
Exotic Lattice Assumptions and
How to Tame Them

David Wu

[Images are AI-generated]

Lattice Problems in Cryptography

𝑨 𝟎

Short integer solutions (SIS): Given 𝑨 ← ℤ𝑞
𝑛×𝑚, find 𝒙 such that 𝑨𝒙 = 𝟎

𝒙

𝑛

𝑚 = 𝑛 log 𝑞

Yields one-way functions, collision-resistant hash functions, digital signatures

[Ajt96]

Lattice Problems in Cryptography

Short integer solutions (SIS): Given 𝑨 ← ℤ𝑞
𝑛×𝑚, find 𝒙 such that 𝑨𝒙 = 𝟎 [Ajt96]

Learning with errors (LWE): Distinguish 𝑨, 𝒔T𝑨 + 𝒆T from 𝑨, 𝒖T
[Reg05]

𝑨
𝒔T 𝒆T

≈
𝒖T

Lattice Problems in Cryptography

Short integer solutions (SIS): Given 𝑨 ← ℤ𝑞
𝑛×𝑚, find 𝒙 such that 𝑨𝒙 = 𝟎 [Ajt96]

Learning with errors (LWE): Distinguish 𝑨, 𝒔T𝑨 + 𝒆T from 𝑨, 𝒖T
[Reg05]

But… not everything

Broadcast encryption

Witness encryption

Indistinguishability obfuscation

[BV22]

[GGH15, CVW18]

[GGH15, Agr19, CHVW19, AP20, BDGM20a, WW21, GP21, BDGM20b, DQVWW21]

However, many lattice-inspired approaches

[Reg05]

PKE

[GPV08]

IBE

[Gen09, BV11]

FHE

[GVW13, BGG+14]

ABE

[GVW15]

homomorphic
signatures

[WZ17, GVW17]

lockable
obfuscation

traitor
tracing

[GKW18] [PS19]

NIZK

[CJJ21]

SNARGs
for P

Lattice Problems in Cryptography

Short integer solutions (SIS): Given 𝑨 ← ℤ𝑞
𝑛×𝑚, find 𝒙 such that 𝑨𝒙 = 𝟎 [Ajt96]

Learning with errors (LWE): Distinguish 𝑨, 𝒔T𝑨 + 𝒆T from 𝑨, 𝒖T
[Reg05]

But… not everything

Broadcast encryption

However, many lattice-inspired approaches

Witness encryption

Indistinguishability obfuscation

[BV22]

[GGH15, CVW18]

[GGH15, Agr19, CHVW19, AP20, BDGM20a, WW21, GP21, BDGM20b, DQVWW21]

Most schemes did not have a concrete hardness assumption
or were based on a hardness assumption that was
subsequently broken (in the most general setting)

[Reg05]

PKE

[GPV08]

IBE

[Gen09, BV11]

FHE

[GVW13, BGG+14]

ABE

[GVW15]

homomorphic
signatures

[WZ17, GVW17]

lockable
obfuscation

traitor
tracing

[GKW18] [PS19]

NIZK

[CJJ21]

SNARGs
for P

Lattice Problems in Cryptography

But… not everything

Broadcast encryption

However, many lattice-inspired approaches

Witness encryption

Indistinguishability obfuscation

[BV22]

[GGH15, CVW18]

[GGH15, Agr19, CHVW19, AP20, BDGM20a, WW21, GP21, BDGM20b, DQVWW21]

Most schemes did not have a concrete hardness assumption
or were based on a hardness assumption that was
subsequently broken (in the most general setting)

This talk: new lattice assumptions that enable these advanced applications
and moves the field of lattice-based cryptography forward

Hope: over time, will be able to reduce to the standard lattice problems

Very successful in the area of bilinear maps: many new assumptions (e.g.,
composite-order, 𝑞-type, etc.), but can now do most things from 𝑘-Lin

Evasive LWE

𝒔T𝑨 = 𝒔T𝑨 + 𝒆T

(will suppress noise terms for simplicity)

Evasive LWE [Wee22, Tsa22]:

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

𝑨−1 𝑷 is a short (Gaussian) preimage of 𝑷:
namely 𝑨 ⋅ 𝑨−1 𝑷 = 𝑷

Can also restrict the class of samplers
(will discuss more later)

Evasive LWE

𝒔T𝑨 ⋅ 𝑨−1 𝑷 ≈ 𝒔T𝑷

Adversary in the post-condition can always compute

This must look indistinguishable from 𝒖T ⋅ 𝑨−1 𝑷 ≡ uniform (pre-condition)

Heuristic is that 𝒔T𝑨 and 𝑨−1 𝑷 only leaks 𝒔T𝑷 and nothing more

Pre-condition captures “zeroizing” attacks on earlier lattice-based schemes (e.g.,
auxiliary input reveals a short vector 𝒗 where 𝑷𝒗 = 𝟎)

Evasive LWE [Wee22, Tsa22]:

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Evasive LWE

Example 1:

