Exotic Lattice Assumptions and
How to Tame Them

David Wu

[Images are Al-generated]

Lattice Problems in Cryptography

Short integer solutions (SIS): Given 4 « anm find x such that Ax = [Ajt96]

m=nlogq

Yields one-way functions, collision-resistant hash functions, digital signatures

Lattice Problems in Cryptography

Short integer solutions (SIS): Given 4 « Z"C}X’", find x suchthat Ax = 0 [ajio6]

Learning with errors (LWE): Distinguish (4,sTA + eT) from (4, uT) [Reg05]

+
"N

Lattice Problems in Cryptography

Short integer solutions (SIS): Given 4 « ZZX’”, find x suchthat Ax = 0 [ajio6]

Learning with errors (LWE): Distinguish (A, sTA + eT) from (A, uT) [Reg05]
homomorphic lockable traitor SNARGs
PKE IBE FHE ABE signatures obfuscation tracing NIZK for P
[Reg05] [GPVO08] [Gen09,BV11] [GVW13,BGG*14] [GVW15] [WZ17, GVW17] [GKW18] [PS19] [CJJ21]
But... not everything However, many lattice-inspired approaches

Broadcast encryption [Bv22]
Witness encryption [GGH15, CVW18]

Indistinguishability obfuscation
[GGH15, Agr19, CHVW19, AP20, BDGM20a, WW21, GP21, BDGM20b, DQVWW?21]

Lattice Problems in Cryptography

Short integer solutions (SIS): Given 4 « ZZX’", find x suchthat Ax = 0 [ajio6]

Learning with errors (LWE): Distinguish (A, sTA + eT) from (A, uT) [Reg05]
homomorphic lockable traitor SNARGs
PKE IBE FHE ABE signatures obfuscation tracing NIZK for P
)t 11—+
[Reg05] [GPVO08] [Gen09,BV11] [GVW13, BGG*14] [GVW15] [WZ17, GVW17] [GKW18] [PS19] [Cl)21]
But... not everything However, many lattice-inspired approaches
Broadcast encryption [Bv22] Most schemes did not have a concrete hardness assumption

Witness encryption [GGH15, CVW18] or were based on a hardness assumption that was

Indistinguishability obfuscation subsequently broken (in the most general setting)

[GGH15, Agr19, CHVW19, AP20, BDGM20a, WW21, GP21, BDGM20b, DQVWW?21]

Lattice Problems in Cryptography

This talk: new lattice assumptions that enable these advanced applications
and moves the field of lattice-based cryptography forward

Hope: over time, will be able to reduce to the standard lattice problems

Very successful in the area of bilinear maps: many new assumptions (e.g.,
composite-order, g-type, etc.), but can now do most things from k-Lin

But... not everything However, many lattice-inspired approaches

Broadcast encryption [BV22] Most schemes did not have a concrete hardness assumption

Witness encryption [GGH15, CVW18] or were based on a hardness assumption that was

Indistinguishability obfuscation subsequently broken (in the most general setting)

[GGH15, Agr19, CHVW19, AP20, BDGM20a, WW21, GP21, BDGM20b, DQVWW?21]

Evasive LWE

Evasive LWE [wee22, Tsa22]:

For all efficient samplers Samp and taking (P, aux) « Samp(l’l),A « ZLg*™, s < L

if s'[A | P] = random given A, P, aux

///////////////////

then s'A ~ random given 4, P, A~ 1(P), aux

////////

A~1(P) is a short (Gaussian) preimage of P:

namelyA-A ' (P) =P

////////

Can also restrict the class of samplers

(will suppress noise terms for simplicity) o
(will discuss more later)

Evasive LWE

Evasive LWE [wee22, Tsa22]:

For all efficient samplers Samp and taking (P, aux) « Samp(l’l),A « ZLg"™, s < L7

if s'[A | P] = random given A, P, aux

///////////////////

then s'A ~ random given 4, P, A~ 1(P), aux

////////

Adversary in the post-condition can always compute
sTA -A71(P) =~s'P
This must look indistinguishable from u! - A=1(P) = uniform (pre-condition)

