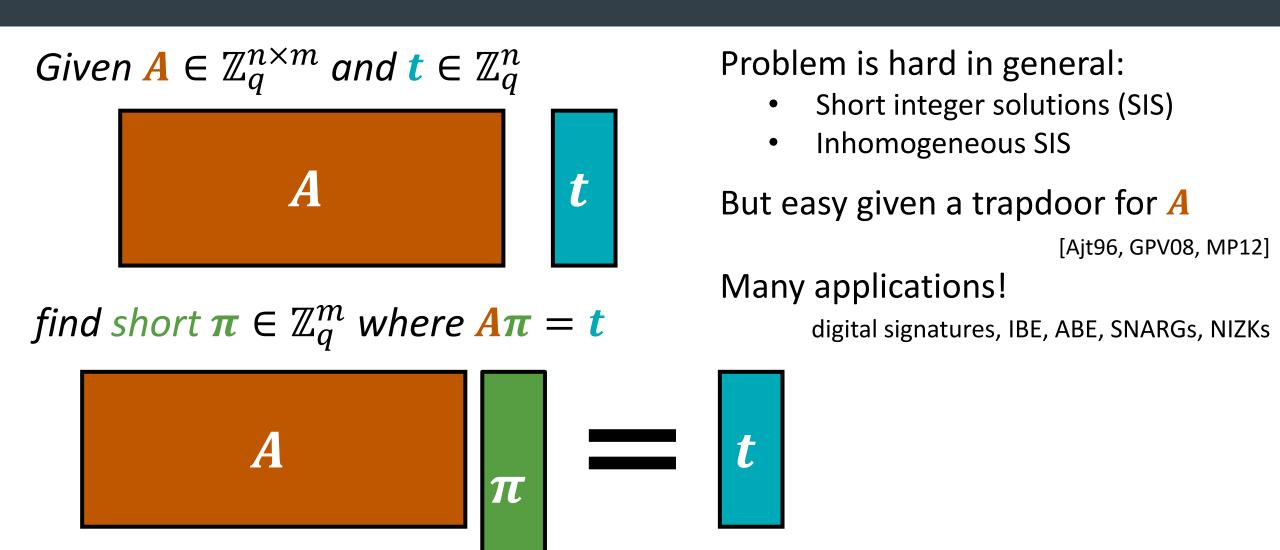
New Techniques for Preimage Sampling: NIZKs and More from LWE

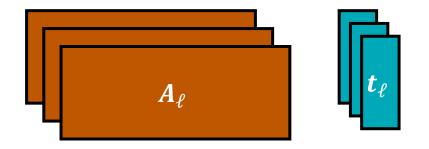
Brent Waters, Hoeteck Wee, and David Wu

The Preimage Sampling Problem

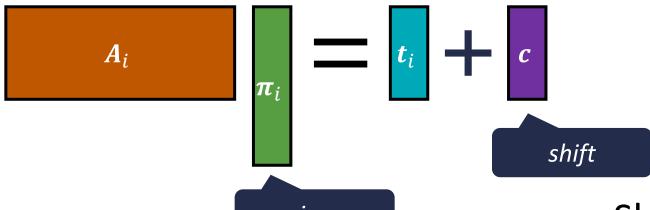


Shifted Multi-Preimage Sampling

Given $A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m}$ and $t_1, \dots, t_\ell \in \mathbb{Z}_q^n$



find $c \in \mathbb{Z}_q^n$ and short $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$



Shift gives one degree of freedom

Shifted Multi-Preimage Sampling

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

Problem is implicitly considered in several recent lattice-based constructions:

- Vector commitments [PPS21, WW23]
- Dual-mode NIZKs via the hidden-bits model [Wat24]

Solving this problem typically requires a hint (i.e., trapdoor information) related to A_1, \dots, A_ℓ

Trivial solution: hint = $(td_1, ..., td_\ell)$ where td_i is trapdoor for A_i

When $\ell=1$, problem is easy (without hints): sample (arbitrary) π_1 and set $c=A_1\pi_1-t_1$

Problem is also easy for some special choices of A_1, \dots, A_ℓ (e.g., $A_1 = A_2 = \dots = A_\ell = G$)

Shifted Multi-Preimage Sampling

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

Problem is implicitly considered in several recent lattice-based constructions:

- Vector commitments [PPS21, WW23]
- Dual-mode NIZKs via the hidden-bits model [Wat24]

Solving this problem typically requires a hint (i.e., trapdoor information) related to $A_1, ..., A_\ell$ Trivial solution: hint = $(td_1, ..., td_\ell)$ where td_i is trapdoor for A_i