Suppose 𝑷 ← ℤ𝑞
𝑛×𝑚

Pre-condition follows by LWE

Post-condition also follows by LWE

Sample Gaussian 𝑹 ∈ ℤ𝑞
𝑚×ℓ and set 𝑷 = 𝑨𝑹 (statistically close to uniform)

Evasive LWE [Wee22, Tsa22]:

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Evasive LWE

Example 2:

Suppose 𝑷 = 𝑼 ∣ 𝑼 where 𝑼 ∈ ℤ𝑞
𝑛×𝑚

Pre-condition is false

Evasive LWE provides no guarantees (post-condition is also false for
sufficiently-wide 𝑼; 𝑨−1 𝑼 𝑼 yields a trapdoor for 𝑨)

Evasive LWE [Wee22, Tsa22]:

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Evasive LWE

Evasive LWE [Wee22, Tsa22]:

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Public-coin evasive LWE: aux is the random coins to Samp

Private-coin evasive LWE: secret randomness used in Samp

Many different variants (e.g., whether 𝑨, 𝑷 are available to the distinguisher)
• See [BÜW24] for a systematic treatment

Applications of Evasive LWE

Public-coin evasive LWE

(Optimal) broadcast encryption [Wee22]

Multi-authority ABE [WWW22, CLW24]

ABE for unbounded-depth circuits [HLL23]

ABE for DFA and log-space Turing machines [HLL24]

Private-coin evasive LWE
Witness encryption [Tsa22, VWW22]

Multi-input ABE [ARYY23]

Witness PRFs (and designated-verifier SNARGs) for UP [MPV24]

ABE for Turing machines [AKY24]

Universal computational extractors [CM24]

Pseudorandom obfuscation, succinct witness encryption [BDJMMPV24]

Registered ABE for circuits [ZZCGQ25]

Different schemes have somewhat
different formulations of the

assumption, but similar principles

Cryptanalysis of Evasive LWE

Public-coin evasive LWE

No counter-examples to date (for the standard version where 𝑨, 𝑷 are public)

Private-coin evasive LWE
Obfuscation-based counter-example [Wee22, VWW23, BÜW24]

aux contains an obfuscated program with a trapdoor for 𝑷 that is used to distinguish 𝒔T𝑨, 𝑨−1 𝑷

from random, 𝑨−1 𝑷

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Cryptanalysis of Evasive LWE

Public-coin evasive LWE

Private-coin evasive LWE
Obfuscation-based counter-example [Wee22, VWW23, BÜW24]:

Explicit counter-examples to several families of evasive LWE [BÜW24]

No counter-examples to date (for the standard version where 𝑨, 𝑷 are public)

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Gives distributions where pre-condition holds under LWE, but post-condition is false (no auxiliary input!)

Cryptanalysis of Evasive LWE

Public-coin evasive LWE

Private-coin evasive LWE

No counter-examples to date (for the standard version where 𝑨, 𝑷 are public)

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Obfuscation-based counter-example [Wee22, VWW23, BÜW24]:

Explicit counter-examples to several families of evasive LWE [BÜW24]

Gives distributions where pre-condition holds under LWE, but post-condition is false (no auxiliary input!)

Suppose 𝑷 is not given out in pre-condition

Let 𝑷 = 𝑷1 𝑷2 where 𝑷2 = 𝒖T

𝑹
 where 𝑷1𝒖 = 𝟎, 𝒖 is

short, and 𝑷1, 𝑹 uniform

Pre-condition holds under LWE (when 𝑷 is hidden)

Post-condition is false:
• Recode 𝒔T𝑨 to 𝒔T𝑷1

• Use 𝑨, 𝑨−1 𝑷 to obtain 𝒖
• Check if 𝒔𝑇𝑷1𝒖 ≈ 0

[BÜW24] counter-example

Cryptanalysis of Evasive LWE

Public-coin evasive LWE

Private-coin evasive LWE

No counter-examples to date (for the standard version where 𝑨, 𝑷 are public)

Counter-examples apply to original formulation of evasive LWE families from [Tsa22, VWW22, ARYY23], but
assumptions can be patched (and security proofs recovered)

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Obfuscation-based counter-example [Wee22, VWW23, BÜW24]:

Explicit counter-examples to several families of evasive LWE [BÜW24]

Gives distributions where pre-condition holds under LWE, but post-condition is false (no auxiliary input!)

Obfuscation-based counter-example [Wee22, VWW23, BÜW24]:

Explicit counter-examples to several families of evasive LWE [BÜW24]

Implies pseudorandom obfuscation for all PRFs (impossible object) [BDJMMPV24]

Cryptanalysis of Evasive LWE

Public-coin evasive LWE

Private-coin evasive LWE

No counter-examples to date (for the standard version where 𝑨, 𝑷 are public)

Useful heuristic, but tread carefully!