Heuristic is that s A and A~1(P) only leaks sTP and nothing more

Pre-condition captures “zeroizing” attacks on earlier lattice-based schemes (e.g.,
auxiliary input reveals a short vector v where Pv = 0)

Evasive LWE

Evasive LWE [wee22, Tsa22]:

For all efficient samplers Samp and taking (P, aux) « Samp(l’l),A « ZLg"™, s < L7

if s'[A | P] = random given A, P, aux
then s'A ~ random given A, P, A"1(P), aux
Example 1:
Suppose P « Zg™<™

Pre-condition follows by LWE

Post-condition also follows by LWE

Sample Gaussian R € ZZ’X{) and set P = AR (statistically close to uniform)

Evasive LWE

Evasive LWE [wee22, Tsa22]:

For all efficient samplers Samp and taking (P, aux) « Samp(l’l),A « ZLg"™, s < L7

if s'[A | P] = random given A, P, aux

///////////////////

then s'A ~ random given 4, P, A~ 1(P), aux

////////

Example 2:
Suppose P = [U | U] where U € Zg™™
Pre-condition is false

Evasive LWE provides no guarantees (post-condition is also false for
sufficiently-wide U; A=Y ([U | U]) yields a trapdoor for A)

Evasive LWE

Evasive LWE [wee22, Tsa22]:

For all efficient samplers Samp and taking (P, aux) « Samp(l’l),A « ZLg"™, s < L7

if s'[A | P] = random given A, P, aux

///////////////////

then s'A ~ random given 4, P, A~ 1(P), aux

////////

Public-coin evasive LWE: aux is the random coins to Samp
Private-coin evasive LWE: secret randomness used in Samp

Many different variants (e.g., whether A, P are available to the distinguisher)
* See [BUW24] for a systematic treatment

Applications of Evasive LWE

Public-coin evasive LWE _
Different schemes have somewhat

different formulations of the
assumption, but similar principles

(Optimal) broadcast encryption [Wee22]
Multi-authority ABE [Ww'/22, CLW24]

ABE for unbounded-depth circuits [HLL23]

ABE for DFA and log-space Turing machines [HLL24]

Private-coin evasive LWE

Witness encryption [Tsa22, VWW?22]

Multi-input ABE [ARYY23]

Witness PRFs (and designated-verifier SNARGs) for UP [MPV24]

ABE for Turing machines [AKY24]

Universal computational extractors [CM24]

Pseudorandom obfuscation, succinct witness encryption [BDJMMPV24]
Registered ABE for circuits [22CGQ25]

Cryptanalysis of Evasive LWE

For all efficient samplers Samp and taking (P, aux) « Samp(l’l),A « ZLg* ™, s < L7

if sT[A| P] ~ random given A, P, aux

///////////////////

then s'A ~ random given 4, P, A~ 1(P), aux

////////

Public-coin evasive LWE

No counter-examples to date (for the standard version where A, P are public)

Private-coin evasive LWE
Obfuscation-based counter-example [Wee22, vWW23, BUW24]

aux contains an obfuscated program with a trapdoor for P that is used to distinguish (STA,A‘l(P))
from (random, A~1(P))

Cryptanalysis of Evasive LWE

For all efficient samplers Samp and taking (P, aux) « Samp(l’l),A « ZLg* ™, s < L7

if sT[A| P] ~ random given A, P, aux

///////////////////

then s'A ~ random given 4, P, A~ 1(P), aux

////////

Public-coin evasive LWE

No counter-examples to date (for the standard version where A, P are public)

Private-coin evasive LWE

Obfuscation-based counter-example [Wee22, VWW?23, BUW?24]:

Explicit counter-examples to several families of evasive LWE [BUW24]
Gives distributions where pre-condition holds under LWE, but post-condition is false (no auxiliary input!)