Above applications require that SIS/LWE remains hard with respect to any A_i even given the hint (rules out trivial solution)

Feasible only if we allow for the shift

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

• td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and arbitrary targets $t_1, ..., t_\ell$

In fact, td can be used to sample solutions that are statistically close to the following distribution:

- $\boldsymbol{c} \leftarrow \mathbb{Z}_q^n$
- $\pi_i \leftarrow A_i^{-1}(t_i+c)$; π_i is a discrete Gaussian vector satisfying $A_i\pi_i=\overline{t_i+c}$

```
Given A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n	imes m} and t_1,\ldots,t_\ell\in\mathbb{Z}_q^n, find c\in\mathbb{Z}_q^n and short \pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m where A_i\pi_i=t_i+c for all i\in[\ell]
```

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and arbitrary targets $t_1, ..., t_\ell$
- $(A_1, ..., A_\ell, \text{td})$ can be *publicly* derived from a uniform random matrix $\mathbf{B} \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Note: $A_1, ..., A_\ell$ are also elements of $\mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$ (slightly wider by a $\log \ell$ factor)

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to A_1, \dots, A_ℓ and arbitrary targets t_1, \dots, t_ℓ
- $(A_1, \ldots, A_\ell, td)$ c

• SIS/LWE problem Previously lattice-based schemes: either has long structured CRS [WW23] or not statistically hiding [dCP23]

Applications:

Statistically-hiding vector commitments from SIS with poly(λ , log ℓ)-size public parameters, commitments, and openings (and transparent setup)

```
Given A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n	imes m} and t_1,\ldots,t_\ell\in\mathbb{Z}_q^n, find c\in\mathbb{Z}_q^n and short \pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m where A_i\pi_i=t_i+c for all i\in[\ell]
```

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and arbitrary targets $t_1, ..., t_\ell$
- (A] Previous construction [Wat24]: structured CRS in both modes, required sub-exponential
- SIS modulus, and CRS size is quadratic in the length of the hidden-bit string

Applicati Our NIZK essentially achieves the same set of properties as those obtained via the

- Sta correlation-intractability framework commitments, and opening parent setup)
- Dual-mode NIZK from LWE with polynomial modulus and a transparent setup in statistical ZK mode (and CRS size linear in the length of the hidden-bits string)

```
Given A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n	imes m} and t_1,\ldots,t_\ell\in\mathbb{Z}_q^n, find c\in\mathbb{Z}_q^n and short \pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m where A_i\pi_i=t_i+c for all i\in[\ell]
```

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to A_1, \dots, A_ℓ and arbitrary targets t_1, \dots, t_ℓ
- $(A_1, ..., A_\ell, \operatorname{td})$ can be *publicly* derived from a uniform random matrix $\boldsymbol{B} \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

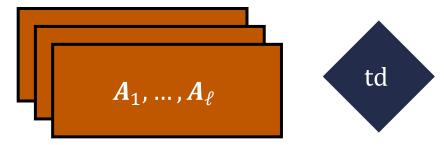
Applications:

- Statistically-hiding vector commitments from SIS with $poly(\lambda, \log \ell)$ -size public parameters, commitments, and openings (and transparent setup)
- Dual-mode NIZK from LWE with polynomial modulus and a transparent setup in statistical ZK mode (and CRS size linear in the length of the hidden-bits string)
- Subsequent work [BLNWW24]: statistical ZAP argument from LWE via the hidden-bits approach

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

common reference string:



commitment to vector $x \in \mathbb{Z}_q^\ell$

opening for bit
$$i$$

To commit to x: use td to sample $(\pi_1, ..., \pi_\ell, c)$

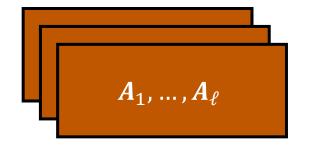
Verification checks π_i is small and $A_i\pi_i=x_ie_1+c$

 e_1 : first basis vector

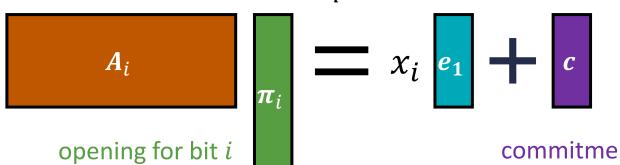
Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

common reference string:



commitment to vector $x \in \mathbb{Z}_q^\ell$



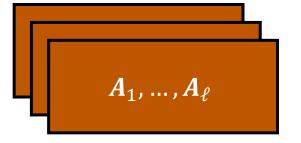
Binding proof:

- Suppose adversary comes up with c and two openings $(x_i, \pi_i), (x_i', \pi_i')$
- Then $\boldsymbol{A}_i(\boldsymbol{\pi}_i \boldsymbol{\pi}_i') = (x_i x_i') \, \boldsymbol{e}_1$

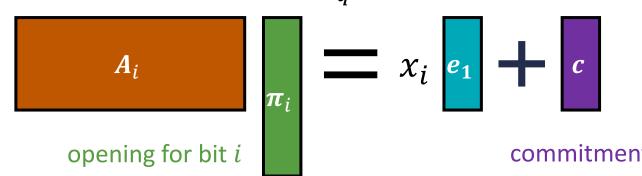
Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

common reference string:



commitment to vector $\boldsymbol{x} \in \mathbb{Z}_q^\ell$



Binding

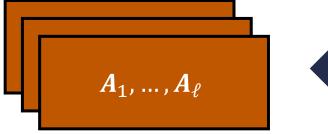
- Supple e_1 is zero in all but the first row two exermises $(x_1, x_1), (x_1, x_2)$
- two openings (x_i, n_i) , (x_i, n_i) • Then $A_i(\pi_i - \pi_i') = (x_i - x_i') e_1$

 $\pi_i - \pi'_i$ is a SIS solution to A_i without the first row

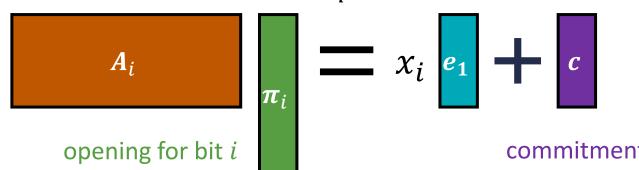
Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

common reference string:



commitment to vector $x \in \mathbb{Z}_q^\ell$



Hiding proof:

• Distribution of $(\pi_1, ..., \pi_\ell, c)$ is statistically close to sampling

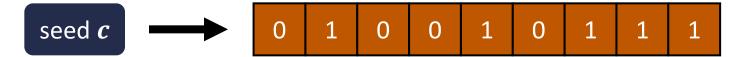
$$c \leftarrow \mathbb{Z}_q^n \text{ and } \boldsymbol{\pi}_i \leftarrow \boldsymbol{A}_i^{-1}(x_i \boldsymbol{e}_1 + \boldsymbol{c})$$

 Commitment and openings independent of the values of unopened inputs!

Hidden-bits generator [FLS90, QRW19]

Used to compile (information-theoretic) NIZK in the hidden-bits model to NIZK in CRS model

common reference string (CRS)



short seed $oldsymbol{c}$ expands into long pseudorandom string (length ℓ)

local openings for each bit x_i with respect to c and CRS

Binding: Can only open c to single bit $x_i \in \{0,1\}$ at each index $i \in [\ell]$

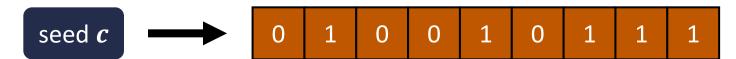
Hiding: x_i is pseudorandom given c and (x_i, π_i) for $j \neq i$

Succinctness: $|c| = \text{poly}(\lambda, \log \ell)$

Hidden-bits generator [FLS90, QRW19]

Used to compile (information-theoretic) NIZK in the hidden-bits model to NIZK in CRS model

common reference string (CRS)



short seed c expands into long pseudorandom string (length ℓ)

Dual mode if CRS can be sampled to be either statistically binding or statistically hiding

$$\pi_6$$
 π_7 π_8 π_9

local openings for each bit x_i with respect to c and CRS

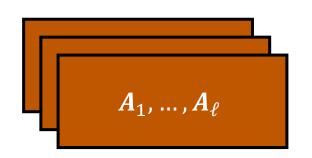
Binding: Can only open c to single bit $x_i \in \{0,1\}$ at each index $i \in [\ell]$

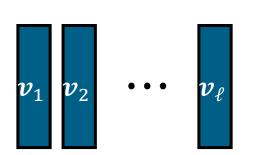
Hiding: x_i is pseudorandom given c and (x_i, π_i) for $j \neq i$

Succinctness: $|c| = \text{poly}(\lambda, \log \ell)$

The Waters [Wat24] (dual-mode) hidden-bits generator from LWE:

common reference string:



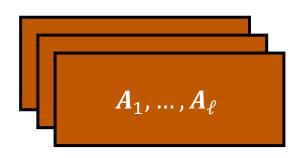


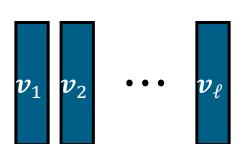
seed is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are short vectors $oldsymbol{\pi}_i$ where $oldsymbol{A}_ioldsymbol{\pi}_i=c$ (sampled using aux)

The Waters [Wat24] (dual-mode) hidden-bits generator from LWE:

common reference string:





seed is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

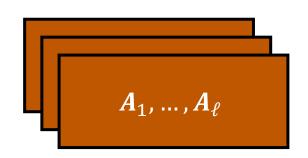
openings are short vectors $oldsymbol{\pi}_i$ where $oldsymbol{A}_ioldsymbol{\pi}_i=oldsymbol{c}$ (sai

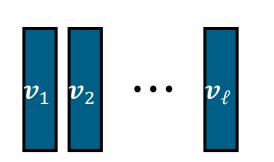
aux contains short preimages $A_i W_i = U$

can derive commitment as c = Ut and openings as W_it $(A_iW_it = Ut = c)$

The Waters [Wat24] (dual-mode) hidden-bits generator from LWE:

common reference string:





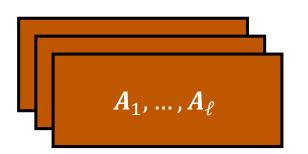
seed is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

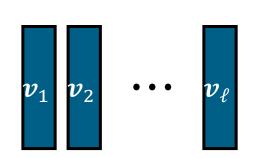
openings are short vectors π_i where $A_i\pi_i=c$ (sampled using aux)

hidden bits are $x_1, \dots, x_\ell \in \{0,1\}$ where $x_i = \lfloor v_i^T \pi_i \rfloor$

The Waters [Wat24] (dual-mode) hidden-bits generator from LWE:

common reference string:





seed is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are short vectors $oldsymbol{\pi}_i$ where $oldsymbol{A}_ioldsymbol{\pi}_i=c$ (sampled using aux)

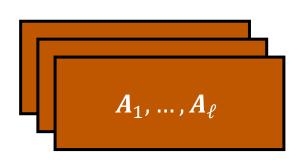
hidden bits are $x_1, \dots, x_\ell \in \{0,1\}$ where $x_i = \left[\boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\pi}_i\right]$

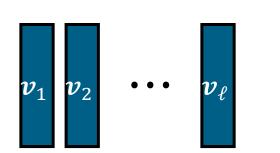
Observe: aux is basically used to solve the shifted multi-preimage sampling problem with respect to A_1,\ldots,A_ℓ and targets $t_1,\ldots,t_\ell=0$

Solution is $(\boldsymbol{\pi}_1,...,\boldsymbol{\pi}_\ell,\boldsymbol{c})$ where $A_i\boldsymbol{\pi}_i=\boldsymbol{t}_i+\boldsymbol{c}=\boldsymbol{c}$

Our dual-mode hidden-bits generator from LWE:

common reference string:





seed is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are short vectors π_i where $A_i\pi_i=c$ (from shifted multi-preimage sampler)

hidden bits are $x_1, \dots, x_\ell \in \{0,1\}$ where $x_i = \lfloor v_i^T \pi_i \rfloor$

binding mode: $\boldsymbol{v}_i^{\mathrm{T}} = \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{A}_i + \boldsymbol{e}_i^{\mathrm{T}}$

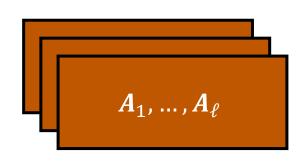
essentially the same argument as in [Wat24]

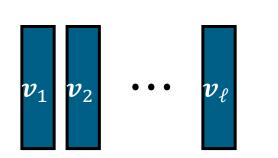
value x_i is essentially determined by CRS and c:

$$\boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\pi}_i = \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{A}_i \boldsymbol{\pi}_i + \boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{\pi}_i \approx \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{c}$$
 (since $\boldsymbol{e}_i^{\mathrm{T}} \boldsymbol{\pi}_i$ is small)

Our dual-mode hidden-bits generator from LWE:

common reference string:





seed is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are short vectors π_i where $A_i\pi_i=c$ (from shifted multi-preimage sampler)

hidden bits are $x_1, \dots, x_\ell \in \{0,1\}$ where $x_i = \left\lfloor \boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\pi}_i \right\rfloor$

hiding mode: $v_i \leftarrow \mathbb{Z}_q^m$

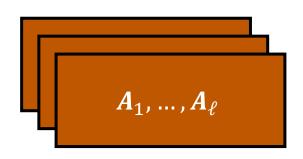
different argument from [Wat24]