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Beyond Evasive LWE

Evasive LWE assumption is non-falsifiable (challenging for cryptanalysis)

Specific assumption (i.e., distribution of samplers) is scheme-dependent (i.e., instance-
dependent)

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Better: identify a single easy-to-state, falsifiable assumption that suffices for
applications

Even better: get these applications from plain LWE

[today]

Overreliance on post-condition leads to “super-selective” security for constructions

[not today…]

Beyond Evasive LWE

Common approach:

LWE (or SIS) is hard given some hint
(e.g., trapdoor for a related matrix, short preimages of specific targets)

Examples:
• 𝑘-𝑅-ISIS [ACLMT22]
• twin 𝑘-R-ISIS [BCFL23]
• BASIS (basis augmented SIS) [WW23]
• PRISIS [FN23]

Constructions of functional
commitments and succinct non-

interactive arguments (SNARGs) for NP

“SIS with Hints Zoo” (maintained by Martin Albrecht): https://malb.io/sis-with-hints.html

This talk: ℓ-succinct LWE [Wee24]; terms in the assumption have the “least” structure

Implies succinct ABE [Wee24], functional commitments [WW23], distributed broadcast
encryption [CW24], registered ABE [CHW25]

https://malb.io/sis-with-hints.html

Succinct LWE

ℓ-Succinct LWE [Wee24]:

LWE is hard with respect to 𝑨 given a trapdoor 𝑻 for a related matrix 𝑫ℓ

𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

𝑻 =
𝑮

⋱
𝑮

𝑫ℓ
𝑮 = 𝑰𝑛 ⊗ 1,2, … , 2 log 𝑞 −1

𝑨 ← ℤ𝑞
𝑛×𝑚

𝑾𝑖 ← ℤ𝑞
𝑛×𝑚

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝑾𝑖 ← ℤ𝑞

𝑛×𝑚, 𝒔 ← ℤ𝑞
𝑛, 𝒆 ← 𝜒𝑚, 𝒖 ← ℤ𝑞

𝑚

𝑨, 𝒔T𝑨 + 𝒆T ≈ 𝑨, 𝒖T given 𝑾1, … , 𝑾ℓ, 𝑻

Falsifiable!

Succinct LWE

ℓ-Succinct LWE [Wee24]:

LWE is hard with respect to 𝑨 given a trapdoor 𝑻 for a related matrix 𝑫ℓ

𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

𝑻 =
𝑮

⋱
𝑮

𝑫ℓ
𝑮 = 𝑰𝑛 ⊗ 1,2, … , 2 log 𝑞 −1

𝑨 ← ℤ𝑞
𝑛×𝑚

𝑾𝑖 ← ℤ𝑞
𝑛×𝑚

Another view of the trapdoor:

LWE is hard with respect to 𝑨 given many samples of the form

𝒓𝑗 ← 𝜒𝑚, 𝑨−1 𝑾1𝒓𝑗 , … , 𝑨−1 𝑾ℓ𝒓𝑗

Succinct LWE

ℓ-Succinct LWE [Wee24]:

LWE is hard with respect to 𝑨 given a trapdoor 𝑻 for a related matrix 𝑫ℓ

𝐴

⋱

𝐴

𝑊1

⋮

𝑊ℓ

𝑫ℓ =

Two axis for hardness:

ℓ = 1

LWE (when width 𝑾 ≥
𝑂 𝑛 log 𝑞)

number of blocks ℓ

Open! problem should get easier

Baby step: poly ℓ speed-up over solving LWE

Succinct LWE

ℓ-Succinct LWE [Wee24]:

LWE is hard with respect to 𝑨 given a trapdoor 𝑻 for a related matrix 𝑫ℓ

𝐴

⋱

𝐴

𝑊1

⋮

𝑊ℓ

𝑫ℓ =

Two axis for hardness:

0

broken

width of 𝑾

Open!

𝑂 1 𝑂 ℓ𝑛 log 𝑞

LWE

Succinct LWE

ℓ-Succinct LWE [Wee24]:

𝑨, 𝒔T𝑨 + 𝒆T ≈ 𝑨, 𝒖T given 𝑫ℓ = 𝑰ℓ ⊗ 𝑨 | 𝑾 and trapdoor for 𝑫ℓ

Special cases where it is implied by LWE:
• ℓ = 1

• if 𝑾 is very wide (i.e., if 𝑾 ∈ ℤ𝑞
ℓ𝑛×ℓ𝑚)

Applications require large ℓ and narrow 𝑾 (e.g., 𝑾 ∈ ℤ𝑞
ℓ𝑛×𝑚)

Two types of applications (so far) using the trapdoor:
• Compression: functional commitments [WW23], succinct ABE [Wee24]

• Distributed key-generation: distributed broadcast encryption [CW24], registered ABE [CHW25]

Homomorphic Computation using Lattices

Encodes a vector 𝒙 ∈ 0,1 ℓ with respect to matrix 𝑩 = 𝑩1 ∣ ⋯ ∣ 𝑩ℓ ∈ ℤ𝑞
𝑛×ℓ𝑚

𝑩 − 𝒙T ⊗ 𝑮𝑩1 − 𝑥1𝑮 𝑩2 − 𝑥2𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮

Given any function 𝑓: 0,1 ℓ → 0,1 , there exists a short matrix 𝑯𝑩,𝑓,𝒙 where

𝑩 − 𝒙T ⊗ 𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝑥 ⋅ 𝑮

encoding of 𝒙 with respect to 𝑩 encoding of 𝑓(𝒙) with respect to 𝑩𝑓

Given 𝑩 and 𝑓, can efficiently compute the matrix 𝑩𝑓

[GSW13, BGGHNSVV14]

