Lattice-Based Functional Commitments: Constructions and Cryptanalysis

David Wu

June 2024

based on joint works with Hoeteck Wee

Commit(crs, x) \rightarrow (σ , st)

Takes a common reference string and commits to an input x

Outputs commitment σ and commitment state st

Commit(crs, x) \rightarrow (σ , st)

Open(st, f) $\rightarrow \pi$

Takes the commitment state and a function f and outputs an opening π

Verify(crs, σ , (f, y), π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y with respect to f

Binding: efficient adversary cannot open σ to two different values with respect to the **same** f

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma| = \text{poly}(\lambda, \log |x|)$
- Short opening: $|\pi| = \text{poly}(\lambda, \log|x|)$

Will consider relaxation where $|\sigma|$ and $|\pi|$ can grow with **depth** of the circuit computing f

Special Cases of Functional Commitments

Vector commitments:

commit to a vector, open at an index

Polynomial commitments:

commit to a polynomial, open to the evaluation at x

Commitments as Proofs on Committed Data

 π is a proof that the data satisfies some property (e.g., committed input is in a certain range)

Succinctness: both the commitment and the proof are short

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22]	constant-degree polynomials	k- R -ISIS assumption (falsifiable)
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[dCP23]	Boolean circuits	SIS (non-succinct openings in general)
[KLVW23]	Boolean circuits	LWE (via batch arguments)
[BCFL23]	Boolean circuits	twin k - R -ISIS (or q -type pairing assumption)
[WW23a, WW23b]	Boolean circuits	ℓ -succinct SIS This talk
[WW24]	Boolean circuits	k-Lin (pairings)

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices
$$A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}$$

target vectors \boldsymbol{t}_1 , ..., $\boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $m{u}_{ij} \leftarrow m{A}_i^{-1}m{t}_j \in \mathbb{Z}_q^m$ where $i \neq j$

short (i.e., low-norm) vector satisfying $m{A}_im{u}_{ij}=m{t}_j$

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$

target vectors $\boldsymbol{t}_1, ..., \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_i) \in \mathbb{Z}_q^m$ where $i \neq j$

Commitment to $x \in \mathbb{Z}_q^{\ell}$:

$$\boldsymbol{c} = \sum_{i \in [\ell]} x_i \boldsymbol{t}_i$$

linear combination of target vectors

Opening to value y at index i:

short
$$\boldsymbol{v}_i$$
 such that $\boldsymbol{c} = \boldsymbol{A}_i \boldsymbol{v}_i + \boldsymbol{y} \cdot \boldsymbol{t}_i$

Honest opening:

$$\boldsymbol{v}_i = \sum_{j \neq i} x_j \boldsymbol{u}_{ij} \quad \boldsymbol{A}_i \boldsymbol{v}_i + x_i \boldsymbol{t}_i = \sum_{j \neq i} x_j \boldsymbol{A}_i \boldsymbol{u}_{ij} + x_i \boldsymbol{t}_i = \sum_{j \in [\ell]} x_j \boldsymbol{t}_j = \boldsymbol{c}$$

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$

target vectors $\boldsymbol{t}_1, ..., \boldsymbol{t}_\ell \in \mathbb{Z}_q^n$

auxiliary data: cross-terms $u_{ij} \leftarrow A_i^{-1}(t_j) \in \mathbb{Z}_q^m$ where $i \neq j$

[PPS21]: $A_i \leftarrow \mathbb{Z}_q^{n \times m}$ and $t_i \leftarrow \mathbb{Z}_q^n$ are independent and uniform

suffices for vector commitments (from SIS)

[ACLMT21]: $A_i = W_i A$ and $t_i = W_i u_i$ where $W_i \leftarrow \mathbb{Z}_q^{n \times n}$, $A \leftarrow \mathbb{Z}_q^{n \times m}$, $u_i \leftarrow \mathbb{Z}_q^n$

(one candidate adaptation to the integer case)

<u>generalizes</u> to functional commitments for constant-degree polynomials (from k-R-ISIS)

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$
 for a short v_i

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & | -I_n \\ & \ddots & & | & \vdots \\ & A_\ell & | -I_n \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \boldsymbol{c} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix}$$

 $oldsymbol{I}_n$ denotes the identity matrix

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} A_1 & & & & & | & -G \\ & \ddots & & & | & \vdots \\ & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \hat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix}$$

