
Lattice-Based Functional Commitments:
Fast Verification and Cryptanalysis

Hoeteck Wee and David Wu

December 2023

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

𝜋

𝝈

𝑥
Commit

“opening”

“commitment”

𝝈

Functional Commitments

Takes a common reference string and commits to an input 𝑥

Outputs commitment 𝜎 and commitment state st

𝑥
Commit

Commit crs, 𝑥 → 𝜎, st

“commitment”

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Open st, 𝑓 → 𝜋
Takes the commitment state and a function 𝑓 and outputs an opening 𝜋

Verify crs, 𝜎, 𝑓, 𝑦 , 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to value 𝑦 with respect to 𝑓

𝜋

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑓

Open st, 𝑥 → 𝜋
Takes the commitment state and an input 𝑥 and outputs an opening 𝜋

Verify crs, 𝜎, 𝑥, 𝑦 , 𝜋 → 0/1

Commit crs, 𝑓 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to value 𝑦 at input 𝑥

𝜋

Can also consider the dual notion where
user commits to the function 𝑓 and

opens at an input 𝑥 to the value 𝑓(𝑥)

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑓

Open st, 𝑥 → 𝜋
Takes the commitment state and an input 𝑥 and outputs an opening 𝜋

Commit crs, 𝑓 → 𝜎, st

𝜋

Can also consider the dual notion where
user commits to the function 𝑓 and

opens at an input 𝑥 to the value 𝑓(𝑥)

This talk: will just focus on the first notion (commit to 𝑥, open to 𝑓)

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝜋

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Succinctness: commitments and openings should be short
• Short commitment: 𝜎 = poly 𝜆, log 𝑥
• Short opening: 𝜋 = poly 𝜆, log 𝑥 , 𝑓 𝑥

𝜋

Fast verification: can preprocess 𝑓 into a short verification key vk𝑓 so that

“online” verification runs in time poly 𝜆, log 𝑥 , 𝑑 where 𝑑 is the depth of 𝑓

Will consider relaxation where 𝜎
and 𝜋 can grow with depth of

the circuit computing 𝑓

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Succinctness: commitments and openings should be short
• Short commitment: 𝜎 = poly 𝜆, log 𝑥
• Short opening: 𝜋 = poly 𝜆, log 𝑥 , 𝑓 𝑥

𝜋

Note: having short commitments + openings does not imply
fast verification (e.g., verification procedure in [WW23]

basically evaluates 𝑓 on the commitment)

Fast verification: can preprocess 𝑓 into a short verification key vk𝑓 so that

“online” verification runs in time poly 𝜆, log 𝑥 , 𝑑 where 𝑑 is the depth of 𝑓

Lattice-Based Functional Commitments

Scheme Function Class Assumption

[KLVW23] Boolean circuits LWE

crs 𝜎 𝜋 FV BB

1 1 1 ✓ ✗

[BCFL23] width-𝑤, depth-𝑑 circuits twin-𝑘-𝑀-ISIS𝑤5 1 1 ✓ ✓

[WW23] depth-𝑑 circuits BASISstructℓ2 1 1 ✗ ✓

[ACLMT22] degree-𝑑 polynomials 𝑘-𝑅-ISISℓ2𝑑 1 1 ✓ ✓

[BCFL23]* degree-𝑑 polynomials twin-𝑘-𝑅-ISISℓ5𝑑 1 1 ✓ ✓

This work degree-𝑑 polynomials 𝑂(ℓ𝑑)-succinct SISℓ𝑑+1 1 1 ✓ ✓

This talk: only consider lattice-based functional commitment schemes

Comparisons ignore all poly 𝜆, 𝑑, log ℓ terms

• ℓ is the input length
• FV: scheme supports fast verification
• BB: scheme only makes black-box use of cryptography

