Lattice-Based Functional Commitments: Constructions and Cryptanalysis

David Wu
June 2024

based on joint works with Hoeteck Wee

Functional Commitments

Functional Commitments

Commit(crs, $x) \rightarrow(\sigma, \mathrm{st})$
Takes a common reference string and commits to an input x
Outputs commitment σ and commitment state st

Functional Commitments

Open + Verify

Commit(crs, $x) \rightarrow(\sigma$, st)
Open(st, f) $\rightarrow \pi$
Takes the commitment state and a function f and outputs an opening π Verify(crs, $\sigma,(f, y), \pi) \rightarrow 0 / 1$

Checks whether π is valid opening of σ to value y with respect to f

Functional Commitments

Open + Verify

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Functional Commitments

Open + Verify

$f(x)$

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma|=\operatorname{poly}(\lambda, \log |x|)$
- Short opening: $|\pi|=\operatorname{poly}(\lambda, \log |x|)$

Will consider relaxation where $|\sigma|$ and $|\pi|$ can grow with depth of the circuit computing f

Special Cases of Functional Commitments

Vector commitments:

$$
\operatorname{ind}_{i}\left(x_{1}, \ldots, x_{n}\right):=x_{i}
$$

$\left[x_{1}, x_{2}, \ldots, x_{n}\right]$

commit to a vector, open at an index

Polynomial commitments:

$$
f_{x}\left(\alpha_{0}, \ldots, \alpha_{d}\right):=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{d} x^{d}
$$

$\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}\right]$
commit to a polynomial, open to the evaluation at x

Commitments as Proofs on Committed Data

Commit(crs, data)

$$
\pi, f \text { (data) }
$$

π is a proof that the data satisfies some property (e.g., committed input is in a certain range)

Succinctness: both the commitment and the proof are short

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	$k-R$-ISIS assumption (falsifiable)
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[dCP23]	Boolean circuits	SIS (non-succinct openings in general)
[KLVW23]	Boolean circuits	LWE (via batch arguments)
[BCFL23]	Boolean circuits	twin k-R-ISIS (or q-type pairing assumption)
[WW23a, WW23b]	Boolean circuits	ℓ-succinct SIS This talk
[WW24]	Boolean circuits	k-Lin (pairings)

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
target vectors $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n}$

auxiliary data: cross-terms $\boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right) \in \mathbb{Z}_{q}^{m}$ where $i \neq j$

> short (i.e., low-norm) vector satisfying $\boldsymbol{A}_{i} \boldsymbol{u}_{i j}=\boldsymbol{t}_{j}$

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$ target vectors $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n}$

auxiliary data: cross-terms $\boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right) \in \mathbb{Z}_{q}^{m}$ where $i \neq j$

Commitment to $\boldsymbol{x} \in \mathbb{Z}_{q}^{\ell}$:

$$
\boldsymbol{c}=\sum_{i \in[\ell]} x_{i} \boldsymbol{t}_{i}
$$

linear combination of target vectors

Opening to value y at index i :

$$
\text { short } \boldsymbol{v}_{i} \text { such that } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+y \cdot \boldsymbol{t}_{i}
$$

Honest opening:
Correct as long as \boldsymbol{x} is short

$$
\boldsymbol{v}_{i}=\sum_{j \neq i} x_{j} \boldsymbol{u}_{i j} \boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i}=\sum_{j \neq i} x_{j} \boldsymbol{A}_{i} \boldsymbol{u}_{i j}+x_{i} \boldsymbol{t}_{i}=\sum_{j \in[\ell]} x_{j} \boldsymbol{t}_{j}=\boldsymbol{c}
$$