"powers of two matrix"

For security and functionality, it will be useful to write
$$c = G\hat{c}$$

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system

$$\begin{bmatrix} \boldsymbol{A}_1 & & & & & & & \\ & \ddots & & & & & \\ & & \boldsymbol{A}_\ell & & -\boldsymbol{G} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \boldsymbol{\hat{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{t}_1 \\ \vdots \\ -x_\ell \boldsymbol{t}_\ell \end{bmatrix} \quad \begin{array}{l} \textbf{Common reference string:} \\ \text{matrices } \boldsymbol{A}_1, \dots, \boldsymbol{A}_\ell \in \mathbb{Z}_q^{n \times m} \\ \text{target vectors } \boldsymbol{t}_1, \dots, \boldsymbol{t}_\ell \in \mathbb{Z}_q^n \\ \text{auxiliary data: cross-terms } \boldsymbol{u}_{ij} \leftarrow \boldsymbol{A}_i^{-1}(\boldsymbol{t}_j) \end{array}$$

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

Trapdoor for B_ℓ can be used to sample <u>short</u> solutions x to the linear system $B_\ell x = y$ (for arbitrary y)

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

Committing to an input x:

 v_1, \dots, v_ℓ are the openings

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Suppose adversary can break binding

outputs
$$\boldsymbol{c}$$
, (\boldsymbol{v}_i, x_i) , $(\boldsymbol{v}_i', x_i')$ such that

$$c = A_i v_i + x_i t_i$$
$$= A_i v_i' + x_i' t_i$$

$$\begin{aligned} \det A_i &\leftarrow \mathbb{Z}_q^{n \times m} \\ \det \boldsymbol{t}_i &= \boldsymbol{e}_1 = [1,0,\dots,0]^{\mathrm{T}} \\ (\textit{cannot set } \boldsymbol{t}_i = \boldsymbol{0} \textit{ as otherwise, it could be } \boldsymbol{v}_i = \boldsymbol{v}_i') \end{aligned}$$

Short integer solutions (SIS)

given $A \leftarrow \mathbb{Z}_q^{n \times m}$, hard to find short $x \neq 0$ such that Ax = 0

$$A_{i}(\mathbf{v}_{i} - \mathbf{v}_{i}') = (x_{i}' - x_{i})t_{i}$$
(short) (non-zero)

Looks like an SIS solution...

How to choose A_i , t_i ?

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Suppose adversary can break binding

outputs
$$\boldsymbol{c}$$
, $(\boldsymbol{v}_i, \boldsymbol{x}_i)$, $(\boldsymbol{v}_i', \boldsymbol{x}_i')$ such that

$$c = A_i v_i + x_i t_i$$
$$= A_i v_i' + x_i' t_i$$

$$\begin{split} \operatorname{set} \boldsymbol{A}_i &\leftarrow \mathbb{Z}_q^{n \times m} \\ \operatorname{set} \boldsymbol{t}_i &= \boldsymbol{e}_1 = [1,0,...,0]^{\mathrm{T}} \\ (\operatorname{cannot} \operatorname{set} \boldsymbol{t}_i &= \mathbf{0} \operatorname{as} \operatorname{otherwise, it could be} \boldsymbol{v}_i &= \boldsymbol{v}_i') \end{split}$$

Short integer solutions (SIS)

given $A \leftarrow \mathbb{Z}_q^{n \times m}$, hard to find short $x \neq 0$ such that Ax = 0

$$\mathbf{A}_{i}(\mathbf{v}_{i}-\mathbf{v}_{i}')=(\mathbf{x}_{i}'-\mathbf{x}_{i})\mathbf{e}_{1}$$

 $oldsymbol{v}_i - oldsymbol{v}_i'$ is a SIS solution for $oldsymbol{A}_i$ without the first row

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Adversary that breaks binding can solve SIS with respect to A_i

(technically A_i without the first row – which is equivalent to SIS with dimension n-1)

but... adversary also gets additional information beyond $m{A}_i$

$$m{B}_{\ell} = egin{bmatrix} A_1 & & & | -m{G} \ & \ddots & & | & \vdots \ & A_{\ell} & | -m{G} \end{bmatrix}$$
 Adversary sees trapdoor for $m{B}_{\ell}$

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant:
$$c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$$