*can decrease CRS size at the cost of longer openings

Lattice-Based Functional Commitments

Scheme Function Class Assumption

[KLVW23] Boolean circuits LWE

crs 𝜎 𝜋 FV BB

1 1 1 ✓ ✗

[BCFL23] width-𝑤, depth-𝑑 circuits twin-𝑘-𝑀-ISIS𝑤5 1 1 ✓ ✓

[WW23] depth-𝑑 circuits BASISstructℓ2 1 1 ✗ ✓

[ACLMT22] degree-𝑑 polynomials 𝑘-𝑅-ISISℓ2𝑑 1 1 ✓ ✓

[BCFL23]* degree-𝑑 polynomials twin-𝑘-𝑅-ISISℓ5𝑑 1 1 ✓ ✓

This work degree-𝑑 polynomials 𝑂(ℓ𝑑)-succinct SISℓ𝑑+1 1 1 ✓ ✓

Concurrent works:
• [FLV23]: polynomial commitment with linear-size CRS from 𝑘-𝑅-ISIS assumption
• [CLM23]: functional commitment for quadratic functions with linear linear-size CRS from

vanishing SIS

Lattice-Based Functional Commitments

Scheme Function Class Assumption

This talk: only consider lattice-based functional commitment schemes

crs 𝜎 𝜋 FV BB

[KLVW23] Boolean circuits LWE1 1 1 ✓ ✗

[dCP23] depth-𝑑 circuits SISℓ 1 ℓ ✗ ✓

This work depth-𝑑 circuits ℓ-succinct SISℓ2 1 1 ✓ ✓

dual functional commitments

functional commitments

[KLVW23] Boolean circuits LWE1 1 1 ✓ ✗

[BCFL23] width-𝑤, depth-𝑑 circuits twin-𝑘-𝑀-ISIS𝑤5 1 1 ✓ ✓

[WW23] depth-𝑑 circuits BASISstructℓ2 1 1 ✗ ✓

[ACLMT22] degree-𝑑 polynomials 𝑘-𝑅-ISISℓ2𝑑 1 1 ✓ ✓

[BCFL23]* degree-𝑑 polynomials twin-𝑘-𝑅-ISISℓ5𝑑 1 1 ✓ ✓

This work degree-𝑑 polynomials 𝑂(ℓ𝑑)-succinct SISℓ𝑑+1 1 1 ✓ ✓

This Work

Functional commitments with fast verification (and black-box use of cryptography)

• Functional commitment for degree-𝑑 polynomials with 𝑂 ℓ𝑑+1 -size CRS

 Previously: 𝑂 ℓ2𝑑 -size CRS

• Dual functional commitment for (bounded-depth) Boolean circuits
 First construction to support fast verification (without non-black-box use of cryptography)

Cryptanalysis of knowledge versions of the new lattice assumptions

• Construct oblivious sampler that (heuristically) falsifies the knowledge 𝑘-𝑅-ISIS assumption in [ACLMT22]
• Approach breaks extractability of several lattice-based functional commitments (our construction and the

[ACLMT22] extractable commitment for linear functions)

Attacks do not break standard binding security of the commitment nor does it (currently) give
an attack on the SNARK candidates based on knowledge 𝑘-𝑅-ISIS [ACLMT22, CLM23, FLV23] –

but does break the underlying knowledge assumption for these SNARK candidates

This talk

This talk

Starting Point: the Wee-Wu Functional Commitment
[WW23]

commitment to ℓ-dimensional vectors 𝒙 ∈ 0,1 ℓ

𝑾1 ∈ ℤ𝑞
𝑛×𝑚

Common reference string (CRS)

𝑾ℓ ∈ ℤ𝑞
𝑛×𝑚⋮

𝑨 ∈ ℤ𝑞
𝑛×𝑚 trapdoor for matrix

related to 𝑨, 𝑾1, … , 𝑾ℓ

Commitment relation (for all 𝑖 ∈ ℓ)

𝑾𝑖
𝑪

𝑮
𝑥𝑖 𝑨

𝑽𝑖

commitment gadget matrix opening
(matrix with short entries)

Trapdoor in CRS allow for joint sampling of 𝑪, 𝑽1, … , 𝑽ℓ

Structure does not support fast verification for polynomials of degree 𝑑 > 1

Our Approach: A “Chaining” Structure

𝑾1

⋮ trapdoor for matrix
related to 𝑨, 𝑾𝑖 , 𝑾𝑖𝑗

Common reference string (CRS)