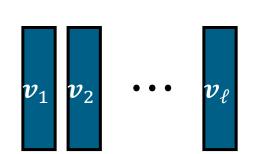
distribution of $(\pi_1, ..., \pi_\ell, c)$ is statistically close to sampling $c \leftarrow \mathbb{Z}_q^n$ and $\pi_i \leftarrow A_i^{-1}(c)$

by leftover hash lemma (with seed $m{v}_i$, source $m{\pi}_i$, we conclude that $m{v}_i^{
m T}m{\pi}_i$ is uniform)

Our dual-mode hidden-bits generator from LWE:

common reference string:





seed is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are short vectors $\boldsymbol{\pi}_i$ where $\boldsymbol{A}_i \boldsymbol{\pi}_i$

hidden bits are $x_1, \dots, x_\ell \in \{0,1\}$ where x_i

Argument in [Wat24] relied on noise smudging (and thus, super-polynomial modulus q)

hiding mode: $v_i \leftarrow \mathbb{Z}_q^m$

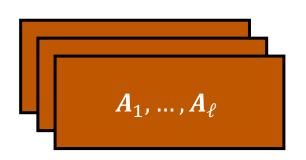
different argument from [Wat24]

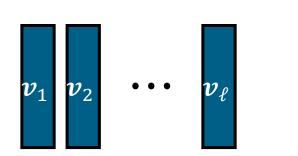
distribution of $(\pi_1, ..., \pi_\ell, c)$ is statistically close to sampling $c \leftarrow \mathbb{Z}_q^n$ and $\pi_i \leftarrow A_i^{-1}(c)$

by leftover hash lemma (with seed v_i , source π_i , we conclude that $v_i^{\rm T}\pi_i$ is uniform)

Our dual-mode hidden-bits generator from LWE:

common reference string:





seed is a vector $\boldsymbol{c} \in \mathbb{Z}_q^n$

openings are short vectors π_i where $A_i\pi_i=c$ (from shifted multi-preimage sampler)

hidden bits are $x_1, \dots, x_\ell \in \{0,1\}$ where $x_i = \left\lfloor \boldsymbol{v}_i^{\mathrm{T}} \boldsymbol{\pi}_i \right\rfloor$

binding mode: $\boldsymbol{v}_i^{\mathrm{T}} = \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{A}_i + \boldsymbol{e}_i^{\mathrm{T}}$ hiding mode: $\boldsymbol{v}_i \leftarrow \mathbb{Z}_q^m$

modes are indistinguishable if LWE holds with respect to A_i (given td, A_1 , ..., A_ℓ)

Techniques also give a statistical ZAP argument from quasi-polynomial-hard LWE [BLNWW24]

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample $A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ and give out a **trapdoor** for the matrix

$$oldsymbol{D}_{\ell} = egin{bmatrix} oldsymbol{A}_1 & & & oldsymbol{G} \ & \ddots & & & & & \\ & & A_{\ell} & oldsymbol{G} \end{bmatrix} \qquad oldsymbol{G} = egin{bmatrix} 1 & 2 & \dots & 2^t \ & & \ddots & & \\ & & & 1 & 2 & \dots & 2^t \end{bmatrix} \ & t = \lceil \log a \rceil - 1 \end{cases}$$

Using trapdoor for D_{ℓ} , can sample (Gaussian) solutions to the linear system

$$\begin{bmatrix} A_1 & & & & G \\ & \ddots & & & G \\ & & A_\ell & G \end{bmatrix} \cdot \begin{bmatrix} n_1 \\ \vdots \\ n_\ell \\ \hat{c} \end{bmatrix} = \begin{bmatrix} t_1 \\ \vdots \\ t_\ell \end{bmatrix} \qquad \text{for all } i \in [\ell], A_i \pi_i = t_i - G \hat{c}$$

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample $A_1, \dots, A_\ell \leftarrow \mathbb{Z}_q^{n \times m}$ and give out a **trapdoor** for the matrix

- Trapdoor for $m{D}_\ell$ is sufficient to solve the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$
- When $A_1, ..., A_\ell$ are uniform, trapdoor for D_ℓ can be obtained given all but one trapdoors of $A_1, ..., A_\ell$ (because G has a public trapdoor)
- LWE/SIS hold with respect to any A_i given $A_1, ..., A_\ell$ and trapdoor for D_ℓ
- Limitation: trapdoor for D_{ℓ} is a structured matrix (and size ℓ^2)