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
target vectors $\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n}$

auxiliary data: cross-terms $\boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right) \in \mathbb{Z}_{q}^{m}$ where $i \neq j$
[PPS21]: $\boldsymbol{A}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and $\boldsymbol{t}_{\boldsymbol{i}} \leftarrow \mathbb{Z}_{q}^{n}$ are independent and uniform
suffices for vector commitments (from SIS)
[ACLMT21]: $\boldsymbol{A}_{i}=\boldsymbol{W}_{i} \boldsymbol{A}$ and $\boldsymbol{t}_{i}=\boldsymbol{W}_{i} \boldsymbol{u}_{i}$ where $\boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times n}, \boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}, \boldsymbol{u}_{i} \leftarrow \mathbb{Z}_{q}^{n}$ (one candidate adaptation to the integer case)
generalizes to functional commitments for constant-degree polynomials (from $k-R-I S I S$)

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{I}_{n} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{I}_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\boldsymbol{C}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{t}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right] } \\
& \boldsymbol{I}_{n} \text { denotes the identity matrix }
\end{aligned}
$$

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\left\lceil A_{1}\right.
$$

$$
\left.\begin{array}{ll:l}
& & -\boldsymbol{G} \\
\ddots & & \vdots \\
& \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\boldsymbol{c}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{t}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right]
$$

$$
G=\left[\begin{array}{llll}
1 & 2 & \cdots & 2^{\lfloor\log q\rfloor} \\
& & &
\end{array}\right.
$$

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system

$$
\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\hat{\boldsymbol{c}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{t}_{\mathbf{1}} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right] \begin{aligned}
& \text { Common reference string: } \\
& \begin{array}{l}
\text { matrices } \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m} \\
\text { target vectors } \boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n} \\
\text { auxiliary data: cross-terms } \boldsymbol{u}_{i j} \leftarrow \boldsymbol{A}_{i}^{-1}\left(\boldsymbol{t}_{j}\right)
\end{array}
\end{aligned}
$$

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

$$
\underbrace{\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & \\
& \ddots & & -\boldsymbol{G} \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]}_{\boldsymbol{B}_{\ell}} \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\hat{\boldsymbol{c}}
\end{array}\right]=\left[\begin{array}{c}
-\boldsymbol{x}_{\boldsymbol{1}} \boldsymbol{t}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right] \begin{gathered}
\begin{array}{c}
\text { Common reference string: } \\
\begin{array}{l}
\text { Trapdoor for } \boldsymbol{B}_{\ell} \text { can be used to sample short solutions } \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m} \\
\text { marget vectors } \boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\ell} \in \mathbb{Z}_{q}^{n} \\
\text { auxiliary data: cross-terms } u_{i j} \\
\text { trapdoor for } \boldsymbol{B}_{\ell}
\end{array} \\
\left.\boldsymbol{x} \text { to the linear system } \boldsymbol{B}_{\ell} \boldsymbol{x}=\boldsymbol{y} \text { (for arbitrary } \boldsymbol{y}\right)
\end{array}
\end{gathered}
$$

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

$$
\underbrace{\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]} \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\hat{\boldsymbol{c}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{t}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{t}_{\ell}
\end{array}\right] \begin{aligned}
& \text { Committing to an input } \boldsymbol{x}: \\
& \begin{array}{l}
\text { Use trapdoor for } \boldsymbol{B}_{\ell} \text { to jointly } \\
\text { sample a solution } \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}, \hat{\boldsymbol{c}}
\end{array} \\
& \boldsymbol{c}=\boldsymbol{G} \hat{\boldsymbol{c}} \text { is the comitment and } \\
& \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell} \text { are the openings }
\end{aligned}
$$

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]
Verification invariant: $\boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell]$ for a short \boldsymbol{v}_{i}

Suppose adversary can break binding
outputs $c,\left(v_{i}, x_{i}\right),\left(v_{i}^{\prime}, x_{i}^{\prime}\right)$ such that

$$
\begin{aligned}
\boldsymbol{c} & =\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \\
& =\boldsymbol{A}_{i} \boldsymbol{v}_{i}^{\prime}+x_{i}^{\prime} \boldsymbol{t}_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { set } \boldsymbol{A}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m} \\
& \text { set } \boldsymbol{t}_{i}=\boldsymbol{e}_{1}=[1,0, \ldots, 0]^{\mathrm{T}}
\end{aligned}
$$

