
Computing on Private Data:
Private Genomics and More

David Wu
UT Austin



Computing on Private Data

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

Aggregate statistic
𝑦 ← 𝑓 𝑥1, … , 𝑥5

Differential privacy: ensure that output 
𝑦 protects privacy of input 𝑥𝑖

Cryptographic tools: hide the input 𝑥𝑖
from the computing party [This talk]

Complementary goals as differential privacy
(and oftentimes, can be combined)



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

What gene causes a specific (rare) disease?

[JWBBB17]



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

0

1

⋮

0

1

1

⋮

0

0

1

⋮

1

0

0

⋮

0

0

1

⋮

0

A1BG

ZZZ3

Each patient has a vector 𝑣
where 𝑣𝑖 = 1 if patient has 

a rare variant in gene 𝑖G
e

n
e

Goal: Identify gene with 
most variants across all 

patients

[JWBBB17]



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

0

1

⋮

0

1

1

⋮

0

0

1

⋮

1

0

0

⋮

0

0

1

⋮

0

A1BG

ZZZ3

G
e

n
e

Works well for Mendelian 
(monogenic) diseases (estimated 

to affect ≈10% of individuals)

Each patient has a vector 𝑣
where 𝑣𝑖 = 1 if patient has 

a rare variant in gene 𝑖

Goal: Identify gene with 
most variants across all 

patients

[JWBBB17]



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

0

1

⋮

0

1

1

⋮

0

0

1

⋮

1

0

0

⋮

0

0

1

⋮

0

A1BG

ZZZ3

G
e

n
e

Works well for Mendelian 
(monogenic) diseases (estimated 

to affect ≈10% of individuals)

Each patient has a vector 𝑣
where 𝑣𝑖 = 1 if patient has 

a rare variant in gene 𝑖

Goal: Identify gene with 
most variants across all 

patients

[JWBBB17]

To identify causal rare variants, 
often need exact computation



Patients often in
geographically-diverse locations

Rare Disease Diagnosis
[JWBBB17]

Trusted 
Party

Question: Can we perform this 
computation without seeing 
complete patient genomes?



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

Patients “secret share” 
their data with two

non-colluding hospitals

𝑟 𝑥 − 𝑟

[JWBBB17]



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

MPC Protocol

Patients “secret share” 
their data with two

non-colluding hospitals

Hospitals run a multiparty 
computation (MPC) 

protocol on pooled inputs

[JWBBB17]



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

MPC Protocol

Top variants (sorted):
KMT2D, COL6A1, FLNB

Known cause of disease

[JWBBB17]



Rare Disease Diagnosis

Patients with Kabuki Syndrome

Each patient has a list of 200-400
rare variants over ≈20,000 genes

MPC Protocol

Top variants (sorted):
KMT2D, COL6A1, FLNB

Other variants that the 
patients possess are kept 

hidden

[JWBBB17]



Rare Disease Diagnosis
[JWBBB17]

General techniques apply to many different scenarios for diagnosing Mendelian diseases

Patients with Kabuki Syndrome

0
1
⋮
0

1
1
⋮
0

0
1
⋮
1

0
0
⋮
0

0
1
⋮
0

A1BG

ZZZ3

G
e

n
e

Identify causal gene for a rare disease
given a small patient cohort

0
1
⋮
0

1
1
⋮
0

Identify patients with the same
rare functional mutation at two different hospitals

Identify rare functional variants
that are present in the child but in 

neither of the parents



End-to-End Time Communication

Number of Patients
10 10050

9.6 s

13.7 s
15.8 s

41.0 MB

62.2 MB
72.7 MB

Rare Disease Diagnosis
[JWBBB17]

Experimental benchmarks for identifying causal gene in small disease cohort
• Simulated two non-colluding entities with 1 server on East Coast and 1 on West Coast



End-to-End Time Communication

Number of Patients
10 10050

9.6 s

13.7 s
15.8 s

41.0 MB

62.2 MB
72.7 MB

Rare Disease Diagnosis
[JWBBB17]