Homomorphic computation using lattices [GSW13, BGGHNSVV14]

Encodes a vector $\mathbf{x} \in \{0,1\}^{\ell}$ with respect to matrix $\mathbf{B} = [\mathbf{B}_1 | \cdots | \mathbf{B}_{\ell}] \in \mathbb{Z}_q^{n \times \ell m}$

Given any function $f: \{0,1\}^{\ell} \to \{0,1\}$, there exists a short matrix $H_{B,f,x}$ where

$$(\mathbf{B} - \mathbf{x}^{\mathrm{T}} \otimes \mathbf{G}) \cdot \mathbf{H}_{\mathbf{B},f,\mathbf{x}} = \mathbf{B}_f - f(\mathbf{x}) \cdot \mathbf{G}$$

encoding of *x* with respect to *B*

encoding of f(x) with respect to B_f

Given ${m B}$ and f, can efficiently compute the matrix ${m B}_f$

Define the indicator function

$$\delta_{\boldsymbol{u}}(\boldsymbol{x}) = \begin{cases} 1, & \boldsymbol{x} = \boldsymbol{u} \\ 0, & \boldsymbol{x} \neq \boldsymbol{u} \end{cases}$$

For simplicity, we will write $B_u \coloneqq B_{\delta_u}$ $H_{B,u,x} \coloneqq H_{B,\delta_u,x}$

•
$$B_{\boldsymbol{u}} \coloneqq B_{\delta_{\boldsymbol{u}}}$$

•
$$H_{B,u,x} := H_{B,\delta_u,x}$$

$$(B - x^{\mathrm{T}} \otimes G) \cdot H_{B,u,x} = B_{u} - \delta_{u}(x) \cdot G = \begin{cases} B_{u} - G & x = u \\ B_{u} & x \neq u \end{cases}$$

Let $u_1, ..., u_\ell \in \{0,1\}^{\lceil \log \ell \rceil}$ be distinct vectors (e.g., u_i is bit representation of i)

Consider the matrix
$$m{D}_\ell = egin{bmatrix} m{A}_1 & & & m{G} \\ & \ddots & & \vdots \\ & & m{A}_\ell & m{G} \end{bmatrix}$$

$$A_i \coloneqq B - u_i \otimes G$$

$$(B - x^{\mathrm{T}} \otimes G) \cdot H_{B,u,x} = B_{u} - \delta_{u}(x) \cdot G = \begin{cases} B_{u} - G & x = u \\ B_{u} & x \neq u \end{cases}$$

$$oldsymbol{D}_{\ell} = egin{bmatrix} A_1 & & & & G \ & \ddots & & & & G \ & & A_{\ell} & G \end{bmatrix} = egin{bmatrix} B - u_1 \otimes G & & & & G \ dots & & & B - u_{\ell} \otimes G \end{bmatrix} egin{bmatrix} G \ dots \ G \end{bmatrix}$$

$$\begin{bmatrix} B-u_1\otimes G & & & & & & & \\ & \ddots & & & & \vdots \\ & & B-u_\ell\otimes G & & G \end{bmatrix} \times \begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_\ell,u_1} \\ \vdots & \ddots & \vdots \\ -H_{B,u_1,u_\ell} & \cdots & -H_{B,u_\ell,u_\ell} \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_\ell}) \end{bmatrix}$$

$$(B - x^{\mathrm{T}} \otimes G) \cdot H_{B,u,x} = B_{u} - \delta_{u}(x) \cdot G = \begin{cases} B_{u} - G & x = u \\ B_{u} & x \neq u \end{cases}$$

Block in row *i* and column *j*:

$$(B - u_i \otimes G) \cdot (-H_{B,u_j,u_i}) + G \cdot G^{-1}(B_{u_j})$$

$$(B - x^{\mathrm{T}} \otimes G) \cdot H_{B,u,x} = B_{u} - \delta_{u}(x) \cdot G = \begin{cases} B_{u} - G & x = u \\ B_{u} & x \neq u \end{cases}$$

Block in row *i* and column *j*:

$$(\boldsymbol{B} - \boldsymbol{u}_i \otimes \boldsymbol{G}) \cdot (-\boldsymbol{H}_{\boldsymbol{B},\boldsymbol{u}_j,\boldsymbol{u}_i}) + \boldsymbol{G} \cdot \boldsymbol{G}^{-1} (\boldsymbol{B}_{\boldsymbol{u}_j}) = -\boldsymbol{B}_{\boldsymbol{u}_j} + \delta_{\boldsymbol{u}_i} (\boldsymbol{u}_j) \cdot \boldsymbol{G}$$

$$(B - x^{\mathrm{T}} \otimes G) \cdot H_{B,u,x} = B_{u} - \delta_{u}(x) \cdot G = \begin{cases} B_{u} - G & x = u \\ B_{u} & x \neq u \end{cases}$$