Cryptanalysis of Evasive LWE

For all efficient samplers Samp and taking (P, aux) « Samp(ll),A « ZLg* ™, s < L7
if sT[A| P] ~ random given 4, P, aux
then s'A ~ random given 4, P, A~ 1(P), aux
PUinC'COin evasive LWE Suppose P is not given out in pre-condition

T
No counter-examples to date (for the standa| ot p — [p, | P,] where P, = [1;2] e Py = @, s

short, and P4, R uniform

Private-coin evasive LWE

Obfuscation-based counter-example [Wee22,
Post-condition is false:

Explicit counter-examples to several families . Recode sTA to sTP,
Gives distributions where pre-condition holds und « UseA,A"1(P) to obtain u
« Checkif sTP;u ~ 0

Pre-condition holds under LWE (when P is hidden)

[BUW24] counter-example

Cryptanalysis of Evasive LWE

For all efficient samplers Samp and taking (P, aux) « Samp(l’l),A — ngm, S « Lq

if sT[A| P] ~ random given A, P, aux

///////////////////

then s'A ~ random given 4, P, A~ 1(P), aux

////////

Public-coin evasive LWE

No counter-examples to date (for the standard version where A, P are public)

Private-coin evasive LWE

Obfuscation-based counter-example [Wee22, VWW?23, BUW?24]:

Explicit counter-examples to several families of evasive LWE [BUW24]
Gives distributions where pre-condition holds under LWE, but post-condition is false (no auxiliary input!)

Counter-examples apply to original formulation of evasive LWE families from [Tsa22, VWW?22, ARYY23], but
assumptions can be patched (and security proofs recovered)

Cryptanalysis of Evasive LWE

For all efficient samplers Samp and taking (P, aux) « Samp(l’l),A — ngm, S « Lq

if sT[A| P] ~ random given A, P, aux

///////////////////

then s'A ~ random given 4, P, A~ 1(P), aux

////////

Public-coin evasive LWE

No counter-examples to date (for the standard version where A, P are public)

Private-coin evasive LWE

Obfuscation-based counter-example [Wee22, VWW?23, BUW?24]:
Explicit counter-examples to several families of evasive LWE [BUW24]

Implies pseudorandom obfuscation for all PRFs (impossible object) [BDJIMMPV24]
Useful heuristic, but tread carefully!

Beyond Evasive LWE

For all efficient samplers Samp and taking (P, aux) « Samp(ll),A « Lz ™, s < L7

if sT[A| P] ~ random given A, P, aux

\\\\\\\\\\\\\\\\\\\

then sTA ~ random given A, P, A~1(P), aux

\\\\\\\\

Evasive LWE assumption is non-falsifiable (challenging for cryptanalysis)

Specific assumption (i.e., distribution of samplers) is scheme-dependent (i.e., instance-
dependent)

Overreliance on post-condition leads to “super-selective” security for constructions

Better: identify a single easy-to-state, falsifiable assumption that suffices for

applications [today]
Even better: get these applications from plain LWE [not today...]

Beyond Evasive LWE

Common approach:

LWE (or SIS) is hard given some hint
(e.qg., trapdoor for a related matrix, short preimages of specific targets)

Examples:
. k-R-IZIS :ACLMTZZ] Constructions of functional
twin 'E"S_'S . ;BCFL223] commitments and succinct non-
BASIS (basis augmented SIS) ;W 3] interactive arguments (SNARGs) for NP
* PRISIS FN23]

“SIS with Hints Zoo” (maintained by Martin Albrecht): https://malb.io/sis-with-hints.html

This talk: £-succinct LWE [Wee24]; terms in the assumption have the “least” structure

Implies succinct ABE [Wee24], functional commitments [w'\v23], distributed broadcast
encryption [C\24], registered ABE [CH\/25]

https://malb.io/sis-with-hints.html

Succinct LWE

£-Succinct LWE [wee24]:

LWE is hard with respect to A given a trapdoor T for a related matrix D,

A « ngm -A Wl- -G
’ . T = .
W . anm . .
L 2 _ Alw,|l | G
D, G=1,Q[12,..,2M0ea-1]

(A, sTA + eT) = (A, uT) given W, ..., W, T

Falsifiable! ALy W, « L™, s « Lg, e < x", u « Ly

Succinct LWE

£-Succinct LWE [wee24]:

LWE is hard with respect to A given a trapdoor T for a related matrix D,

A « ngm -A Wl- -G
’ . T = .
W . anm . .
L 2 _ Alw,|l | G
D, G=1,Q[12,..,2M0ea-1]

Another view of the trapdoor:

LWE is hard with respect to 4 given many samples of the form
(Tj «— Xm,A_l(erj), ,A_l(Wgrj))

Succinct LWE

£-Succinct LWE [wee24]:

LWE is hard with respect to A given a trapdoor T for a related matrix D,

Two axis for hardness:

LWE (when width(W) >
O(nlogq)) Open! problem should get easier

P =1 Baby step: poly(¥#) speed-up over solving LWE

number of blocks £

Succinct LWE

£-Succinct LWE [wee24]:

LWE is hard with respect to A given a trapdoor T for a related matrix D,

Two axis for hardness:

broken Open! LWE

+

0 0(1) O({nlogq) width of W

Succinct LWE

£-Succinct LWE [wee24]:
(A, sTA+ eT) ~ (A, uT) givenD, = |[I, ® A | W] and trapdoor for D,

Special cases where it is implied by LWE:

e =1

+ if Wis very wide (i.e., if W € Z{™™)

Applications require large € and narrow W (e.g., W € Zflnxm)

Two types of applications (so far) using the trapdoor:
 Compression: functional commitments [W'\v23], succinct ABE [Wee24]
* Distributed key-generation: distributed broadcast encryption [C\/24], registered ABE [CH\/25]

Homomorphic Computation using Lattices

[GSW13, BGGHNSVV14]

Encodes a vector x € {0,1}* with respect to matrix B = [B, | --- | B,] € Z"C”;X*’m

B—x"®a¢G

Given any function f:{0,1}¢ — {0,1}, there exists a short matrix Hpg ; , where
(B—x"®G) Hprr=B;f—f(x) G

encoding of x with respect to B encoding of f(x) with respect to By

Given B and f, can efficiently compute the matrix By

Homomorphic Commitments

[GVW15]
Goal: commit to x € {0,1} and opentoy = f(x) € {0,1}

Evaluation binding: cannot open a commitment to both 0 and 1 with respect
to the same function f

public parameters: AezZg™m

commitment: B = AR + xT ® G where R « {0,1}¢m
opening to function f: R =R-Hp,, € Zg™™

verification: check R¢ isshortand AR = By —y - G € Zg™™

(B—x"®G) Hgsr=B;—f(x)-G

Homomorphic Commitments

[GVW15]

Correctness:
ARf = AR 'HB,f,x — (B—xT ® G) 'HB,f,x = Bf —f(X) - G

Security: Openings to 0 and 1 reveals trapdoor for A

public parameters: AezZg™m

commitment: B = AR + xT ® G where R « {0,1}¢m
opening to function f: R =R-Hp,, € Zg™™

verification: check R¢ isshortand AR = By —y - G € Zg™™

(B—x"®G) Hgsr=B;—f(x)-G

Compressing using Succinct LWE

[WW?23, Wee24]
Succinct LWE trapdoor can be used to compress B = AR+ x' ® G
i IT.1 -
A w,ll! G
[IRQRAIW]-T= : T’£=
AW, T _ G

Q=x"RNURGC =x"QNIRAIW]-T
=(xTQRNIRKRAIW]-

N~

=AIQx)T+ (xT Q@ N)WT

Compressing using Succinct LWE

[WW23, Wee24]