Experimental benchmarks for identifying causal gene in small disease cohort
• Simulated two non-colluding entities with 1 server on East Coast and 1 on West Coast

For many rare disease diagnosis 
scenarios, disease cohort size can 
be very small (e.g., 5-10 patients)



Secure Genome Computation

MPC Protocol

Modern cryptographic tools enable useful computations while 
protecting the privacy of individual genomes



Secure Genome Computation

MPC Protocol

Modern cryptographic tools enable useful computations while 
protecting the privacy of individual genomes

Techniques apply to general
computations over private data



Yao’s Protocol for Two-Party Computation



Yao’s Protocol for Two-Party Computation

Classic protocol for two-party computation

0

1

⋮

0

1

1

⋮

0

Private
inputs

0

1

⋮

0

Security guarantee: everything 
the parties learn can be inferred 

from the output and their 
individual inputs

[Yao82]



0

1

⋮

0

1

1

⋮

0

Private
inputs

Step 1: Model computation as a 
Boolean circuit

Party 1
“garbler”

Party 2
“evaluator”

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

Output

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

Output

0 1

0 1

0 1

0 1

Garbler chooses two different encryption keys for every wire in the circuit

0 1

0 1

0 1

Each key is associated with 
a possible wire value

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND
Party 1

Party 2

0 1

0 1

Garbler constructs a garbled truth table for each gate in the circuit

0 1
Party 1 Party 2

Output
Inputs

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1
Idea: Encrypt the output key (for 

the output wire) with the two 
input keys (for the input wires)

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

Party 1 Party 2
Output

Inputs

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

Party 1 Party 2
Output

Inputs

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Key for party 
1’s input

Key for party 
2’s input

Key for output 
wire

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

Party 1 Party 2
Output

Inputs

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

0

1

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

0

10

Enc 𝑘0
(1)
, Enc 𝑘1

2
, 𝑘0

(out)

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

1

11

Enc 𝑘1
(1)
, Enc 𝑘1

2
, 𝑘1

(out)

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

0

10

Enc 𝑘0
(1)
, Enc 𝑘1

2
, 𝑘0

(out)

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

1

11

Enc 𝑘1
(1)
, Enc 𝑘1

2
, 𝑘1

(out)

Garbled truth table 
randomly permuted

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler constructs a garbled truth table for each gate in the circuit

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

1

11

Enc 𝑘1
(1)
, Enc 𝑘1

2
, 𝑘1

(out)

0

10

Enc 𝑘0
(1)
, Enc 𝑘1

2
, 𝑘0

(out)

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Garbled truth table 
randomly permuted

Invariant: Given just a single key for 
each input wire, evaluator can learn 

a single key for the output wire

𝑘1
1

1 𝑘0
2

0

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Garbled truth table 
randomly permuted

Invariant: Given just a single key for 
each input wire, evaluator can learn 

a single key for the output wire

1

𝑘1
1

𝑘0
2

0

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Garbled truth table 
randomly permuted

Invariant: Given just a single key for 
each input wire, evaluator can learn 

a single key for the output wire

1 0

𝑘0
out

0

𝑘1
1

𝑘0
2𝑘0

out
is just a symmetric key – does 

not reveal what the output bit is

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

0

01

Enc 𝑘1
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Garbled truth table 
randomly permuted

Invariant: Given just a single key for 
each input wire, evaluator can learn 

a single key for the output wire

1 0

𝑘1
1

𝑘0
2

Yao’s Protocol for Two-Party Computation
[Yao82]

1

11

Enc 𝑘1
(1)
, Enc 𝑘1

2
, 𝑘1

(out)

0

10

Enc 𝑘0
(1)
, Enc 𝑘1

2
, 𝑘0

(out)

0

00

Enc 𝑘0
(1)
, Enc 𝑘0

2
, 𝑘0

(out)

Cannot decrypt other output keys



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

1

1

0

1

Invariant: Given just a single key for each 
input wire and a garbled table, evaluator 
can learn a single key for the output wire