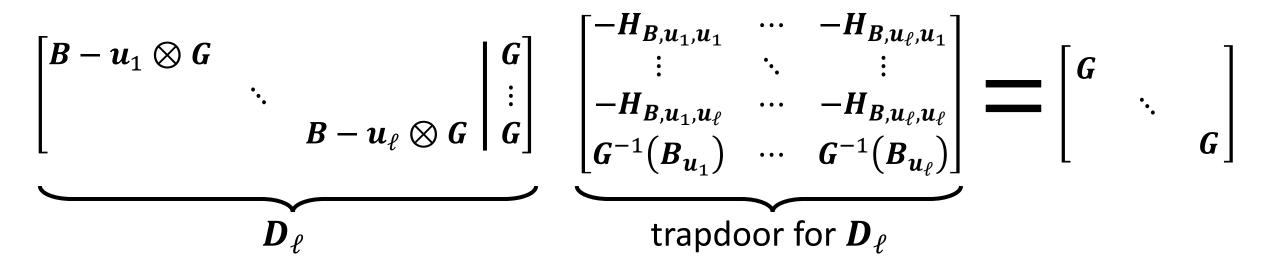
Block in row *i* and column *j*:

$$(\mathbf{B} - \mathbf{u}_i \otimes \mathbf{G}) \cdot (-\mathbf{H}_{\mathbf{B}, \mathbf{u}_j, \mathbf{u}_i}) + \mathbf{G} \cdot \mathbf{G}^{-1} \left(\mathbf{B}_{\mathbf{u}_j}\right) = -\mathbf{B}_{\mathbf{u}_j} + \delta_{\mathbf{u}_i} (\mathbf{u}_j) \cdot \mathbf{G} + \mathbf{B}_{\mathbf{u}_j} = \begin{cases} \mathbf{G}, & i = j \\ \mathbf{0}, & i \neq j \end{cases}$$

Key observations:

- Matrix D_{ℓ} can be described entirely by matrix B
- Vectors $u_1, ..., u_\ell$ just need to be distinct (e.g., u_i is binary representation of i)
- $m{D}_\ell$ has a public trapdoor (determined by $m{B}, m{u}_1, ..., m{u}_\ell$)
- Since we are considering indicator functions, $\|H_{B,u_i,u_j}\|=1$

$$\underbrace{\begin{bmatrix} B - u_1 \otimes G & & & & & \\ & \ddots & & & & \\ & & B - u_\ell \otimes G & G \end{bmatrix}}_{\text{trapdoor for } D_\ell$$
 trapdoor for D_ℓ
$$\underbrace{\begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_\ell,u_1} \\ \vdots & \ddots & \vdots \\ -H_{B,u_1,u_\ell} & \cdots & -H_{B,u_\ell,u_\ell} \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_\ell}) \end{bmatrix}}_{\text{trapdoor for } D_\ell$$



For any matrix $B \in \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$, the matrix D_ℓ has a public trapdoor which can be used to solve the shifted multi-preimage sampling problem with respect to A_1, \dots, A_ℓ where $A_i = B - u_i \otimes G$

$$\begin{bmatrix} A_1 & & & G \\ & \ddots & & \vdots \\ & A_{\ell} & G \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\pi}_1 \\ \vdots \\ \boldsymbol{\pi}_{\ell} \\ \widehat{\boldsymbol{c}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{t}_1 \\ \vdots \\ \boldsymbol{t}_{\ell} \end{bmatrix} \qquad \text{for all } i \in [\ell], A_i \boldsymbol{\pi}_i = \boldsymbol{t}_i - G \widehat{\boldsymbol{c}}$$

$$\underbrace{ \begin{bmatrix} B - u_1 \otimes G & & & & & G \\ & \ddots & & & \vdots \\ & & B - u_\ell \otimes G & G \end{bmatrix} }_{B - u_\ell \otimes G} \underbrace{ \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix} }_{C-1} \underbrace{ \begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_\ell,u_1} \\ \vdots & \ddots & \vdots \\ -H_{B,u_1,u_\ell} & \cdots & -H_{B,u_\ell,u_\ell} \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_\ell}) \end{bmatrix}}_{\text{trapdoor for } D_\ell} = \begin{bmatrix} G & & & & \\ & \ddots & & & \\ & & \ddots & & \\ & & & G \end{bmatrix}$$