(cannot set $\boldsymbol{t}_{i}=\mathbf{0}$ as otherwise, it could be $v_{i}=v_{i}^{\prime}$)

Short integer solutions (SIS)
given $\boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$, hard to find short $\boldsymbol{x} \neq 0$ such that $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$

$$
A_{i}\left(v_{i}-v_{i}^{\prime}\right)=\underset{\text { (nhort) }}{\left(x_{i}^{\prime}-x_{i}\right) t_{i}}
$$

Looks like an SIS solution... How to choose $\boldsymbol{A}_{i}, \boldsymbol{t}_{i}$?

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]
Verification invariant: $\boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell]$ for a short \boldsymbol{v}_{i}

Suppose adversary can break binding
outputs $c,\left(v_{i}, x_{i}\right),\left(v_{i}^{\prime}, x_{i}^{\prime}\right)$ such that

$$
\begin{aligned}
\boldsymbol{c} & =\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \\
& =\boldsymbol{A}_{i} \boldsymbol{v}_{i}^{\prime}+x_{i}^{\prime} \boldsymbol{t}_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{set} \boldsymbol{A}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m} \\
& \text { set } \boldsymbol{t}_{i}=\boldsymbol{e}_{1}=[1,0, \ldots, 0]^{\mathrm{T}}
\end{aligned}
$$

$$
\text { (cannot set } t_{i}=\mathbf{0} \text { as otherwise, it could be } v_{i}=v_{i}^{\prime} \text {) }
$$

given $\boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$, hard to find short $\boldsymbol{x} \neq 0$ such that $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$

$$
\boldsymbol{A}_{i}\left(v_{i}-v_{i}^{\prime}\right)=\left(x_{i}^{\prime}-x_{i}\right) \boldsymbol{e}_{1}
$$

$$
\boldsymbol{v}_{i}-\boldsymbol{v}_{i}^{\prime} \text { is a SIS solution for } \boldsymbol{A}_{i}
$$ without the first row

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Adversary that breaks binding can solve SIS with respect to \boldsymbol{A}_{i}
(technically \boldsymbol{A}_{i} without the first row - which is equivalent to SIS with dimension $n-1$)
but... adversary also gets additional information beyond A_{i}

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]
$$

Adversary sees trapdoor for \boldsymbol{B}_{ℓ}

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

$$
\begin{gathered}
\text { Verification invariant: } \boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell] \\
\text { for a short } \boldsymbol{v}_{i}
\end{gathered}
$$

Adversary that breaks binding can solve SIS with respect to \boldsymbol{A}_{i} Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to \boldsymbol{A}_{i} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \quad \begin{gathered}
\text { Can simulate CRS from BASIS challenge: } \\
\text { matrices } \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times m} \\
\text { trapdoor for } \boldsymbol{B}_{\ell}
\end{gathered}
$$

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to \boldsymbol{A}_{i} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right]
$$

When $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \leftarrow \mathbb{Z}_{q}^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS
(follows from standard lattice trapdoor extension techniques)

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):
matrices $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell} \in \mathbb{Z}_{q}^{n \times m}$
auxiliary data: trapdoor for $\boldsymbol{B}_{\ell}=\left[\begin{array}{lll:c}\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\ & \ddots & & \vdots \\ & & \boldsymbol{A}_{\ell} & -\boldsymbol{G}\end{array}\right]$
To commit to a vector $\boldsymbol{x} \in \mathbb{Z}_{q}^{\ell}$: sample solution $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}, \widehat{\boldsymbol{c}}\right)$

$$
\left[\begin{array}{ccc:c}
\boldsymbol{A}_{1} & & & -\boldsymbol{G} \\
& \ddots & & \vdots \\
& & \boldsymbol{A}_{\ell} & -\boldsymbol{G}
\end{array}\right] \cdot\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{\ell} \\
\hat{\boldsymbol{c}}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \boldsymbol{e}_{1} \\
\vdots \\
-x_{\ell} \boldsymbol{e}_{\ell}
\end{array}\right]
$$