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

1

00
1

1 0

11
0 1

0 10

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

1

1

1

Invariant: Given just a single key for each 
input wire and a garbled table, evaluator 
can learn a single key for the output wire

0

1

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

1

00
1

1 0

11
0 1

0 1

Yao’s Protocol for Two-Party Computation
[Yao82]

0



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

1

1

1

Invariant: Given just a single key for each 
input wire and a garbled table, evaluator 
can learn a single key for the output wire

0

1

1

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

1

00
1

1 0

11
0 1

0 1

Include decoding 
table to map output 
keys to output values

Yao’s Protocol for Two-Party Computation
[Yao82]

0



Step 2: Garbler “encrypts” the circuit (i.e., “garbles” the circuit)

Garbler can send garbled truth tables and keys for its inputs

0

1

⋮

0

1

1

⋮

0

0

1

0

⋮

keys for
Party 1’s inputs

Question: how does evaluator obtain keys for its input?

garbler evaluator

garbled tables

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

Yao’s Protocol for Two-Party Computation
[Yao82]



Step 3: Evaluator uses “oblivious transfer” to obtain keys for its input

0

1

⋮

0

1

⋮

0

1

0 1

garbler evaluator

For each wire corresponding 
to evaluator’s input, the 

garbler has two keys
For each input wire, evaluator 

wants to obtain key 
corresponding to its input value

1

2-round protocol

At the end of the oblivious transfer protocol, garbler learns nothing about which 
key evaluator obtains, and evaluator learns exactly one of the two keys

Yao’s Protocol for Two-Party Computation
[Yao82]



0

1

⋮

0

1

1

⋮

0

OT message for keys 
corresponding to input wires

Keys communicated using OT 
(garbler does not know which 

keys are transmitted)

garbler evaluator

Evaluator uses keys to evaluate 
circuit gate-by-gate

Two-round protocol for secure two-party communication

Many improvements are possible 
to achieve better performance

0

1

0

⋮

1

1

0

⋮

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

Yao’s Protocol for Two-Party Computation
[Yao82]



0

1

⋮

0

1

1

⋮

0

0

1

0

⋮

OT message for keys 
corresponding to input wires

1

1

0

⋮

Keys communicated using OT 
(garbler does not know which 

keys are transmitted)

garbler evaluator

Protocol is very efficient; 
communication is the bottleneck

Two-round protocol for secure two-party communication

Many improvements are possible 
to achieve better performance

1 0
0

1 1
1

0 1
0

0 0
0

1 1
1

0 1
0

1 0
0

0 0
0

Yao’s Protocol for Two-Party Computation
[Yao82]



The Story So Far…

General techniques apply to many different scenarios for diagnosing Mendelian diseases

Patients with Kabuki Syndrome

0
1
⋮
0

1
1
⋮
0

0
1
⋮
1

0
0
⋮
0

0
1
⋮
0

A1BG

ZZZ3

G
e

n
e

Identify causal gene for a rare disease
given a small patient cohort

0
1
⋮
0

1
1
⋮
0

Identify patients with the same
rare functional mutation at two different hospitals

Identify rare functional variants
that are present in the child but in 

neither of the parents

Simple frequency-based filters are useful for rare 
disease diagnosis and can be efficiently 

evaluated in a privacy-preserving manner

[JWBBB17]



But What About More Complex Diseases?

Genome-wide association studies (GWAS):
• Identify genetic variants most correlated with 

a particular disease (or particular phenotype)
• Oftentimes, focused on identifying complex 

interactions between many variants

Control group (healthy)

Case group (affected)

[CWB18]



But What About More Complex Diseases?

0 1 00 2 2 1⋯ 0

0

0

Each patient has a vector of SNPs (variations in 
specific locations in genome – 3 types)

0 1 01 2 2 1⋯

1 1 00 2 2 0⋯

2 1 21 2 0 0⋯

2 1 20 2 1 1⋯

Healthy individuals

Patients with lung cancer
1

1

Disease
status

Goal: identify SNPs that 
are most correlated 
with disease status

[CWB18]



But What About More Complex Diseases?