Same technique applies to [BGGHNSVV14] ABE scheme: gives ABE
with succinct ciphertexts (and broadcast encryption)

xX'Q®6 =AIQxN)T+ (xT @)WT

C is a succinct commitmentto x

Observe: CT = AR+ x' ® G

=AZ xiTi_I_ z XiWi’Z
€[] €[]
— —

Distributed Key Generation

Including a trapdoor in the public parameters also useful for distributed setup

Instead of giving out trapdoor for A4 (insecure), give out a trapdoor for a matrix
related to A (which suffices for correctness)

Enables applications to constructing trustless cryptographic primitives (e.g.,
distributed broadcast encryption and registered ABE)

Broadcast Encryption

Ciphertext specifies a

S ={1,3,6} set of users

. g MM

88

Broadcast Encryption

Functionality: Users in the set can decrypt

Ciphertext specifies a

s =136 set of users
- »)

a”j“\\\

- Vs Sso
a”‘ Il NN\
R / N‘s
" , ~~
- ~
f’ / ~~

" 4 S

Broadcast Encryption

Functionality: Users in the set can decrypt

Ciphertext specifies a

Security: Users outside the set
learn nothing about message

(even if they collude) S = {1,3,6) set of users
Efficiency: |ct| = |m| + poly(4, log|S I)’,/";’"\\\
af”” /, NNNNNN
- Vs So

- ,/ S

Broadcast Encryption

Functionality: Users in the set can decrypt

Ciphertext specifies a

Security: Users outside the set
learn nothing about message

(even if they collude) S = {1,3,6) set of users
Efficiency: |ct| = |m| + poly(4, log|S I)’,/",'/“\\\
f”” /, NN\x
/ s
,l Sso
Note: decryption requires % o Ny

knowledge of the set S '
8 . Where do the
o o o O R

sk come from?

Broadcast Encryption

Central trusted
authority generates keys

Built-in key escrow
What if the key issuer is

Central point of failure compromised?

Distributed Broadcast Encryption

Users generate public/private
keys independently (as in

6 y public-key encryption)

Broadcast encryption without a central authority

Distributed Broadcast Encryption

Users generate public/private
keys independently (as in

G y public-key encryption)

Broadcast encryption without a central authority

Distributed Broadcast Encryption

e public-key directory)
A

parameters

Encrypt(pp, {pK;}ies, m) — ct

Can encrypt a message m to any set of public keys

ﬂ (3,pks) Efficiency: |ct| = |m| + poly(4,log|S|)
B “pk) Decrypt(pp, {pPki}ies, sk, ct) - m
ﬂ (5, pke) Any secret key associated with broadcast set can decrypt

C y

Broadcast encryption without a central authority

Distributed Broadcast Encryption

e public-key directory) Encrypt(pp, {pKk;};es,m) — ct
ﬂ (1, pky) Decrypt(pp, {pK;}ics, sk, ct) > m

Security: Users outside the set learn nothing about
message (even if they collude)

B Gk
B ¢k
B Gk

C y

Broadcast encryption without a central authority

Starting Point: Centralized Broadcast Encryption

[CW24]

We take a more direct approach (similar to earlier pairing-based approaches)
8 U, 1, Public parameters: 4, B,p where A, B € Z7"™ and p € Zg

To encrypta bitb € {0,1}toasetS C [£]:

Each user associated with public matrix T

U; € Z’C’;Xm and vector r; € ZZ’t p+u lCI/] Noise terms not shown

Starting Point: Centralized Broadcast Encryption

[CW24]
Public parameters: A, B,p and (Uy,T4), ..., (U, 1) B — e) z Uy,
Ciphertext encrypting a bit b € {0,1} to the set S € [#]: JESNE]
multiply by sk;
ci ~s'A i, cisk; ~ s'(p + Br; + U;r;)

CE ~ st (B + Z Uj> multiply by r; X C'gri ~ ST<

jES
c3 s p+p-lq/2]