Can commit and open to arbitrary \mathbb{Z}_{q} vectors

Commitments and openings statistically hide unopened components

Linearly homomorphic:
$\boldsymbol{c}+\boldsymbol{c}^{\prime}$ is a commitment to $\boldsymbol{x}+\boldsymbol{x}^{\prime}$ with openings $\boldsymbol{v}_{i}+\boldsymbol{v}_{i}^{\prime}$

Commitment is $\boldsymbol{c}=\boldsymbol{G} \hat{\boldsymbol{c}} \quad$ Openings are $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}$

Extending to Functional Commitments

Goal: commit to $\boldsymbol{x} \in\{0,1\}^{\ell}$, open to function $f(\boldsymbol{x})$
Suppose $f(\boldsymbol{x})=\sum_{i \in[\ell]} \alpha_{i} x_{i}$ is a linear function
Verification invariant: $\boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i} \quad \forall i \in[\ell]$
Can also view \boldsymbol{c} as commitment to vector $x_{i} \boldsymbol{t}_{i}$ with respect to \boldsymbol{A}_{i} and opening \boldsymbol{v}_{i}

Suppose $\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{c}_{\mathbf{2}}$ are commitments to vectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ with respect to the same \boldsymbol{A}

$$
\begin{aligned}
& \boldsymbol{c}_{1}=\boldsymbol{A} v_{1}+u_{1} \quad \square \boldsymbol{c}_{1}+\boldsymbol{c}_{2}=\boldsymbol{A}\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)+\left(u_{1}+u_{2}\right) \\
& \boldsymbol{c}_{2}=\boldsymbol{A} \boldsymbol{v}_{2}+u_{2}
\end{aligned}
$$

Extending to Functional Commitments

$$
\begin{gathered}
\boldsymbol{c}_{1}=\boldsymbol{A} \boldsymbol{v}_{1}+x_{1} \boldsymbol{t} \\
\vdots \\
\boldsymbol{c}_{\ell}=\boldsymbol{A} \boldsymbol{v}_{\ell}+x_{\ell} \boldsymbol{t}
\end{gathered}
$$

Desired correctness relation

Cannot define commitment to be $\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{\ell}\right)$ since this is long Instead, suppose $\boldsymbol{c}_{i}=\boldsymbol{W}_{i} \boldsymbol{c}$ can be derived from a (single) \boldsymbol{c}

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

Extending to Functional Commitments

CRS contains $\boldsymbol{A}, \boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{\ell}, \boldsymbol{t}$ and trapdoor for \boldsymbol{B}_{ℓ}

To commit to $\boldsymbol{x} \in\{0,1\}^{\ell}$, use trapdoor for \boldsymbol{B}_{ℓ} to sample $\boldsymbol{c}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\ell}$ where

$$
\begin{gathered}
\boldsymbol{W}_{1} \boldsymbol{c}=\boldsymbol{A} v_{1}+x_{1} \boldsymbol{t} \\
\vdots \\
\boldsymbol{W}_{\ell} \boldsymbol{c}=\boldsymbol{A} \boldsymbol{v}_{\ell}+x_{\ell} \boldsymbol{t}
\end{gathered}
$$

Opening to value $y=f(\boldsymbol{x})=\sum_{i \in[\ell]} \alpha_{i} x_{i}$ is $\boldsymbol{v}_{f}:=\sum_{i \in[\ell]} \alpha_{i} \boldsymbol{v}_{i}$

Verification relation

$$
\sum_{i \in[\ell]} \alpha_{i} \boldsymbol{W}_{i} \boldsymbol{c}=\boldsymbol{A} \boldsymbol{v}_{f}+y \cdot \boldsymbol{t}
$$