0 1 00 2 2 1⋯ 0

0

0

Each patient has a vector of SNPs (variations in 
specific locations in genome – 3 types)

0 1 01 2 2 1⋯

1 1 00 2 2 0⋯

2 1 21 2 0 0⋯

2 1 20 2 1 1⋯

Healthy individuals

Patients with lung cancer
1

1

Disease
status

Goal: identify SNPs that 
are most correlated 
with disease status

Unlike Mendelian diseases, we are 
looking for many associations 

(e.g., several hundred)

[CWB18]



But What About More Complex Diseases?

0 1 00 2 2 1⋯ 0

0

0

0 1 01 2 2 1⋯

1 1 00 2 2 0⋯

2 1 21 2 0 0⋯

2 1 20 2 1 1⋯

Healthy individuals

Patients with lung cancer
1

1

Disease
status

≈ 500,000 SNPs

≈ 25,000 
individuals

[CWB18]



But What About More Complex Diseases?

0 1 00 2 2 1⋯ 0

0

0

0 1 01 2 2 1⋯

1 1 00 2 2 0⋯

2 1 21 2 0 0⋯

2 1 20 2 1 1⋯

1

1

Disease
status

≈ 500,000 SNPs

≈ 25,000 
individuals

Challenge: in real GWAS 
studies, we need to 

correct for population-
level differences 
between groups

[CWB18]



Arithmetic Computations on Shared Data

GWAS computations most naturally expressed as arithmetic 
computations (e.g., matrix operations)

AND

AND

NAND

Party 1

Party 1

Party 2

Party 2

Output

Recall: to apply Yao’s protocol, 
must first represent computation 

as a Boolean circuit

Can introduce significant 
overhead for arithmetic

computations!



Arithmetic Computations on Shared Data

Patients “secret share” 
their data with two

non-colluding hospitals

𝑟 𝑥 − 𝑟

Approach: directly compute on 
secret-shared data



Arithmetic Computations on Shared Data

3

-1

⋮

7

-2

2

⋮

0

-3

2

⋮

-7

3

-1

⋮

0

0

1

⋮

0

1

1

⋮

0
𝑣1 𝑣2

𝑟1 𝑟2 𝑣1 − 𝑟1 𝑣2 − 𝑟2

All operations done over a ring (ℤ𝑝)

𝑣1 1 𝑣2 1 𝑣1 2 𝑣2 2

𝑣1 1 + 𝑣1 2 = 𝑣1

𝑣2 1 + 𝑣2 2 = 𝑣2



Arithmetic Computations on Shared Data

3

-1

⋮

7

-2

2

⋮

0

-3

2

⋮

-7

3

-1

⋮

0

0

1

⋮

0

1

1

⋮

0
𝑣1 𝑣2

𝑟1 𝑟2 𝑣1 − 𝑟1 𝑣2 − 𝑟2

𝑣1 1 𝑣2 1 𝑣1 2 𝑣2 2

1

1

⋮

7

0

1

⋮

-7𝑣1 1 + 𝑣2 1 = 𝑣1 + 𝑣2 1 𝑣1 2 + 𝑣2 2 = 𝑣1 + 𝑣2 2

Observation: each party 
can locally compute on 
their shares to obtain a 

share of the sum



Arithmetic Computations on Shared Data

3

-1

⋮

7

-2

2

⋮

0

-3

2

⋮

-7

3

-1

⋮

0

0

1

⋮

0

1

1

⋮

0
𝑣1 𝑣2

𝑟1 𝑟2 𝑣1 − 𝑟1 𝑣2 − 𝑟2

𝑣1 1 𝑣2 1 𝑣1 2 𝑣2 2

1

1

⋮

7

0

1

⋮

-7𝑣1 1 + 𝑣2 1 = 𝑣1 + 𝑣2 1 𝑣1 2 + 𝑣2 2 = 𝑣1 + 𝑣2 2

For computing products on shared values 
(e.g., matrix-vector products, inner products, 
etc.), we can use a single-round interactive

protocol [Bea91]