Adversary that breaks binding can solve SIS with respect to A_i Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A}_1 & & & m{-G} \ & \ddots & & m{\vdots} \ & m{A}_{\ell} & m{-G} \end{bmatrix}$$

 $m{B}_{\ell} = egin{bmatrix} m{A}_1 & -m{G} \ & \ddots & \vdots \ & A_{\ell} & -m{G} \end{bmatrix}$ Can simulate CRS from BASIS challenge: matrices $m{A}_1, \dots, m{A}_{\ell} \leftarrow \mathbb{Z}_q^{n imes m}$ trapdoor for $m{B}_{\ell}$

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A_i given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A}_1 & & & & & -m{G} \ & \ddots & & & dots \ & m{A}_{\ell} & -m{G} \end{bmatrix}$$

When $A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ are uniform and independent: hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices
$$A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$$

auxiliary data: trapdoor for
$$m{B}_\ell = egin{bmatrix} A_1 & & & | - m{G} \\ & \ddots & & | & \vdots \\ & & A_\ell & | - m{G} \end{bmatrix}$$

To commit to a vector $x \in \mathbb{Z}_q^\ell$: sample solution $(v_1, ..., v_\ell, \widehat{c})$

$$\begin{bmatrix} A_1 & & & & | & -G \\ & \ddots & & & | & \vdots \\ & A_\ell & | & -G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_\ell \\ \widehat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} -x_1 \boldsymbol{e}_1 \\ \vdots \\ -x_\ell \boldsymbol{e}_\ell \end{bmatrix}$$

Commitment is $c = G\hat{c}$

Openings are $oldsymbol{v}_1$, ..., $oldsymbol{v}_\ell$

Can commit and open to arbitrary \mathbb{Z}_q vectors

Commitments and openings statistically **hide** unopened components

Linearly homomorphic:

$$c+c'$$
 is a commitment to $x+x'$ with openings $oldsymbol{v}_i+oldsymbol{v}_i'$

Extending to Functional Commitments

Goal: commit to $x \in \{0,1\}^{\ell}$, open to function f(x)

Suppose $f(x) = \sum_{i \in [\ell]} \alpha_i x_i$ is a **linear** function

Verification invariant: $c = A_i v_i + x_i t_i \quad \forall i \in [\ell]$

Can also view $m{c}$ as commitment to vector $x_i m{t}_i$ with respect to $m{A}_i$ and opening $m{v}_i$

Suppose c_1, c_2 are commitments to vectors u_1, u_2 with respect to the same A

$$c_1 = Av_1 + u_1$$

 $c_2 = Av_2 + u_2$

$$c_1 + c_2 = A(v_1 + v_2) + (u_1 + u_2)$$

Extending to Functional Commitments

$$c_1 = Av_1 + x_1t$$

$$\vdots$$

$$c_{\ell} = Av_{\ell} + x_{\ell}t$$

Cannot define commitment to be $(c_1,...,c_\ell)$ since this is long Instead, suppose $c_i=W_ic$ can be derived from a (single) c

Desired correctness relation

$$W_1 c = A v_1 + x_1 t$$

$$\vdots$$

$$W_{\ell} c = A v_{\ell} + x_{\ell} t$$

Our approach: rewrite ℓ relations as a single linear system (and publish a trapdoor for it)

Extending to Functional Commitments

CRS contains $A, W_1, ..., W_\ell, t$ and trapdoor for B_ℓ

To commit to $x \in \{0,1\}^{\ell}$, use trapdoor for B_{ℓ} to sample $c, v_1, ..., v_{\ell}$ where

$$W_1c = Av_1 + x_1t$$

$$\vdots$$

$$W_{\ell}c = Av_{\ell} + x_{\ell}t$$

Opening to value $y = f(x) = \sum_{i \in [\ell]} \alpha_i x_i$ is $v_f \coloneqq \sum_{i \in [\ell]} \alpha_i v_i$

Verification relation

$$\sum_{i\in[\ell]}\alpha_i \boldsymbol{W}_i \boldsymbol{c} = \boldsymbol{A}\boldsymbol{v}_f + \boldsymbol{y}\cdot\boldsymbol{t}$$

Functional Commitments from Lattices

Security follows from ℓ -succinct SIS assumption [Wee24]:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A} & & m{W}_1 \ & \ddots & m{\vdots} \ m{A} & m{W}_{\ell} \end{bmatrix}$$

where $\pmb{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and $\pmb{W}_i \leftarrow \mathbb{Z}_q^{n \times m}$