𝑾ℓ

𝑾1,1

⋮

𝑾1,ℓ

𝑾ℓ,1

⋮

𝑾ℓ,ℓ

⋮ ⋮

𝑨

[WW23] relation: 𝑾𝑖𝑪 = 𝑥𝑖𝑮 − 𝑨𝑽𝑖

This work: 𝑾𝑖𝑪 = 𝑥𝑖𝑮 − 𝑨𝑽𝑖

𝑾𝑖𝑗𝑪 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗

More structure in the CRS

Will also assume require that
𝑪 be a short matrix

Our Approach: A “Chaining” Structure

𝑾𝑖𝑪 = 𝑥𝑖𝑮 − 𝑨𝑽𝑖

Given commitment 𝑪 to 𝒙 ∈ 0,1 ℓ, we construct an opening to 𝑥𝑖𝑥𝑗 as follows:

𝑾𝑖𝑗𝑪 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗

𝑾𝑖𝑗𝑪2

function of commitment
and public parameters

Our Approach: A “Chaining” Structure

𝑾𝑖𝑪 = 𝑥𝑖𝑮 − 𝑨𝑽𝑖

Given commitment 𝑪 to 𝒙 ∈ 0,1 ℓ, we construct an opening to 𝑥𝑖𝑥𝑗 as follows:

𝑾𝑖𝑗𝑪 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗

𝑾𝑖𝑗𝑪2 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗 𝑪
function of commitment
and public parameters

Our Approach: A “Chaining” Structure

𝑾𝑖𝑪 = 𝑥𝑖𝑮 − 𝑨𝑽𝑖

Given commitment 𝑪 to 𝒙 ∈ 0,1 ℓ, we construct an opening to 𝑥𝑖𝑥𝑗 as follows:

𝑾𝑖𝑗𝑪 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗

𝑾𝑖𝑗𝑪2 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗 𝑪

= 𝑥𝑖𝑾𝑗𝑪 − 𝑨𝑽𝑖𝑗𝑪
function of commitment
and public parameters

Our Approach: A “Chaining” Structure

𝑾𝑖𝑪 = 𝑥𝑖𝑮 − 𝑨𝑽𝑖

Given commitment 𝑪 to 𝒙 ∈ 0,1 ℓ, we construct an opening to 𝑥𝑖𝑥𝑗 as follows:

𝑾𝑖𝑗𝑪 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗

𝑾𝑖𝑗𝑪2 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗 𝑪

= 𝑥𝑖𝑾𝑗𝑪 − 𝑨𝑽𝑖𝑗𝑪

= 𝑥𝑖𝑥𝑗𝑮 − 𝑨 𝑽𝑖𝑗𝑪 + 𝑥𝑖𝑽𝑗

function of commitment
and public parameters

opening for 𝑥𝑖𝑥𝑗

(short if 𝑪, 𝑽𝑖 , 𝑽𝑗 , 𝑥𝑖 short)

Our Approach: A “Chaining” Structure

𝑾𝑖𝑪 = 𝑥𝑖𝑮 − 𝑨𝑽𝑖

Given commitment 𝑪 to 𝒙 ∈ 0,1 ℓ, we construct an opening to 𝑥𝑖𝑥𝑗 as follows:

𝑾𝑖𝑗𝑪 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗

𝑾𝑖𝑗𝑪2 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗 𝑪

= 𝑥𝑖𝑾𝑗𝑪 − 𝑨𝑽𝑖𝑗𝑪

= 𝑥𝑖𝑥𝑗𝑮 − 𝑨 𝑽𝑖𝑗𝑪 + 𝑥𝑖𝑽𝑗

function of commitment
and public parameters

opening for 𝑥𝑖𝑥𝑗

(short if 𝑪, 𝑽𝑖 , 𝑽𝑗 , 𝑥𝑖 short)

Verification procedure: compute 𝑾𝑖𝑗𝑪2 and check above relation

Our Approach: A “Chaining” Structure

𝑾𝑖𝑪 = 𝑥𝑖𝑮 − 𝑨𝑽𝑖

Given commitment 𝑪 to 𝒙 ∈ 0,1 ℓ, we construct an opening to 𝑥𝑖𝑥𝑗 as follows:

𝑾𝑖𝑗𝑪 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗

𝑾𝑖𝑗𝑪2 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗 𝑪

= 𝑥𝑖𝑾𝑗𝑪 − 𝑨𝑽𝑖𝑗𝑪

= 𝑥𝑖𝑥𝑗𝑮 − 𝑨 𝑽𝑖𝑗𝑪 + 𝑥𝑖𝑽𝑗

function of commitment
and public parameters

Verification procedure: compute 𝑾𝑖𝑗𝑪2 and check above relation

To open to 𝑓 𝒙 = σ𝑖,𝑗 𝛾𝑖𝑗𝑥𝑖𝑥𝑗, verifier computes σ𝑖,𝑗 𝛾𝑖𝑗𝑾𝑖𝑗𝑪2

Can precompute
𝑾𝑓 = σ𝑖,𝑗 𝛾𝑖𝑗𝑾𝑖𝑗

Online verification just computes
𝑾𝑓𝑪2, which is independent of

input length ℓ

How to Construct 𝑪, 𝑽𝑖 , 𝑽𝑖𝑗?

𝑾𝑖𝑪 = 𝑥𝑖𝑮 − 𝑨𝑽𝑖

𝑾𝑖𝑗𝑪 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗

Approach: sample trapdoor for following matrix

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑨 𝑾11

⋱ ⋮
𝑨 𝑾ℓℓ

𝑽1

⋮
𝑽ℓ

𝑽11

⋮
𝑽ℓℓ

𝑪

𝑥1𝑮
⋮

𝑥ℓ𝑮
𝑥1𝑾1

⋮
𝑥ℓ𝑾ℓ

can use the trapdoor to sample 𝑪, 𝑽𝑖 , 𝑽𝑖𝑗

that satisfies relation for any 𝒙
Size of full trapdoor: 𝑂(ℓ4)

How to Construct 𝑪, 𝑽𝑖 , 𝑽𝑖𝑗?

𝑾𝑖𝑪 = 𝑥𝑖𝑮 − 𝑨𝑽𝑖

𝑾𝑖𝑗𝑪 = 𝑥𝑖𝑾𝑗 − 𝑨𝑽𝑖𝑗

Approach: sample trapdoor for following matrix

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑨 𝑾11

⋱ ⋮
𝑨 𝑾ℓℓ

𝑽1

⋮
𝑽ℓ

𝑽11

⋮
𝑽ℓℓ

𝑪

𝑥1𝑮
⋮

𝑥ℓ𝑮
𝑥1𝑾1

⋮
𝑥ℓ𝑾ℓ

Size of full trapdoor: 𝑂(ℓ4) Shorter CRS: leverage homomorphism

Opening relations are linear:
if 𝑪1 is a commitment to 𝑥1 and 𝑪2 is a
commitment to 𝑥2, then 𝑪1 + 𝑪2 is a

commitment to 𝑥1 + 𝑥2

Instead of publishing full trapdoor, publish
commitments 𝑪 and openings

𝑉1, … , 𝑉ℓ, 𝑉11, … , 𝑉ℓℓ to ℓ basis vectors

Size of CRS: 𝑂(ℓ3)

Evaluation Binding

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑨 𝑾11

⋱ ⋮
𝑨 𝑾ℓℓ

ℓ-succinct SIS [Wee23]: SIS is hard with respect to 𝑨 even given the trapdoor for the matrix

The 𝑾𝑖’s and 𝑾𝑖𝑗’s are uniform random

Assumption has less structure than
BASIS assumption from [WW23] and 𝑘-

𝑅-ISIS assumption from [ACLMT22]

Trapdoor for above matrix suffices to simulate CRS

Can show that adversary that breaks evaluation binding solves SIS with respect to 𝑨
[see paper for details]

Conclusion: functional commitment for degree-𝑑 polynomials with fast verification

and 𝑂 ℓ𝑑+1 -size CRS from 𝑂 ℓ𝑑 -succinct SIS

Evaluation Binding

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑨 𝑾11

⋱ ⋮
𝑨 𝑾ℓℓ

ℓ-succinct SIS [Wee23]: SIS is hard with respect to 𝑨 even given the trapdoor for the matrix

The 𝑾𝑖’s and 𝑾𝑖𝑗’s are uniform random

Assumption has less structure than
BASIS assumption from [WW23] and 𝑘-

𝑅-ISIS assumption from [ACLMT22]