Functional Commitments from Lattices

Security follows from ℓ-succinct SIS assumption [Wee24]:
SIS is hard with respect to \boldsymbol{A} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A} & & & W_{1} \\
& \ddots & & \vdots \\
& & \boldsymbol{A} & W_{\ell}
\end{array}\right]
$$

where $\boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and $\boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}$
Falsifiable assumption but does not appear to reduce to standard SIS
$\ell=1$ case does follow from plain SIS (and when \boldsymbol{W}_{i} is very wide)
Open problem: Understanding security or attacks when $\ell>1$

Functional Commitments from Lattices

Security follows from ℓ-succinct SIS assumption [Wee24]:
SIS is hard with respect to \boldsymbol{A} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A} & & & W_{1} \\
& \ddots & & \vdots \\
& & \boldsymbol{A} & W_{\ell}
\end{array}\right]
$$

where $\boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and $\boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}$
Equivalent formulation:
SIS is hard with respect to \boldsymbol{A} given $\boldsymbol{A}^{-1}\left(\boldsymbol{W}_{i} \boldsymbol{R}\right)$ along with $\boldsymbol{W}_{i}, \boldsymbol{R}$ where $\boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}, \boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}$, and $\boldsymbol{R} \leftarrow D_{\mathbb{Z}, s}^{m \times k}$ where $k \geq m(\ell+1)$

Functional Commitments from Lattices

Linear functional commitments extends readily to support (bounded-depth) circuits

$\boldsymbol{W}_{1} \boldsymbol{c}=\boldsymbol{A} \boldsymbol{v}_{1}+x_{1} \boldsymbol{t}$
\vdots
$\boldsymbol{W}_{\ell} \boldsymbol{c}=\boldsymbol{A} \boldsymbol{v}_{\ell}+x_{\ell} \boldsymbol{t}$

Supports openings to linear functions

Supports openings to Boolean circuits

In this setting, $\left(W_{1} C, \ldots, W_{\ell} C\right)$ is a [GVW14] homomorphic commitment to x (can be opened to any function $f(x)$ of bounded depth)

Can be sampled using same trapdoor for B_{ℓ} (security still reduces to ℓ-succinct SIS)

Summary of Functional Commitments

New methodology for constructing lattice-based commitments:

1. Write down the main verification relation ($\boldsymbol{c}=\boldsymbol{A}_{i} \boldsymbol{v}_{i}+x_{i} \boldsymbol{t}_{i}$)
2. Publish a trapdoor for the linear system induced by the verification relation

Security analysis relies on new q-type variants of SIS:
SIS with respect to \boldsymbol{A} is hard given a trapdoor for a related matrix \boldsymbol{B}
"Random" variant of the assumption implies vector commitments and reduces to SIS
"Structured" variant (ℓ-succinct SIS) implies functional commitments for circuits

- Structure also enables aggregating openings

ℓ-Succinct SIS (and LWE)

SIS (or LWE) is hard with respect to \boldsymbol{A} given a trapdoor (a basis) for the matrix

$$
\boldsymbol{B}_{\ell}=\left[\begin{array}{ccc:c}
\boldsymbol{A} & & & W_{1} \\
& \ddots & & \vdots \\
& & \boldsymbol{A} & W_{\ell}
\end{array}\right]
$$

where $\boldsymbol{A} \leftarrow \mathbb{Z}_{q}^{n \times m}$ and $\boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m}$
Falsifiable assumption that is implied by evasive LWE
Less structured assumption than $k-R-I S I S$ or BASIS $_{\text {struct }}$ from recent works:

$$
\boldsymbol{A}^{-1}\left(\boldsymbol{W}_{i} \boldsymbol{R}\right) \text { where } \boldsymbol{W}_{i} \leftarrow \mathbb{Z}_{q}^{n \times m} \text { and } \boldsymbol{R} \leftarrow D_{\mathbb{Z}, s}^{m \times m(\ell+1)}
$$

Can be used to get ABE with short ciphertexts (and broadcast encryption) [Wee24], functional commitments [ww23b], distributed broadcast encryption [cw24]