Goal: user i € S should be able to recover u

J

Bri + Z Ujrl->
ES

This requires r; be short

Secret key for user i: short vector that recodes fromAtop + Br; + U;r;

Ski «— A_l(p + Brl- + Ul-rl-)

sk; is a (short) preimage of p + Br; + U;1;

Starting Point: Centralized Broadcast Encryption

[CW24]

Public parameters: A, B,p and (Uy,T4), ..., (U, 1) B — e) z U,
Ciphertext encrypting a bit b € {0,1} to the set S € [#]: JESNE]

Need a way to remove the cross terms U;r;

multiply by sk;

ci ~sTA » cisk; ~sT(p+Br; +U;r))
c; ~s' (B T Z Uf) MRV VT, 1y~ ST (B"i + Z ”j"i)
jES JES
C3 = STp +u-1q/2] This requires r; be short

Goal: user i € S should be able to recover u

Secret key for user i: short vector that recodes fromAtop + Br; + U;r;

sk; « A_l(p + Br; + Uiri) sk; is a (short) preimage of p + Br; + U;r;

Starting Point: Centralized Broadcast Encryption

[CW24]

Public parameters: A, B,p and (U{,1), ..., (U, 1,) and A_l(Uirj)

Ciphertext encrypting a bit b € {0,1} to the set S € [#]:
multiply by sk;

ci ~s'A » cisk; ~sT(p+Br; +U;r;)
c; ~s' (B T Z Uf) MRV VT, 1y~ ST (B"i + Z ”j"i)
jES JES

c3~s'p+pu-lq/2]

Decryption: Suffices to recover u from c3

cisk; — 1y ~s'p - z s'U;r; ‘ cisk; + ¢ z AN Ur) —ciry = sTp

JES\{i} JES\{i}

Starting Point: Centralized Broadcast Encryption

[CW24]

Public parameters: A, B,p and (U{,1), ..., (U, 1,) and A_l(Uirj)
Ciphertext encrypting a bit b € {0,1} to the set S € [#]:

multiply by sk;
ci ~s'A — cisk; =s'(p +Br; + U;ry)
c; ~s' (B T Z Uf) MRV VT, 1y~ ST (B"i + Z ”j"i)
jES JES

c3=s' p+p-lq/2]
This is a centralized broadcast encryption scheme

Sampling cross-terms A‘l(Uirj) and secret keys sk; « A™1(p + Br; + U;r;) require
knowledge of the trapdoor for A

Distributing the Setup

Challenge: No one can know a trapdoor for A

Approach: Each user will choose their own U;, everything else will be in the public parameters
Public parameters: A, B, p, 14, ..., Ty

For correctness, each user also needs to generate a secret key and cross-terms
Crossterm: Vi#j:y,; = A‘l(Ul-rj)
Secret key: y;; = A Y(p + Br; + U;ry)

But user i does not have a trapdoor for A...

Consider first a simpler problem:
8 U, Sample U; together with short y;; such that for all j € [£]: Ay;; = U;r;

Distributing the Setup

Sample U; together with short y;; such that forallj € [£]: Ay;; = U;r;

0 m) Sampled < {0,1}*
A < 7™ B « Z7"™
telk]
Then A Lueii eve = Lueqr 4e2e7j = Uity
q] N~ N —
vt € |k],j € [£]: yi;

. 1
: v« A (Ztrj)
_

Public parameters contain “pre-sampled”
public keys, and a user key is a random
combination of the pre-sampled keys

Public parameters/

A More General View

Sample U; together with short y;; such that forallj € [£]: Ay;; = U;r;

Approach can be described more compactly as sampling a solution to the linear system

(Vi1]
-A _erl *ee _Zkrl- : O
", E . E ylf — |:E:|
Al —Ziry, - —ZyTy d:1 0
| d |
Then, forall j € [£]:
Ayl] — z dtZtrj =(— Ayl] = Ul-rj Ui = 2 dtZt

telk] telk]

A More General View

Sample U; together with short y;; such that forallj € [£]: Ay;; = U;r;

Approach can be described more compactly as sampling a solution to the linear system

Yi1]
-A _erl e _Zkrl- : O
", E . E ylf p— [E]
Al —Ziry, - —ZyTy d:1 0
| d, .