Homomorphic Commitments
[GVW15]

Goal: commit to 𝒙 ∈ 0,1 ℓ and open to 𝑦 = 𝑓 𝒙 ∈ 0,1

Evaluation binding: cannot open a commitment to both 0 and 1 with respect
to the same function 𝑓

public parameters: 𝑨 ∈ ℤ𝑞
𝑛×𝑚

commitment: 𝑩 = 𝑨𝑹 + 𝒙T ⊗ 𝑮 where 𝑹 ← 0,1 𝑚×ℓ𝑚

opening to function 𝑓: 𝑹𝑓 = 𝑹 ⋅ 𝑯𝑩,𝑓,𝒙 ∈ ℤ𝑞
𝑛×𝑚

𝑩 − 𝒙T ⊗ 𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

verification: check 𝑹𝑓 is short and 𝑨𝑹𝑓 = 𝑩𝑓 − 𝑦 ⋅ 𝑮 ∈ ℤ𝑞
𝑛×𝑚

Homomorphic Commitments
[GVW15]

Goal: commit to 𝒙 ∈ 0,1 ℓ and open to 𝑦 = 𝑓 𝒙

Evaluation binding: cannot open a commitment 𝑪 to different values 𝑦 ≠ 𝑦′
with respect to the same function 𝑓

Correctness:

Security: Openings to 0 and 1 reveals trapdoor for 𝑨

𝑩 − 𝒙T ⊗ 𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

public parameters: 𝑨 ∈ ℤ𝑞
𝑛×𝑚

commitment: 𝑩 = 𝑨𝑹 + 𝒙T ⊗ 𝑮 where 𝑹 ← 0,1 𝑚×ℓ𝑚

opening to function 𝑓: 𝑹𝑓 = 𝑹 ⋅ 𝑯𝑩,𝑓,𝒙 ∈ ℤ𝑞
𝑛×𝑚

verification: check 𝑹𝑓 is short and 𝑨𝑹𝑓 = 𝑩𝑓 − 𝑦 ⋅ 𝑮 ∈ ℤ𝑞
𝑛×𝑚

𝑨𝑹𝑓 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮= 𝑨𝑹 ⋅ 𝑯𝑩,𝑓,𝑥 = 𝑩 − 𝒙T ⊗ 𝑮 ⋅ 𝑯𝑩,𝑓,𝒙

Compressing using Succinct LWE
[WW23, Wee24]

Succinct LWE trapdoor can be used to compress 𝑩 = 𝑨𝑹 + 𝒙T ⊗ 𝑮

𝑰 ⊗ 𝑨 𝑾 ⋅ 𝑻 =
𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

𝑻1

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝒙T ⊗ 𝑮 = 𝒙T ⊗ 𝑰 𝑰 ⊗ 𝑮 = 𝒙T ⊗ 𝑰 𝑰 ⊗ 𝑨 𝑾 ⋅ 𝑻

= 𝒙T ⊗ 𝑰 𝑰 ⊗ 𝑨 𝑾 ⋅
𝑻
𝑻

= 𝑨 𝑰 ⊗ 𝒙T 𝑻 + 𝒙T ⊗ 𝑰 𝑾𝑻

Compressing using Succinct LWE
[WW23, Wee24]

Succinct LWE trapdoor can be used to compress 𝑩 = 𝑨𝑹 + 𝒙T ⊗ 𝑮

𝑰 ⊗ 𝑨 𝑾 ⋅ 𝑻 =
𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

𝑻1

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝒙T ⊗ 𝑮 = 𝑨 𝑰 ⊗ 𝒙T 𝑻 + 𝒙T ⊗ 𝑰 𝑾𝑻

= 𝑨 ෍

𝑖∈ ℓ

𝑥𝑖𝑻𝐢 + ෍

𝑖∈ ℓ

𝑥𝑖𝑾𝒊 ⋅ 𝑻

𝑹 ∈ ℤ𝑞
𝑚×ℓ𝑚 𝑪 ∈ ℤ𝑞

𝑛×𝑚 Observe: 𝑪𝑻 = −𝑨𝑹 + 𝒙T ⊗ 𝑮

𝑪 is a succinct commitment to 𝒙

Same technique applies to [BGGHNSVV14] ABE scheme: gives ABE
with succinct ciphertexts (and broadcast encryption)

Distributed Key Generation

Instead of giving out trapdoor for 𝑨 (insecure), give out a trapdoor for a matrix
related to 𝑨 (which suffices for correctness)

Including a trapdoor in the public parameters also useful for distributed setup

Enables applications to constructing trustless cryptographic primitives (e.g.,
distributed broadcast encryption and registered ABE)

Broadcast Encryption

sk1 sk2 sk4 sk5 sk6sk3

[FN93]

message 𝑚

𝑆 = 1,3,6

Ciphertext specifies a
set of users

Broadcast Encryption

sk1 sk6sk3

[FN93]

message 𝑚

𝑆 = 1,3,6

Ciphertext specifies a
set of users

Functionality: Users in the set can decrypt

Broadcast Encryption

sk1 sk6sk3

[FN93]

message 𝑚

𝑆 = 1,3,6

Ciphertext specifies a
set of users

Functionality: Users in the set can decrypt

Security: Users outside the set
learn nothing about message
(even if they collude)

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Broadcast Encryption

sk1 sk6sk3

[FN93]

message 𝑚

𝑆 = 1,3,6

Ciphertext specifies a
set of users

Where do the
secret keys
come from?

