover to apply
consistent linear function —
soundness only over a large field

Comparison with [BCIOP13]

Preprocessing SNARGs from [BCIOP13]:

2-round linear

' ' NAR
linear PCP N — preprocessing S G

Our construction

linear PCP preprocessing SNARG

Comparison with [BCIOP13]

Preprocessing SNARGs from [BCIOP13]:

2- li :
linear PCP et IREE — < brenrocessing SNARG

stronger cryptographic assumption,
but enables new constructions with
Our construction better efficiency

linear PCP preprocessing SNARG

Instantiating Linear-Only Vector Encryption

Conjecture: Regev-based encryption (specifically, the [PVWO08] variant)
is a linear-only vector encryption scheme.

PVW decryption (for plaintexts with dimension k):

i
><I

C E Zn+k

S

round

kx(n+k)

_ SEZ

Each row of S can be is an independent Regev secret key

Concrete Comparisons

Public vs. Prover Proof
Construction Designated Complexity Size Assumption
CS Proofs [Mic00] Public o(C| + 2% 0(21?%) Random Oracle
Groth [Gro10] Public O(|CI?A + |C|2A?) 0(1) Knowledge of
GGPR [GGPR12] Public 0'(ClD) 0‘(,1) Exponent
BCIOP (Pairing) [BCIOP13] Public o(Clp 0(1) Linear-Only
BCIOP (LWE) [BCIOP13] Designated o(clD 10 Encryption
Our Construction (LWE) Designated 0(|C|2) 0(1) Linear-Only
Our Construction (RLWE) Designated o(c)) o) Vector Encryption
[See paper.]

Only negl(A1)-soundness (instead of 2~ _soundness) against 2*-bounded provers

Concrete Comparisons

Public vs. Prover Proof
Construction Designated Complexity Size Assumption
CS Proofs [Mic00] Public oO(|C| + 2?) 0(21?) Random Oracle
- Ac112 2 A

Groth [Gro10] Public O(|C|“A + |C[A%) 0(A) Knowledge of

GGPR [GGPR12] Public 5(ClD) ’0‘(,1) Exponent

BCIOP (Pairing) [BCIOP13] Public o(Clp 0(1) Linear-Only

BCIOP (LWE) [BCIOP13] Designated 0(IC|Y) 0(d) Encryption

Our Construction (LWE) Designated o(C|) 0(1) Linear-Only

Our Construction (RLWE) Designated o(c)) o) Vector Encryption
[See paper.]

Post-quantum resistant!

Back to Obfuscation...

For bootstrapping obfuscation...
* Obfuscate FHE decryption and SNARG verification

e Degree of multilinearity: =~ 212
* Number of encodings: = 244 Still infeasible, but much, much

better than 2199 for previous
black-box constructions!

Many optimizations. [See paper for details.]

Looking into obfuscation gave us new insights into constructing better
SNARGsS:

* More direct framework of building SNARGs from linear PCPs

* First quasi-succinct construction from standard lattices

* First quasi-optimal construction from ideal lattices [see paper]

Open Problems

Publicly-verifiable SNARGs from lattice-based assumptions?

Stronger notion of quasi-optimality (achieve 274 soundness
rather than negl(A) soundness)?

Concrete efficiency of new lattice-based SNARGs?

Thank you!
http://eprint.iacr.org/2017/240