Cryptanalysis of Lattice-Based Knowledge Assumptions

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Scheme could be binding, but still allow an efficient adversary to construct (malformed) commitment σ and opening to value 1 with respect to the all-zeroes function

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that $f(x)=y$

$$
\underset{\text { efficient extractor }}{\longrightarrow} x \text { such that } y=f(x)
$$

π

Note: f could have multiple outputs

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Notion is equivalent to SNARKs, so will be

$$
\operatorname{Verify}\left(\operatorname{crs}, \sigma,\left(f, y_{0}\right), \pi_{0}\right)=1
$$ challenging to build from a falsifiable assumption

$$
\operatorname{Verify}\left(\operatorname{crs}, \sigma,\left(f, y_{1}\right), \pi_{1}\right)=1
$$

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that $f(x)=y$
efficient extractor
x such that $y=f(x)$

π

Note: f could have multiple outputs

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

[ACLMT22]
given (tall) matrices $\boldsymbol{A}, \boldsymbol{D}$ and short preimages \mathbf{Z} of a random target \boldsymbol{T}
if adversary can produce a short vector \boldsymbol{v} such that $\boldsymbol{A} \boldsymbol{v}$ is in the image of \boldsymbol{D} (i.e., $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c})$, then there exists an extractor that outputs short \boldsymbol{x} where $\boldsymbol{v}=\boldsymbol{Z x}$ Observe: $\boldsymbol{A} \boldsymbol{v}$ for a random (short) \boldsymbol{v} is outside the image of \boldsymbol{D} (since \boldsymbol{D} is tall)

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

A	\% ${ }_{\text {Z }}$	For extractable functional commitments: - Z is in the CRS - Commitment is $\boldsymbol{c}=\boldsymbol{T} \boldsymbol{x}$ - Opening is \boldsymbol{v} where $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$ Extractable since valid opening can be associated with an honestly-generated commitment

if adversary can produce a short vector \boldsymbol{v} such that $\boldsymbol{A} \boldsymbol{v}$ is in the image of \boldsymbol{D} (i.e., $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c})$, then there exists an extractor that outputs short \boldsymbol{x} where $\boldsymbol{v}=\boldsymbol{Z x}$

Observe: $\boldsymbol{A} \boldsymbol{v}$ for a random (short) \boldsymbol{v} is outside the image of \boldsymbol{D} (since \boldsymbol{D} is tall)

Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

[ACLMT22]

Our work: algorithm to obliviously sample a solution $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$ without knowledge of a linear combination $\boldsymbol{v}=\boldsymbol{Z} \boldsymbol{x}$

Rewrite $\boldsymbol{A Z}=\boldsymbol{D T}$ as

$$
[A \mid D G] \cdot\left[\begin{array}{c}
Z \\
-G^{-1}(T)
\end{array}\right]=\mathbf{0}
$$

If \boldsymbol{Z} and \boldsymbol{T} are wide enough, we (heuristically) obtain a basis for $[\boldsymbol{A} \mid \boldsymbol{D G}]$

Obliviously Sampling a Solution

Our work: algorithm to obliviously sample a solution $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$ without knowledge of a linear combination $\boldsymbol{v}=\boldsymbol{Z x}$

Rewrite $\boldsymbol{A Z}=\boldsymbol{D T}$ as

$$
[A \mid D G] \cdot \underbrace{\left[\begin{array}{c}
Z \\
-G^{-1}(T)
\end{array}\right]}_{B^{*}}=0
$$

If \boldsymbol{Z} and \boldsymbol{T} are wide enough, we (heuristically) obtain a basis for $[\boldsymbol{A} \mid \boldsymbol{D} \boldsymbol{G}]$

Oblivious sampler (Babai rounding):