Functionality: Users in the set can decrypt

Security: Users outside the set
learn nothing about message
(even if they collude)

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Note: decryption requires
knowledge of the set 𝑆

Broadcast Encryption

sk1 sk2 sk4 sk5 sk6sk3

[FN93]

master secret key

Central trusted
authority generates keys

What if the key issuer is
compromised?

Built-in key escrow

Central point of failure

Distributed Broadcast Encryption

public-key directory

sk1

pk1

Users generate public/private
keys independently (as in

public-key encryption)

Broadcast encryption without a central authority

(1, pk1)

[BZ14]

Distributed Broadcast Encryption

public-key directory

(1, pk1)

sk2

pk2

Users generate public/private
keys independently (as in

public-key encryption)

Broadcast encryption without a central authority

(2, pk2)

[BZ14]

Distributed Broadcast Encryption

Broadcast encryption without a central authority

public-key directory

(1, pk1)

2, pk2

(3, pk3)

(4, pk4)

(5, pk5)

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚

public
parameters

Can encrypt a message 𝑚 to any set of public keys

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Any secret key associated with broadcast set can decrypt

[BZ14]

Distributed Broadcast Encryption

public-key directory

Security: Users outside the set learn nothing about
message (even if they collude)

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚(1, pk1)

2, pk2

(3, pk3)

(4, pk4)

(5, pk5)

Broadcast encryption without a central authority

[BZ14]

Starting Point: Centralized Broadcast Encryption

We take a more direct approach (similar to earlier pairing-based approaches)

𝑼1, 𝒓1

𝑼2, 𝒓2

𝑼3, 𝒓3

Each user associated with public matrix
𝑼𝑖 ∈ ℤ𝑞

𝑛×𝑚 and vector 𝒓𝑖 ∈ ℤ𝑞
𝑚

Public parameters: 𝑨, 𝑩, 𝒑 where 𝑨, 𝑩 ∈ ℤ𝑞
𝑛×𝑚 and 𝒑 ∈ ℤ𝑞

𝑛

To encrypt a bit 𝑏 ∈ 0,1 to a set 𝑆 ⊆ ℓ :

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑖∈𝑆

𝑼𝑖

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉ Noise terms not shown

[CW24]

Starting Point: Centralized Broadcast Encryption

Public parameters: 𝑨, 𝑩, 𝒑 and 𝑼1, 𝒓1 , … , 𝑼ℓ, 𝒓ℓ

Ciphertext encrypting a bit 𝑏 ∈ 0,1 to the set 𝑆 ⊆ ℓ :

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑼𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉

Goal: user 𝑖 ∈ 𝑆 should be able to recover 𝜇

multiply by 𝒓𝑖 𝒄2
T𝒓𝑖 ≈ 𝒔T 𝑩𝒓𝑖 + ෍

𝑗∈𝑆

𝑼𝑗𝒓𝑖

This requires 𝒓𝑖 be short

Secret key for user 𝒊: short vector that recodes from 𝑨 to 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖

sk𝑖 ← 𝑨−1 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖 sk𝑖 is a (short) preimage of 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖

multiply by sk𝑖
𝒄1

Tsk𝑖 ≈ 𝒔T 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖

𝒄1
Tsk𝑖 − 𝒄2

T𝒓𝑖 ≈ 𝒔T𝒑 − ෍

𝑗∈𝑆∖ 𝑖

𝒔T𝑼𝑗𝒓𝑖

[CW24]

Starting Point: Centralized Broadcast Encryption

Public parameters: 𝑨, 𝑩, 𝒑 and 𝑼1, 𝒓1 , … , 𝑼ℓ, 𝒓ℓ

Ciphertext encrypting a bit 𝑏 ∈ 0,1 to the set 𝑆 ⊆ ℓ :

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑼𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉

Goal: user 𝑖 ∈ 𝑆 should be able to recover 𝜇

multiply by 𝒓𝑖 𝒄2
T𝒓𝑖 ≈ 𝒔T 𝑩𝒓𝑖 + ෍

𝑗∈𝑆

𝑼𝑗𝒓𝑖

This requires 𝒓𝑖 be short

Secret key for user 𝒊: short vector that recodes from 𝑨 to 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖

sk𝑖 ← 𝑨−1 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖 sk𝑖 is a (short) preimage of 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖

multiply by sk𝑖
𝒄1

Tsk𝑖 ≈ 𝒔T 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖

𝒄1
Tsk𝑖 − 𝒄2

T𝒓𝑖 ≈ 𝒔T𝒑 − ෍

𝑗∈𝑆∖ 𝑖

𝒔T𝑼𝑗𝒓𝑖

[CW24]