Observation: each party 
can locally compute on 
their shares to obtain a 

share of the sum



What About More Complex Diseases?
[CWB18]

This work: first end-to-end GWAS 
protocol (with population correction)

• Based on computing on secret-
shared inputs

• For 25K individuals, computation 
completes in about 3 days: feasible
for performing large-scale 
scientific studies

Approach: directly compute on 
secret-shared data

MPC Protocol

Can compose with differential privacy to 
ensure outputs preserve privacy of user data



Secure Genome Computation

Modern cryptographic tools enable useful computations while 
protecting the privacy of individual genomes

MPC Protocol



Privacy-Preserving Machine Learning

Private training: Multiple parties train a joint 
model on their aggregate data while ensuring 

privacy of the input data

Private inference: Client learns model’s output, 
server does not learn anything

Machine learning as a service

“Set an alarm for 3 PM”



Privacy-Preserving Machine Learning

Private training: Multiple parties train a joint 
model on their aggregate data while ensuring 

privacy of the input data

Private inference: Client learns model’s output, 
server does not learn anything

Machine learning as a service

“Set an alarm for 3 PM”

Many constructions in recent years:
MiniONN [MJLA17], EzPC [CGRST17], SecureML [MZ17], ABY3 [MR18], Chameleon [RWTSS+18],
SecureNN [WGC19], XONN [RSCLL+19], ASTRA [CCPS19], BLAZE [PS20], Delphi [MLSZP20],
FLASH [BCPS20], Trident [CRS20], CrypTFlow [KRCDR+20], Falcon [WTBKM+21] 



Privacy-Preserving Machine Learning

Private training: Multiple parties train a joint 
model on their aggregate data while ensuring 

privacy of the input data

Private inference: Client learns model’s output, 
server does not learn anything

Machine learning as a service

Many constructions in recent years:
MiniONN [MJLA17], EzPC [CGRST17], SecureML [MZ17], ABY3 [MR18], Chameleon [RWTSS+18],
SecureNN [WGC19], XONN [RSCLL+19], ASTRA [CCPS19], BLAZE [PS20], Delphi [MLSZP20],
FLASH [BCPS20], Trident [CRS20], CrypTFlow [KRCDR+20], Falcon [WTBKM+21] 

Simple models and datasets:

MNIST dataset

10 classes; 60,000 examples10,000 – 100,000 parameters

Feed-forward neural networks

2 – 3 layers



Privacy-Preserving Machine Learning

Private training: Multiple parties train a joint 
model on their aggregate data while ensuring 

privacy of the input data

Private inference: Client learns model’s output, 
server does not learn anything

Machine learning as a service

Many constructions in recent years:
MiniONN [MJLA17], EzPC [CGRST17], SecureML [MZ17], ABY3 [MR18], Chameleon [RWTSS+18],
SecureNN [WGC19], XONN [RSCLL+19], ASTRA [CCPS19], BLAZE [PS20], Delphi [MLSZP20],
FLASH [BCPS20], Trident [CRS20], CrypTFlow [KRCDR+20], Falcon [WTBKM+21] 

Larger models and datasets:

61,000,000 parameters
8 layers

AlexNet [KSH12] Tiny ImageNet [LKJ17]

Subset of ImageNet [RDSKS+15]

200 classes, 100,000 examples



100

101

102

The Scalability Challenge in Private ML

Subset of ImageNet [RDSKS+15]

200 classes, 100,000 examples

Tiny ImageNet [LKJ17]

103

104

105

106

Tr
ai

n
in

g 
Ti

m
e 

(m
in

u
te

s)

No Privacy With Privacy
[Assuming 90 epochs over dataset]

Cost of privacy:
960×

Training the AlexNet model on Tiny ImageNet



Modern Deep Learning (without Privacy)