1. Take any (non-zero) integer solution \boldsymbol{y} where $[\boldsymbol{A} \mid \boldsymbol{D G}] \boldsymbol{y}=\mathbf{0} \bmod q$
2. Assuming \boldsymbol{B}^{*} is full-rank over \mathbb{Q}, find \boldsymbol{z} such that $\boldsymbol{B}^{*} \boldsymbol{z}=\boldsymbol{y}$ (over \mathbb{Q})
3. Set $\boldsymbol{y}^{*}=\boldsymbol{y}-\boldsymbol{B}^{*}[\boldsymbol{z}\rceil=\boldsymbol{B}^{*}(\boldsymbol{z}-\lfloor\boldsymbol{z}\rceil)$ and parse into $\boldsymbol{v}, \boldsymbol{c}$

Correctness: $\left.[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot \boldsymbol{y}^{*}=[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot \boldsymbol{B}^{*}(\mathbf{z}-\mid \mathbf{z}]\right)=\mathbf{0} \bmod q$ and \boldsymbol{y}^{*} is short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{D} \boldsymbol{c}$ without knowledge of a linear combination $\boldsymbol{v}=\boldsymbol{Z} \boldsymbol{x}$

Rewrite $\boldsymbol{A Z}=\boldsymbol{D T}$ as

$$
[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot\left[\begin{array}{c}
\boldsymbol{Z} \\
-\boldsymbol{C}^{-1}(\boldsymbol{T})
\end{array}\right]=\mathbf{0} \quad \begin{array}{r}
\text { If } \boldsymbol{Z} \text { and } \boldsymbol{T} \text { are wide enough, we } \\
\text { Ihouricticallo }
\end{array}
$$ (heuristically) obtain a basis for $[\boldsymbol{A} \mid \boldsymbol{D G}]$

Oblivious sampler (Babai roun

1. Take any (non-zero) inte
2. Assuming \boldsymbol{B}^{*} is full-rank
3. Set $\boldsymbol{y}^{*}=\boldsymbol{y}-\boldsymbol{B}^{*}[\boldsymbol{z}]=\boldsymbol{B}$

This solution is obtained by "rounding" off a long solution
Question: Can we explain such solutions as taking a short linear combination of Z (i.e., what the knowledge assumption asserts)

Correctness: $[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot \boldsymbol{y}^{*}=[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot \boldsymbol{B}^{*}(\mathbf{z}-[\mathbf{z}])=\mathbf{0} \bmod q$ and \boldsymbol{y}^{*} is short

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (ie., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice
(1)

$$
A v=D c
$$

(2)

$$
[A \mid D G]\left[\begin{array}{c}
\boldsymbol{v} \\
-\boldsymbol{G}^{-1}(\boldsymbol{c})
\end{array}\right]=\mathbf{0}
$$

(3)

$$
[\boldsymbol{A} \mid \boldsymbol{D G}] \cdot\left[\begin{array}{c}
\mathbb{Z} \\
-G^{-1}(T)
\end{array}\right]=\mathbf{0}
$$

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer variant of knowledge $k-R$-ISIS assumption from [ACLMT22] Implementation by Martin: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)
Open question: Can we extend the attacks to break soundness of the SNARK?

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for intege Implementation by Martin: https
- Breaks extractability of the [ACLMT22] assuming hardn

The SNARK considers extractable commitment for quadratic functions while our current oblivious sampler only works for linear functions in the case of [ACLMT22] for oblivious sampler implies algoritnm for innomogeneous SIS)
Open question: Can we extend the attacks to break soundness of the SNARK?

Open Questions

Understanding the hardness of ℓ-succinct SIS/LWE (hardness reductions or cryptanalysis)? Martin's blog post: https://malb.io/sis-with-hints.html

New applications of ℓ-succinct SIS/LWE?
Broadcast encryption, succinct ABE, succinct laconic function evaluation [Wee24]
Cryptanalysis of lattice-based SNARKs based on knowledge k - R-ISIS [ACLMT22, CLM23, FLV23]
Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions
Formulation of new lattice-based knowledge assumptions that avoids attacks

Thank you!

```
https://eprint.iacr.org/2022/1515
https://eprint.iacr.org/2024/028
```