Falsifiable assumption but does not appear to reduce to standard SIS

 $\ell=1$ case does follow from plain SIS (and when \boldsymbol{W}_i is very wide)

Open problem: Understanding security or attacks when $\ell > 1$

Functional Commitments from Lattices

Security follows from ℓ -succinct SIS assumption [Wee24]:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A} & & m{W}_1 \ & \ddots & m{\vdots} \ m{A} & m{W}_{\ell} \end{bmatrix}$$

where $A \leftarrow \mathbb{Z}_q^{n \times m}$ and $W_i \leftarrow \mathbb{Z}_q^{n \times m}$

Equivalent formulation:

SIS is hard with respect to \boldsymbol{A} given $\boldsymbol{A}^{-1}(\boldsymbol{W}_{i}\boldsymbol{R})$ along with \boldsymbol{W}_{i} , \boldsymbol{R}

where $A \leftarrow \mathbb{Z}_q^{n \times m}$, $W_i \leftarrow \mathbb{Z}_q^{n \times m}$, and $R \leftarrow D_{\mathbb{Z},S}^{m \times k}$ where $k \geq m(\ell+1)$

Functional Commitments from Lattices

Linear functional commitments extends readily to support (bounded-depth) circuits

$$W_1c = Av_1 + x_1t$$

$$\vdots$$

$$W_\ell c = Av_\ell + x_\ell t$$

Supports openings to linear functions

$$W_1C = AV_1 + x_1G$$

$$\vdots$$

$$W_{\ell}C = AV_{\ell} + x_{\ell}G$$

Supports openings to Boolean circuits

In this setting, $(\boldsymbol{W}_1\boldsymbol{C},\dots,\boldsymbol{W}_\ell\boldsymbol{C})$ is a [GVW14] homomorphic commitment to \boldsymbol{x} (can be opened to any function $f(\boldsymbol{x})$ of bounded depth)

Can be sampled using **same** trapdoor for B_{ℓ} (security still reduces to ℓ -succinct SIS)

[see paper for details]

Summary of Functional Commitments

New methodology for constructing lattice-based commitments:

- 1. Write down the main verification relation ($\mathbf{c} = \mathbf{A}_i \mathbf{v}_i + x_i \mathbf{t}_i$)
- 2. Publish a trapdoor for the linear system induced by the verification relation

Security analysis relies on new q-type variants of SIS:

SIS with respect to \boldsymbol{A} is hard given a trapdoor for a **related** matrix \boldsymbol{B}

"Random" variant of the assumption implies vector commitments and reduces to SIS

"Structured" variant (ℓ -succinct SIS) implies functional commitments for circuits

• Structure also enables aggregating openings

[see paper for details]

ℓ-Succinct SIS (and LWE)

SIS (or LWE) is hard with respect to A given a trapdoor (a basis) for the matrix

$$m{B}_{\ell} = egin{bmatrix} m{A} & & & m{W}_1 \ & \ddots & & egin{bmatrix} m{W}_1 \ & \vdots \ & m{A} & m{W}_{\ell} \end{bmatrix}$$

where $A \leftarrow \mathbb{Z}_q^{n \times m}$ and $W_i \leftarrow \mathbb{Z}_q^{n \times m}$

Falsifiable assumption that is implied by evasive LWE

Less structured assumption than k-R-ISIS or BASIS_{struct} from recent works:

$$A^{-1}(W_iR)$$
 where $W_i \leftarrow \mathbb{Z}_q^{n \times m}$ and $R \leftarrow D_{\mathbb{Z},S}^{m \times m(\ell+1)}$

Can be used to get ABE with short ciphertexts (and broadcast encryption) [Wee24], functional commitments [WW23b], distributed broadcast encryption [CW24]

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Scheme could be binding, but still allow an efficient adversary to construct (malformed) commitment σ and opening to value 1 with respect to the **all-zeroes** function

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that f(x) = y

Note: f could have multiple outputs

Extractable Functional Commitments

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Notion is equivalent to SNARKs, so will be challenging to build from a falsifiable assumption