Trapdoor for above matrix suffices to simulate CRS

Can show that adversary that breaks evaluation binding solves SIS with respect to 𝑨
[see paper for details]

Conclusion: functional commitment for degree-𝑑 polynomials with fast verification

and 𝑂 ℓ𝑑+1 -size CRS from 𝑂 ℓ𝑑 -succinct SIS

Previous (black-box) lattice-based
constructions with fast verification:

𝑂 ℓ2𝑑 -size CRS

Cryptanalysis of Lattice-Based Knowledge Assumptions

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitment / SNARK):

𝑨 𝑫

𝒁
𝑻

given (tall) matrices 𝑨, 𝑫 and short preimages 𝒁 of a random target 𝑻

the only way an adversary can produce a short vector 𝒗 such that 𝑨𝒗
is in the image of 𝑫 (i.e., 𝑨𝒗 = 𝑫𝒄) is by setting 𝒗 = 𝒁𝒙

Observe: 𝑨𝒗 for a random (short) 𝒗 is outside the image of 𝑫 (since 𝑫 is tall)

short

Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitment / SNARK):

𝑨 𝑫

𝒁
𝑻

This work: algorithm to obliviously sample a solution 𝑨𝒗 = 𝑫𝒄 without knowledge of a linear
combination 𝒗 = 𝒁𝒙

Rewrite 𝑨𝒁 = 𝑫𝑻 as

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

If 𝒁 and 𝑻 are wide enough, we
(heuristically) obtain a basis for 𝑨 ∣ 𝑫𝑮

short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution 𝑨𝒗 = 𝑫𝒄 without knowledge of a linear
combination 𝒗 = 𝒁𝒙

Rewrite 𝑨𝒁 = 𝑫𝑻 as

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

If 𝒁 and 𝑻 are wide enough, we
(heuristically) obtain a basis for 𝑨 ∣ 𝑫𝑮

Oblivious sampler (Babai rounding):
1. Take a long integer solution 𝒚 where 𝑨 ∣ 𝑫𝑮 𝒚 = 𝟎 mod 𝑞
2. Assuming 𝑩∗ is full-rank over ℚ, find 𝒛 such that 𝑩∗𝒛 = 𝒚 (over ℚ)
3. Set 𝒚∗ = 𝒚 − 𝑩∗ 𝒛 = 𝑩∗ 𝒛 − 𝒛 and parse into 𝒗, 𝒄

𝑩∗

Correctness: 𝑨 ∣ 𝑫𝑮 ⋅ 𝒚∗ = 𝑨 ∣ 𝑫𝑮 ⋅ 𝑩∗(𝒛 − ⌊𝒛⌉) = 𝟎 mod 𝑞 and 𝒚∗ is short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution 𝑨𝒗 = 𝑫𝒄 without knowledge of a linear
combination 𝒗 = 𝒁𝒙

Rewrite 𝑨𝒁 = 𝑫𝑻 as

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

If 𝒁 and 𝑻 are wide enough, we
(heuristically) obtain a basis for 𝑨 ∣ 𝑫𝑮

Oblivious sampler (Babai rounding):
1. Take a long integer solution 𝒚 where 𝑨 ∣ 𝑫𝑮 𝒚 = 𝟎 mod 𝑞
2. Assuming 𝑩∗ is full-rank over ℚ, find 𝒛 such that 𝑩∗𝒛 = 𝒚 (over ℚ)
3. Set 𝒚∗ = 𝒚 − 𝑩∗ 𝒛 = 𝑩∗ 𝒛 − 𝒛 and parse into 𝒗, 𝒄

𝑩∗

Correctness: 𝑨 ∣ 𝑫𝑮 ⋅ 𝒚∗ = 𝑨 ∣ 𝑫𝑮 ⋅ 𝑩∗(𝒛 − ⌊𝒛⌉) = 𝟎 mod 𝑞 and 𝒚∗ is short

This solution is obtained by “rounding” off a long solution

Question: Can we explain such solutions as taking a short
linear combination of 𝒁 (i.e., what the knowledge
assumption asserts)

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by

the verification equation
3. Use components in the CRS to derive a basis for the related lattice