More compactly: Z = [Z, | Z, | -+ | Z;]

A —zary] [P

Al -z ® rs) _yf_ Ui=2dQ® 1D

— 0 o =Z(I®r;)d =2(d Q Dr;

Distributing the Setup

Challenge: No one can know a trapdoor for A

Approach: Each user will choose their own U;, everything else will be in the public parameters

Public parameters: A4, B, p,r4, ..., Ty, V,, trapdoor for V,

(A

—-Z(IQ® 7’1)-

—-Z(IQ® 7”1)_

al-za@r,)

ZA @1y

-y.il-

Yie

L d |

For correctness, each user also needs to
generate a secret key and cross-terms

Vi :/:] . Ayi,j = Ul-rj
Ayi,i =p+Bri + Ul-rl-

0
= |p + Br, |2
0 SetU; = Z(d ® I

Distributing the Setup

Challenge: No one can know a trapdoor for A

Approach: Each user will choose their own U;, everything else will be in the public parameters

Public parameters: A4, B, p,r4, ..., Ty, V,, trapdoor for V,

(A

A

—-Z(IQ® 7”1)_

ZUA Q1)

For correctness, each user also needs to
generate a secret key and cross-terms

Vi :/:] . Ayi,j = Ul-rj
Ayi,i =p+Bri + Ul-rl-

Security relies on hardness of LWE with respect to A given trapdoor for V,

Trapdoor for V, can be obtained by a succinct LWE trapdoor

Succinct LWE trapdoor: preimages of the form A_l(Wirj)
This trapdoor: preimages of the form A"l(Z(I X ri)dj) = A_l(Ujrl-)

Distributed Broadcast Encryption

Distri ion from ¢-succinct LWE
e oublic-key directory) istributed broadcast encryption from £-succinct

Public parameter size: £2 - poly(4,log £)
A o S
User public key size: £ - poly(4, log ¥)
Ciphertext size: poly(4, log ¥)

A Gk | o y
Techniques also give registered ABE for general policies

ﬂ (4, pk,) in the random oracle model (also from succinct LWE)
[CH\W25]

c B Gk

J

Broadcast encryption without a
central authority

Summary

More broadly: having a public trapdoor for a structured matrix is very useful

A w, ABE with succinct ciphertexts [Wee24]
Trapdoor for D, = : ‘ Functional commitments [W\v23]
Alw, Distributed broadcast encryption [C\/24]
] (Succinct) registered ABE [CH\\/24]
Very useful for compression security based on succinct LWE
_Al G Vector commitments [WW\\/24]
Trapdoor for D, = : ‘ Dual-mode NIZK [ww\24]
Ay | G Statistical ZAP arguments [BLNW/24]

security based on standard SIS/LWE

New Assumptions in Lattice-Based Cryptography

Evasive LWE:

For all efficient samplers Samp and taking (P, aux) « Samp(l”‘),A « Zg™,s « Lg

if sT[A| P] ~ random given A, P, aux

then sTA ~ random given 4, P, A1 (P), aux

\\\\\\\\

New Assumptions in Lattice-Based Cryptography

Evasive LWE:
For all efficient samplers Samp and taking (P, aux) « Samp(l”‘),A « Zg™,s « Lg
if sT[A| P] ~ random given A, P, aux
then sTA ~ random given 4, P, A~1(P), aux

\\\\\\\\

Powerful framework (has enabled many applications)
Number of counter-examples for private-coin version