1960 1970 1980 1990 2000 2010 2020

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

Pe
n

ta
fl

o
p

s/
s-

d
ay

s 
(≈

1
0
2
0

fl
o

p
s)

Perceptron

RNN (for speech)

Deep belief networks

LeNet

AlexNet

VGG

ResNets

Neural machine translation

AlphaZero

NETtalk

Figure adapted from OpenAI blog post

Pre-2012: Training primarily on CPU

Moore’s Law Scaling

C
o

m
p

u
te

 p
o

w
e

r 
to

 t
ra

in
 m

o
d

e
l



Modern Deep Learning (without Privacy)

1960 1970 1980 1990 2000 2010 2020

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

Pe
n

ta
fl

o
p

s/
s-

d
ay

s 
(≈

1
0
2
0

fl
o

p
s)

Perceptron

RNN (for speech)

Deep belief networks

LeNet

AlexNet

VGG

ResNets

Neural machine translation

AlphaZero

NETtalk

Moore’s Law Scaling “Modern” Era

Figure adapted from OpenAI blog post

Pre-2012: Training primarily on CPU

2012-2014: Small number (1-8) of GPUs

2014-2016: Large number (10-100) of GPUs

2016-today: Custom hardware (e.g., TPUs)

C
o

m
p

u
te

 p
o

w
e

r 
to

 t
ra

in
 m

o
d

e
l



CryptGPU: Private ML on the GPU

First cryptographic 
framework where all

computations 
performed on the GPU

[TKTW21]

Supporting Cryptography on the GPU:

CUDA kernels for linear algebra operate on floating-point
types while cryptographic protocols operate on discrete data 
types (e.g., finite fields)

Cryptographic protocols designed for general-purpose 
computing architectures

New abstractions and protocols to embed cryptographic 
operations onto the GPU

This Work:



CryptGPU: Private ML on the GPU

First cryptographic 
framework where all

computations 
performed on the GPU

Supporting Cryptography on the GPU:

CUDA kernels for linear algebra operate on floating-point
types while cryptographic protocols operate on discrete data 
types (e.g., finite fields)

Cryptographic protocols designed for general-purpose 
computing architectures

New abstractions and protocols to embed cryptographic 
operations onto the GPU

This Work:

New protocols to take better advantage of GPU acceleration

Motivates the study of
“GPU-friendly” cryptography

[TKTW21]



100

101

102

CryptGPU: Private ML on the GPU

103

104

105

106

Tr
ai

n
in

g 
Ti

m
e 

(m
in

u
te

s)

No Privacy With Privacy

CPU GPU

[Assuming 90 epochs over dataset]

44× speedup

37× speedup

Cost of privacy:
26× (CPU)
1100× (GPU)

Subset of ImageNet [RDSKS+15]

200 classes, 100,000 examples

For private training, largest dataset 
to date is Tiny ImageNet [LKJ17]

Training the AlexNet model on Tiny ImageNet

[TKTW21]



100

101

102

Towards an AlexNet Moment for Private ML

103

104

105

106

Tr
ai

n
in

g 
Ti

m
e 

(m
in

u
te

s)

No Privacy With Privacy

CPU GPU

44× speedup

Cost of privacy:
26× (CPU)
1100× (GPU)

Feasibility result: Possible to run 
cryptographic protocols entirely 
on the GPU

More improvements possible if 
we tailor protocol design to GPU 
architecture
• Specialized CUDA kernels for 

cryptographic operations
• New embeddings for discrete 

cryptographic structures

Can we take advantage of even 
more specialized hardware 

(FPGAs, TPUs, etc.)?

37× speedup

Training the AlexNet model on Tiny ImageNet

[TKTW21]



Computing on Private Data 

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

Aggregate statistic
𝑦 ← 𝑓 𝑥1, … , 𝑥5

Cryptographic tools: hide the input 𝑥𝑖
from the computing party

Complementary goals as differential privacy
(and oftentimes, can be combined)

Modern cryptographic tools enable 
computations on private data

Thank you!