Need a way to remove the cross terms 𝑼𝑗𝒓𝑖

Public parameters: 𝑨, 𝑩, 𝒑 and 𝑼1, 𝒓1 , … , 𝑼ℓ, 𝒓ℓ and 𝑨−1 𝑼𝑖𝒓𝑗

Starting Point: Centralized Broadcast Encryption

Ciphertext encrypting a bit 𝑏 ∈ 0,1 to the set 𝑆 ⊆ ℓ :

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑼𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉

multiply by 𝒓𝑖 𝒄2
T𝒓𝑖 ≈ 𝒔T 𝑩𝒓𝑖 + ෍

𝑗∈𝑆

𝑼𝑗𝒓𝑖

multiply by sk𝑖
𝒄1

Tsk𝑖 ≈ 𝒔T 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖

Decryption:

𝒄1
Tsk𝑖 + 𝒄1

T ෍

𝑗∈𝑆∖ 𝑖

𝑨−1 𝑼𝑗𝒓𝑖 − 𝒄2
T𝒓𝑖 ≈ 𝒔T𝒑𝒄1

Tsk𝑖 − 𝒄2
T𝒓𝑖 ≈ 𝒔T𝒑 − ෍

𝑗∈𝑆∖ 𝑖

𝒔T𝑼𝑗𝒓𝑖

Suffices to recover 𝜇 from 𝑐3

[CW24]

Starting Point: Centralized Broadcast Encryption

Public parameters: 𝑨, 𝑩, 𝒑 and 𝑼1, 𝒓1 , … , 𝑼ℓ, 𝒓ℓ and 𝑨−1 𝑼𝑖𝒓𝑗

Ciphertext encrypting a bit 𝑏 ∈ 0,1 to the set 𝑆 ⊆ ℓ :

𝒄1
T ≈ 𝒔T𝑨

𝒄2
T ≈ 𝒔T 𝑩 + ෍

𝑗∈𝑆

𝑼𝑗

𝑐3 ≈ 𝒔T𝒑 + 𝜇 ⋅ ⌊𝑞/2⌉

multiply by 𝒓𝑖 𝒄2
T𝒓𝑖 ≈ 𝒔T 𝑩𝒓𝑖 + ෍

𝑗∈𝑆

𝑼𝑗𝒓𝑖

multiply by sk𝑖
𝒄1

Tsk𝑖 ≈ 𝒔T 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖

This is a centralized broadcast encryption scheme

Sampling cross-terms 𝑨−1 𝑼𝑖𝒓𝑗 and secret keys sk𝑖 ← 𝑨−1 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖 require

knowledge of the trapdoor for 𝑨

[CW24]

Distributing the Setup

𝑼1

𝑼2

𝑼3

Challenge: No one can know a trapdoor for 𝑨

Approach: Each user will choose their own 𝑼𝑖, everything else will be in the public parameters

Public parameters: 𝑨, 𝑩, 𝒑, 𝒓1, … , 𝒓ℓ

For correctness, each user also needs to generate a secret key and cross-terms

∀𝑖 ≠ 𝑗 ∶ 𝒚𝑖,𝑗 = 𝑨−1 𝑼𝑖𝒓𝑗Cross term:

𝒚𝑖,𝑖 = 𝑨−1 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖Secret key:

But user 𝑖 does not have a trapdoor for 𝑨…

Consider first a simpler problem:

Sample 𝑼𝑖 together with short 𝒚𝑖𝑗 such that for all 𝑗 ∈ ℓ : 𝑨𝒚𝑖𝑗 = 𝑼𝑖𝒓𝑗

[CW24]

Distributing the Setup

𝒁1 ← ℤ𝑞
𝑛×𝑚

𝒁𝑘 ← ℤ𝑞
𝑛×𝑚

⋮ 𝒗𝑡𝑗 ← 𝑨−1 𝒁𝑡𝒓𝑗

∀𝑡 ∈ 𝑘 , 𝑗 ∈ ℓ :

Public parameters

𝑨 ← ℤ𝑞
𝑛×𝑚 𝑩 ← ℤ𝑞

𝑛×𝑚 𝒑
𝒓1 𝒓ℓ⋯

Sample 𝑑 ← 0,1 𝑘

𝑼𝑖 = ෍

𝑡∈ 𝑘

𝑑𝑡𝒁𝑡

Then 𝑨 ⋅ σ𝑡∈ 𝑘 𝑑𝑡𝒗𝑡𝑗 = σ𝑡∈ 𝑘 𝑑𝑡𝒁𝑡𝒓𝑗 = 𝑼𝑖𝒓𝑗

𝒚𝑖𝑗

Public parameters contain “pre-sampled”
public keys, and a user key is a random
combination of the pre-sampled keys

Sample 𝑼𝑖 together with short 𝒚𝑖𝑗 such that for all 𝑗 ∈ ℓ : 𝑨𝒚𝑖𝑗 = 𝑼𝑖𝒓𝑗

[CW24]