New Assumptions in Lattice-Based Cryptography

Evasive LWE:
For all efficient samplers Samp and taking (P, aux) « Samp(la),A « Lz ™, s < L7
if sT[A| P] ~ random given 4, P, aux
then sTA ~ random given A, P, A"1(P), aux

\\\\\\\\

Succinct LWE:
(4,sTA+eT) ~ (A,u")given D, = [I, ® A | W] and trapdoor for D,

Falsifiable, instance-independent, still versatile

New Assumptions in Lattice-Based Cryptography

Evasive LWE:

For all efficient samplers Samp and taking (P, aux) « Samp(ll),A « Lz ™, s < L7

if sT[A| P] ~ random given 4, P, aux

\\\\\\\\\\\\\\\\\\\

then sTA ~ random given 4, P,A~1(P), aux
Succinct LWE:
(4,sTA+eT) ~ (A,u")given D, = [I, ® A | W] and trapdoor for D,

Lots more work to be done!
Understanding hardness (e.g., worst-case/average-case reductions)
Cryptanalysis of the assumption (e.g., how does € or width of W affect security)
New applications (e.g., witness encryption)
Simpler assumptions (e.g., do we need a trapdoor) Thanks!

	Slide 1: Exotic Lattice Assumptions and How to Tame Them
	Slide 2: Lattice Problems in Cryptography
	Slide 3: Lattice Problems in Cryptography
	Slide 4: Lattice Problems in Cryptography
	Slide 5: Lattice Problems in Cryptography
	Slide 6: Lattice Problems in Cryptography
	Slide 7: Evasive LWE
	Slide 8: Evasive LWE
	Slide 9: Evasive LWE
	Slide 10: Evasive LWE
	Slide 11: Evasive LWE
	Slide 12: Applications of Evasive LWE
	Slide 13: Cryptanalysis of Evasive LWE
	Slide 14: Cryptanalysis of Evasive LWE
	Slide 15: Cryptanalysis of Evasive LWE
	Slide 16: Cryptanalysis of Evasive LWE
	Slide 17: Cryptanalysis of Evasive LWE
	Slide 18: Beyond Evasive LWE
	Slide 19: Beyond Evasive LWE
	Slide 20: Succinct LWE
	Slide 21: Succinct LWE
	Slide 22: Succinct LWE
	Slide 23: Succinct LWE
	Slide 24: Succinct LWE
	Slide 25: Homomorphic Computation using Lattices
	Slide 26: Homomorphic Commitments
	Slide 27: Homomorphic Commitments
	Slide 28: Compressing using Succinct LWE
	Slide 29: Compressing using Succinct LWE
	Slide 30: Distributed Key Generation
	Slide 31: Broadcast Encryption
	Slide 32: Broadcast Encryption
	Slide 33: Broadcast Encryption
	Slide 34: Broadcast Encryption
	Slide 35: Broadcast Encryption
	Slide 36: Distributed Broadcast Encryption
	Slide 37: Distributed Broadcast Encryption
	Slide 38: Distributed Broadcast Encryption
	Slide 39: Distributed Broadcast Encryption
	Slide 40: Starting Point: Centralized Broadcast Encryption
	Slide 41: Starting Point: Centralized Broadcast Encryption
	Slide 42: Starting Point: Centralized Broadcast Encryption
	Slide 43: Starting Point: Centralized Broadcast Encryption
	Slide 44: Starting Point: Centralized Broadcast Encryption
	Slide 45: Distributing the Setup
	Slide 46: Distributing the Setup
	Slide 47: A More General View
	Slide 48: A More General View
	Slide 49: Distributing the Setup
	Slide 50: Distributing the Setup
	Slide 51: Distributed Broadcast Encryption
	Slide 52: Summary
	Slide 53: New Assumptions in Lattice-Based Cryptography
	Slide 54: New Assumptions in Lattice-Based Cryptography
	Slide 55: New Assumptions in Lattice-Based Cryptography
	Slide 56: New Assumptions in Lattice-Based Cryptography