Verify(crs,
$$\sigma$$
, (f, y_0) , π_0) = 1

Verify(crs,
$$\sigma$$
, (f, y_1) , π_1) = 1

Extractability: efficient adversary that opens σ to y with respect to f must know an x such that f(x) = y

efficient extracto

x such that y = f(x)

Note: *f* could have multiple outputs

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

given (tall) matrices $oldsymbol{A}$, $oldsymbol{D}$ and short preimages $oldsymbol{Z}$ of a random target $oldsymbol{T}$

if adversary can produce a short vector v such that Av is in the image of D (i.e., Av = Dc), then there exists an extractor that outputs short x where v = Zx

Observe: Av for a random (short) v is outside the image of D (since D is tall)

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

given (tall) matrices $oldsymbol{A}$, $oldsymbol{D}$ and short preimages $oldsymbol{Z}$ of a random target $oldsymbol{T}$

if adversary can produce a short vector v such that Av is in the image of D (i.e., Av = Dc), then there exists an extractor that outputs short x where v = Zx

Observe: Av for a random (short) v is outside the image of D (since D is tall)

Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

Our work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite AZ = DT as

$$[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0$$

If Z and T are wide enough, we (heuristically) obtain a basis for $[A \mid DG]$

Obliviously Sampling a Solution

Our work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite AZ = DT as

$$[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0$$

$$B^*$$

If Z and T are wide enough, we (heuristically) obtain a basis for $[A \mid DG]$

Oblivious sampler (Babai rounding):

- 1. Take any (non-zero) integer solution y where $[A \mid DG]y = 0 \mod q$
- 2. Assuming B^* is full-rank over \mathbb{Q} , find z such that $B^*z = y$ (over \mathbb{Q})
- 3. Set $y^* = y B^*[z] = B^*(z [z])$ and parse into v, c

Correctness: $[A \mid DG] \cdot y^* = [A \mid DG] \cdot B^*(z - \lfloor z \rceil) = 0 \mod q$ and y^* is short

Obliviously Sampling a Solution

This work: algorithm to **obliviously** sample a solution Av = Dc without knowledge of a linear combination v = Zx

Rewrite AZ = DT as

$$[A \mid DG] \cdot \begin{bmatrix} Z \\ -G^{-1}(T) \end{bmatrix} = 0$$

If Z and T are wide enough, we (heuristically) obtain a basis for $[A \mid DG]$

 $oldsymbol{B}^*$

This solution is obtained by "rounding" off a long solution

Oblivious sampler (Babai round

- 1. Take any (non-zero) inte
- 2. Assuming B^* is full-rank
- 3. Set $y^* = y B^*|z| = B$

Question: Can we explain such solutions as taking a <u>short</u> linear combination of Z (i.e., what the knowledge assumption asserts)

Correctness: $[A \mid DG] \cdot y^* = [A \mid DG] \cdot B^*(z - \lfloor z \rceil) = 0 \mod q$ and y^* is short

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

$$Av = Dc \qquad [A \mid DG] \begin{bmatrix} v \\ -G^{-1}(c) \end{bmatrix} = 0$$

$$[A \mid DG] \cdot \begin{bmatrix} \frac{Z}{-G^{-1}(T)} \end{bmatrix} = 0$$

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integer variant of knowledge *k-R-ISIS* assumption from [ACLMT22] Implementation by Martin: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
- Breaks extractability of the (integer variant of the) linear functional commitment from [ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

Template for Analyzing Lattice-Based Knowledge Assumptions

- 1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
- 2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by the verification equation
- 3. Use components in the CRS to derive a basis for the related lattice

Implications:

- Oblivious sampler for integentation by Martin: https
- Breaks extractability of the [ACLMT22] assuming hardn

The SNARK considers extractable commitment for quadratic functions while our current oblivious sampler only works for linear functions in the case of [ACLMT22]

for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

Open Questions

Understanding the hardness of ℓ -succinct SIS/LWE (hardness reductions or cryptanalysis)?

Martin's blog post: https://malb.io/sis-with-hints.html

New applications of ℓ -succinct SIS/LWE?

Broadcast encryption, succinct ABE, succinct laconic function evaluation [Wee24]

Cryptanalysis of lattice-based SNARKs based on knowledge k-R-ISIS [ACLMT22, CLM23, FLV23] Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions

Formulation of new lattice-based knowledge assumptions that avoids attacks

Thank you!

https://eprint.iacr.org/2022/1515

https://eprint.iacr.org/2024/028