A More General View

Approach can be described more compactly as sampling a solution to the linear system

𝑨 −𝒁1𝒓1 ⋯ −𝒁𝑘𝒓1

⋱ ⋮ ⋱ ⋮
𝑨 −𝒁1𝒓ℓ ⋯ −𝒁𝑘𝒓ℓ

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝑑1

⋮
𝑑𝑘

𝟎
⋮
𝟎

=

Then, for all 𝑗 ∈ ℓ :

Sample 𝑼𝑖 together with short 𝒚𝑖𝑗 such that for all 𝑗 ∈ ℓ : 𝑨𝒚𝑖𝑗 = 𝑼𝑖𝒓𝑗

𝑨𝒚𝑖𝑗 − ෍

𝑡∈ 𝑘

𝑑𝑡𝒁𝑡𝒓𝑗 = 0 ⟹ 𝑨𝒚𝑖𝑗 = 𝑼𝑖𝒓𝑗 𝑼𝑖 = ෍

𝑡∈ 𝑘

𝑑𝑡𝒁𝑡

[CW24]

A More General View

Approach can be described more compactly as sampling a solution to the linear system

𝑨 −𝒁1𝒓1 ⋯ −𝒁𝑘𝒓1

⋱ ⋮ ⋱ ⋮
𝑨 −𝒁1𝒓ℓ ⋯ −𝒁𝑘𝒓ℓ

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝑑1

⋮
𝑑𝑘

𝟎
⋮
𝟎

=

Sample 𝑼𝑖 together with short 𝒚𝑖𝑗 such that for all 𝑗 ∈ ℓ : 𝑨𝒚𝑖𝑗 = 𝑼𝑖𝒓𝑗

More compactly: 𝒁 = 𝒁1 𝒁2 ⋯ | 𝒁𝑘

𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝒅

𝟎=
𝑨𝒚𝑖𝑗 = 𝒁 𝑰 ⊗ 𝒓𝑗 𝒅 = 𝒁 𝒅 ⊗ 𝑰 𝒓𝑗

𝑼𝑖 = 𝒁 𝒅 ⊗ 𝑰

[CW24]

Distributing the Setup

𝑼1

𝑼2

𝑼3

Challenge: No one can know a trapdoor for 𝑨

Approach: Each user will choose their own 𝑼𝑖, everything else will be in the public parameters

Public parameters: 𝑨, 𝑩, 𝒑, 𝒓1, … , 𝒓ℓ, 𝑽ℓ, trapdoor for 𝑽ℓ

For correctness, each user also needs to
generate a secret key and cross-terms

∀𝑖 ≠ 𝑗 ∶ 𝑨𝒚𝑖,𝑗 = 𝑼𝑖𝒓𝑗

𝑨𝒚𝑖,𝑖 = 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖

𝑽ℓ =
𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

𝒚𝑖1

⋮
𝒚𝑖ℓ

𝒅

=

𝟎
⋮

𝒑 + 𝑩𝒓𝑖

⋮
𝟎

row 𝑖

Set 𝑼𝑖 = 𝒁 𝒅 ⊗ 𝑰

[CW24]

Distributing the Setup

𝑼1

𝑼2

𝑼3

Challenge: No one can know a trapdoor for 𝑨

Approach: Each user will choose their own 𝑼𝑖, everything else will be in the public parameters

Public parameters: 𝑨, 𝑩, 𝒑, 𝒓1, … , 𝒓ℓ, 𝑽ℓ, trapdoor for 𝑽ℓ

For correctness, each user also needs to
generate a secret key and cross-terms

∀𝑖 ≠ 𝑗 ∶ 𝑨𝒚𝑖,𝑗 = 𝑼𝑖𝒓𝑗

𝑨𝒚𝑖,𝑖 = 𝒑 + 𝑩𝒓𝑖 + 𝑼𝑖𝒓𝑖

𝑽ℓ =
𝑨 −𝒁 𝑰 ⊗ 𝒓1

⋱ ⋮
𝑨 −𝒁 𝑰 ⊗ 𝒓ℓ

[CW24]

Security relies on hardness of LWE with respect to 𝑨 given trapdoor for 𝑽ℓ

Trapdoor for 𝑽ℓ can be obtained by a succinct LWE trapdoor

Succinct LWE trapdoor: preimages of the form 𝑨−1 𝑾𝑖𝒓𝑗

This trapdoor: preimages of the form 𝑨−1 𝒁 𝑰 ⊗ 𝒓𝑖 𝒅𝑗 = 𝑨−1 𝑼𝑗𝒓𝑖

Distributed Broadcast Encryption

public-key directory

(1, pk1)

2, pk2

(3, pk3)

(4, pk4)

(5, pk5)

Distributed broadcast encryption from ℓ-succinct LWE

Public parameter size: ℓ2 ⋅ poly 𝜆, log ℓ

User public key size: ℓ ⋅ poly 𝜆, log ℓ

Ciphertext size: poly 𝜆, log ℓ

Techniques also give registered ABE for general policies
in the random oracle model (also from succinct LWE)
[CHW25]

Broadcast encryption without a
central authority

[CW24]