For any matrix $B \in \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$, the matrix D_ℓ has a public trapdoor which can be used to solve the shifted multi-preimage sampling problem with respect to A_1, \dots, A_ℓ where $A_i = B - u_i \otimes G$

Real scheme: sample $\boldsymbol{B} \leftarrow \mathbb{Z}_a^{n \times m \lceil \log \ell \rceil}$

(shifted multi-preimage trapdoor sampler has a transparent setup)

$$\underbrace{ \begin{bmatrix} B - u_1 \otimes G & & & & & & & \\ & \ddots & & & & & \\ & & B - u_\ell \otimes G & G \end{bmatrix} }_{B - u_\ell \otimes G & G & G \end{bmatrix} \underbrace{ \begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_\ell,u_1} \\ \vdots & \ddots & & \vdots \\ -H_{B,u_1,u_\ell} & \cdots & -H_{B,u_\ell,u_\ell} \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_\ell}) \end{bmatrix}}_{\text{trapdoor for } D_\ell} = \begin{bmatrix} G & & & \\ & \ddots & & \\ & & & G \end{bmatrix}$$

For any matrix $B \in \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$, the matrix D_ℓ has a public trapdoor which can be used to solve the shifted multi-preimage sampling problem with respect to A_1, \dots, A_ℓ where $A_i = B - u_i \otimes G$

Somewhere programmable: Given any (i, A^*) , suppose we set $B = A^* + u_i \otimes G$

- Then $A_i = B u_i \otimes G = A^*$
- If A^* is uniform, then so is B

Can "program" $oldsymbol{A}^*$ into $oldsymbol{A}_i$ for any index i

Implies hardness of SIS/LWE with respect to any i when $m{B} \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$

Summary

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

New approach to sample A_1, \dots, A_ℓ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and arbitrary targets $t_1, ..., t_\ell$
- $(A_1, ..., A_\ell, \operatorname{td})$ can be *publicly* derived from a uniform random matrix $\boldsymbol{B} \leftarrow \mathbb{Z}_q^{n \times m \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Applications:

- Statistically-hiding vector commitments from SIS with $poly(\lambda, \log \ell)$ -size public parameters, commitments, and openings (and transparent setup)
- Dual-mode NIZK from LWE with polynomial modulus and a transparent setup in statistical ZK mode (and CRS size linear in the length of the hidden-bits string)
- Subsequent work [BLNWW24]: statistical ZAP argument from LWE via the hidden-bits approach

Summary

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

More broadly: ability to sample *structured preimages* is very useful for many applications

Can enable this by either publishing hints or a trapdoor in the public parameters

Trapdoor for
$$m{D}_\ell = egin{bmatrix} m{A}_1 & & & m{G} \\ & \ddots & & \vdots \\ & & m{A}_\ell & m{G} \end{bmatrix}$$
 Vector commitmed Dual-mode NIZK Statistical ZAP arg

Vector commitments

Statistical ZAP arguments [BLNWW24]

security based on standard SIS/LWE

security based on succinct LWE [Wee24]

More power available with other types of trapdoors!

Trapdoor for
$$m{D}_\ell = egin{bmatrix} A & & m{W}_1 \ & \ddots & & dots \ & A & m{W}_\ell \end{bmatrix}$$

Functional commitments [WW23b] Distributed broadcast encryption [CW24] (Succinct) registered ABE [CHW24]

Very useful for *compression*

Summary

Given
$$A_1,\ldots,A_\ell\in\mathbb{Z}_q^{n imes m}$$
 and $t_1,\ldots,t_\ell\in\mathbb{Z}_q^n$, find $c\in\mathbb{Z}_q^n$ and short $\pi_1,\ldots,\pi_\ell\in\mathbb{Z}_q^m$ where $A_i\pi_i=t_i+c$ for all $i\in[\ell]$

$$\underbrace{\begin{bmatrix} B - u_1 \otimes G & & & & & \\ & \ddots & & & & \\ & & B - u_\ell \otimes G & G & G \end{bmatrix}}_{\text{trapdoor for } D_\ell$$
 trapdoor for D_ℓ
$$\underbrace{\begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_\ell,u_1} \\ \vdots & \ddots & \vdots \\ -H_{B,u_1,u_\ell} & \cdots & -H_{B,u_\ell,u_\ell} \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_\ell}) \end{bmatrix}}_{\text{trapdoor for } D_\ell$$

Thank you!

https://eprint.iacr.org/2024/1401