𝑨𝒗 = 𝑫𝒄
1 2

𝑨 ∣ 𝑫𝑮
𝒗

−𝑮−1 𝒄 = 𝟎

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

3

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by

the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:
• Oblivious sampler for integer variant of knowledge 𝑘-𝑅-ISIS assumption from [ACLMT22]
 Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

• Breaks extractability of our functional commitment scheme for quadratic functions (i.e.,
obliviously sample a commitment 𝒄 and openings to 𝑥1

2 = 0, 𝑥1𝑥2 = 1)
• Breaks extractability of the (integer variant of the) linear functional commitment from

[ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor
for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by

the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:
• Oblivious sampler for integer variant of knowledge 𝑘-𝑅-ISIS assumption from [ACLMT22]
 Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

• Breaks extractability of our functional commitment scheme for quadratic functions (i.e.,
obliviously sample a commitment 𝒄 and openings to 𝑥1

2 = 0, 𝑥1𝑥2 = 1)
• Breaks extractability of the (integer variant of the) linear functional commitment from

[ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor
for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

The SNARK considers extractable commitment for quadratic
functions while our current oblivious sampler only works for

linear functions in the case of [ACLMT22]

https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

This Work

Functional commitments with fast verification (and black-box use of cryptography)

• Functional commitment for degree-𝑑 polynomials with 𝑂 ℓ𝑑+1 -size CRS

 Previously: 𝑂 ℓ2𝑑 -size CRS

• Dual functional commitment for (bounded-depth) Boolean circuits
 First construction to support fast verification (without non-black-box use of cryptography)

Cryptanalysis of knowledge versions of the new lattice assumptions

• Construct oblivious sampler that (heuristically) falsifies the knowledge 𝑘-𝑅-ISIS assumption in [ACLMT22]
• Approach breaks extractability of several lattice-based functional commitments (our construction and the

[ACLMT22] extractable commitment for linear functions)

[see paper for details]

Open Questions

(Black-box) functional commitments with fast verification from standard SIS?

Cryptanalysis of lattice-based SNARKs based on knowledge 𝑘-𝑅-ISIS [ACLMT22, CLM23, FLV23]

Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions

Formulation of new lattice-based knowledge assumptions that avoids our attacks

Thank you!

	Slide 1: Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis
	Slide 2: Functional Commitments
	Slide 3: Functional Commitments
	Slide 4: Functional Commitments
	Slide 5: Functional Commitments
	Slide 6: Functional Commitments
	Slide 7: Functional Commitments
	Slide 8: Functional Commitments
	Slide 9: Functional Commitments
	Slide 10: Lattice-Based Functional Commitments
	Slide 11: Lattice-Based Functional Commitments
	Slide 12: Lattice-Based Functional Commitments
	Slide 13: This Work
	Slide 14: Starting Point: the Wee-Wu Functional Commitment
	Slide 15: Our Approach: A “Chaining” Structure
	Slide 16: Our Approach: A “Chaining” Structure
	Slide 17: Our Approach: A “Chaining” Structure
	Slide 18: Our Approach: A “Chaining” Structure
	Slide 19: Our Approach: A “Chaining” Structure
	Slide 20: Our Approach: A “Chaining” Structure
	Slide 21: Our Approach: A “Chaining” Structure
	Slide 22: How to Construct bold italic cap C, bold italic cap V sub i. ,bold italic cap V sub i. j ?
	Slide 23: How to Construct bold italic cap C, bold italic cap V sub i. ,bold italic cap V sub i. j ?
	Slide 24: Evaluation Binding
	Slide 25: Evaluation Binding
	Slide 26: Cryptanalysis of Lattice-Based Knowledge Assumptions
	Slide 27: Cryptanalysis of Lattice-Based Knowledge Assumptions
	Slide 28: Obliviously Sampling a Solution
	Slide 29: Obliviously Sampling a Solution
	Slide 30: Obliviously Sampling a Solution
	Slide 31: Template for Analyzing Lattice-Based Knowledge Assumptions
	Slide 32: Template for Analyzing Lattice-Based Knowledge Assumptions
	Slide 33: Template for Analyzing Lattice-Based Knowledge Assumptions
	Slide 34: This Work
	Slide 35: Open Questions