Summary

More broadly: having a public trapdoor for a structured matrix is very useful

Trapdoor for 𝑫ℓ =
𝑨1 𝑮

⋱ ⋮
𝑨ℓ 𝑮

Vector commitments [WWW24]

Dual-mode NIZK [WWW24]

Statistical ZAP arguments [BLNWW24]

security based on standard SIS/LWE

Trapdoor for 𝑫ℓ =
𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

Very useful for compression

ABE with succinct ciphertexts [Wee24]
Functional commitments [WW23]

Distributed broadcast encryption [CW24]

(Succinct) registered ABE [CHW24]

security based on succinct LWE

New Assumptions in Lattice-Based Cryptography

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Evasive LWE:

New Assumptions in Lattice-Based Cryptography

Powerful framework (has enabled many applications)

Number of counter-examples for private-coin version

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Evasive LWE:

New Assumptions in Lattice-Based Cryptography

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Evasive LWE:

𝑨, 𝒔T𝑨 + 𝒆T ≈ 𝑨, 𝒖T given 𝑫ℓ = 𝑰ℓ ⊗ 𝑨 | 𝑾 and trapdoor for 𝑫ℓ

Succinct LWE:

Falsifiable, instance-independent, still versatile

New Assumptions in Lattice-Based Cryptography

𝒔T 𝑨 𝑷] ≈ random given 𝑨, 𝑷, auxif

𝒔T𝑨 ≈ random given 𝑨, 𝑷, 𝑨−1 𝑷 , auxthen

For all efficient samplers Samp and taking 𝑷, aux ← Samp 1𝜆 , 𝑨 ← ℤ𝑞
𝑛×𝑚, 𝒔 ← ℤ𝑞

𝑛

Evasive LWE:

𝑨, 𝒔T𝑨 + 𝒆T ≈ 𝑨, 𝒖T given 𝑫ℓ = 𝑰ℓ ⊗ 𝑨 | 𝑾 and trapdoor for 𝑫ℓ

Succinct LWE:

Lots more work to be done!
Understanding hardness (e.g., worst-case/average-case reductions)

Cryptanalysis of the assumption (e.g., how does ℓ or width of 𝑾 affect security)

New applications (e.g., witness encryption)

Simpler assumptions (e.g., do we need a trapdoor) Thanks!

	Slide 1: Exotic Lattice Assumptions and How to Tame Them
	Slide 2: Lattice Problems in Cryptography
	Slide 3: Lattice Problems in Cryptography
	Slide 4: Lattice Problems in Cryptography
	Slide 5: Lattice Problems in Cryptography
	Slide 6: Lattice Problems in Cryptography
	Slide 7: Evasive LWE
	Slide 8: Evasive LWE
	Slide 9: Evasive LWE
	Slide 10: Evasive LWE
	Slide 11: Evasive LWE
	Slide 12: Applications of Evasive LWE
	Slide 13: Cryptanalysis of Evasive LWE
	Slide 14: Cryptanalysis of Evasive LWE
	Slide 15: Cryptanalysis of Evasive LWE
	Slide 16: Cryptanalysis of Evasive LWE
	Slide 17: Cryptanalysis of Evasive LWE
	Slide 18: Beyond Evasive LWE
	Slide 19: Beyond Evasive LWE
	Slide 20: Succinct LWE
	Slide 21: Succinct LWE
	Slide 22: Succinct LWE
	Slide 23: Succinct LWE
	Slide 24: Succinct LWE
	Slide 25: Homomorphic Computation using Lattices
	Slide 26: Homomorphic Commitments
	Slide 27: Homomorphic Commitments
	Slide 28: Compressing using Succinct LWE
	Slide 29: Compressing using Succinct LWE
	Slide 30: Distributed Key Generation
	Slide 31: Broadcast Encryption
	Slide 32: Broadcast Encryption
	Slide 33: Broadcast Encryption
	Slide 34: Broadcast Encryption
	Slide 35: Broadcast Encryption
	Slide 36: Distributed Broadcast Encryption
	Slide 37: Distributed Broadcast Encryption
	Slide 38: Distributed Broadcast Encryption
	Slide 39: Distributed Broadcast Encryption
	Slide 40: Starting Point: Centralized Broadcast Encryption
	Slide 41: Starting Point: Centralized Broadcast Encryption
	Slide 42: Starting Point: Centralized Broadcast Encryption
	Slide 43: Starting Point: Centralized Broadcast Encryption
	Slide 44: Starting Point: Centralized Broadcast Encryption
	Slide 45: Distributing the Setup
	Slide 46: Distributing the Setup
	Slide 47: A More General View
	Slide 48: A More General View
	Slide 49: Distributing the Setup
	Slide 50: Distributing the Setup
	Slide 51: Distributed Broadcast Encryption
	Slide 52: Summary
	Slide 53: New Assumptions in Lattice-Based Cryptography
	Slide 54: New Assumptions in Lattice-Based Cryptography
	Slide 55: New Assumptions in Lattice-Based Cryptography
	Slide 56: New Assumptions in Lattice-Based Cryptography

