New Techniques for Preimage Sampling: NIZKs and More from LWE

Brent Waters, Hoeteck Wee, and David Wu

The Preimage Sampling Problem

Given
$$
A \in \mathbb{Z}_q^{n \times m}
$$
 and $t \in \mathbb{Z}_q^n$

f ind short $\boldsymbol{\pi} \in \mathbb{Z}_q^m$ where $\boldsymbol{A} \boldsymbol{\pi} = \boldsymbol{t}$

Problem is hard in general:

- Short integer solutions (SIS)
- Inhomogeneous SIS

But easy given a trapdoor for A

[Ajt96, GPV08, MP12]

Many applications!

digital signatures, IBE, ABE, SNARGs, NIZKs

Shifted Multi-Preimage Sampling

Given
$$
A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}
$$
 and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$

 f ind $\bm{c}\in\mathbb{Z}_q^n$ and short $\bm{\pi}_1$, … , $\bm{\pi}_{\ell}\in\mathbb{Z}_q^m$ where $\bm{A}_i\bm{\pi}_i=\bm{t}_i+\bm{c}$ for all $i\in[\ell]$

Shifted Multi-Preimage Sampling

$$
\text{Given } A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m} \text{ and } t_1, \dots, t_\ell \in \mathbb{Z}_q^n,
$$
\n
$$
\text{find } c \in \mathbb{Z}_q^n \text{ and short } \pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m \text{ where } A_i \pi_i = t_i + c \text{ for all } i \in [\ell].
$$

Problem is implicitly considered in several recent lattice-based constructions:

- Vector commitments [PPS21, WW23]
- Dual-mode NIZKs via the hidden-bits model [Wat24]

Solving this problem typically requires a hint (i.e., trapdoor information) related to $A_1, ..., A_\ell$

Trivial solution: $\text{hint} = (\text{td}_{1}, ..., \text{td}_{\ell})$ where td_{i} is trapdoor for \pmb{A}_{i}

When $\ell = 1$, problem is easy (*without* hints): sample (arbitrary) π_1 and set $c = A_1 \pi_1 - t_1$

Problem is also easy for some special choices of $A_1, ..., A_\ell$ (e.g., $A_1 = A_2 = ... = A_\ell = G$)

Shifted Multi-Preimage Sampling

$$
\text{Given } A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m} \text{ and } t_1, \dots, t_\ell \in \mathbb{Z}_q^n,
$$
\n
$$
\text{find } c \in \mathbb{Z}_q^n \text{ and short } \pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m \text{ where } A_i \pi_i = t_i + c \text{ for all } i \in [\ell].
$$

Problem is implicitly considered in several recent lattice-based constructions:

- Vector commitments [PPS21, WW23]
- Dual-mode NIZKs via the hidden-bits model [Wat24]

Solving this problem typically requires a hint (i.e., trapdoor information) related to $A_1, ..., A_\ell$ **Trivial solution:** $\text{hint} = (\text{td}_{1}, ..., \text{td}_{\ell})$ where td_{i} is trapdoor for \pmb{A}_{i}

Above applications require that SIS/LWE remains hard with respect to any A_i even given the hint (rules out trivial solution)

Feasible only if we allow for the shift

Given A_1 *, ...,* $A_\ell \in \mathbb{Z}_q^{n \times m}$ and t_1 , ..., $t_\ell \in \mathbb{Z}_q^n$, f ind $\bm{c}\in\mathbb{Z}_q^n$ and short $\bm{\pi}_1, ..., \bm{\pi}_{\ell}\in\mathbb{Z}_q^m$ where $\bm{A}_i\bm{\pi}_i=\bm{t}_i+\bm{c}$ for all $i\in[\ell]$

New approach to sample $A_1, ..., A_\ell$ together with a trapdoor td where:

• td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and arbitrary targets $t_1, ..., t_\ell$

> In fact, td can be used to sample solutions that are statistically close to the following distribution:

- $\boldsymbol{c} \leftarrow \mathbb{Z}_q^n$
- $\bm{\pi}_i \leftarrow A_i^{-1}(\bm{t}_i+\bm{c})$; $\bm{\pi}_i$ is a discrete Gaussian vector satisfying $A_i\bm{\pi}_i=\bm{t}_i+\bm{c}$

Given A_1 *, ...,* $A_\ell \in \mathbb{Z}_q^{n \times m}$ and t_1 , ..., $t_\ell \in \mathbb{Z}_q^n$, f ind $\bm{c}\in\mathbb{Z}_q^n$ and short $\bm{\pi}_1, ..., \bm{\pi}_{\ell}\in\mathbb{Z}_q^m$ where $\bm{A}_i\bm{\pi}_i=\bm{t}_i+\bm{c}$ for all $i\in[\ell]$

New approach to sample $A_1, ..., A_\ell$ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and arbitrary targets $t_1, ..., t_\ell$
- $(A_1,...,A_\ell,$ td) can be *publicly* derived from a uniform random matrix $\bm{B} \gets \Z_q^{n \times m \, \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Note: A_1 , ..., A_ℓ are also elements of $\mathbb{Z}_q^{n\times m\lceil\log{ \ell}\rceil}$ (slightly wider by a $\log{ \ell}$ factor)

Given A_1 *, ...,* $A_\ell \in \mathbb{Z}_q^{n \times m}$ and t_1 , ..., $t_\ell \in \mathbb{Z}_q^n$, f ind $\bm{c}\in\mathbb{Z}_q^n$ and short $\bm{\pi}_1, ..., \bm{\pi}_{\ell}\in\mathbb{Z}_q^m$ where $\bm{A}_i\bm{\pi}_i=\bm{t}_i+\bm{c}$ for all $i\in[\ell]$

New approach to sample $A_1, ..., A_\ell$ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and arbitrary targets $t_1, ..., t_\ell$
- $(A_1, ..., A_\ell, \text{td})$ c
-

Applications:

- , td) can be publicly derived from a uniform random matrix \mathbf{r} derived from \mathbf{r} • SIS/LWE problem^{Previously lattice-based schemes: either has long *structured* CRS} [WW23] or not statistically hiding [dCP23]
- Statistically-hiding vector commitments from SIS with $poly(\lambda, \log \ell)$ -size public parameters, commitments, and openings (and transparent setup)

Given A_1 *, ...,* $A_\ell \in \mathbb{Z}_q^{n \times m}$ and t_1 , ..., $t_\ell \in \mathbb{Z}_q^n$, f ind $\bm{c}\in\mathbb{Z}_q^n$ and short $\bm{\pi}_1, ..., \bm{\pi}_{\ell}\in\mathbb{Z}_q^m$ where $\bm{A}_i\bm{\pi}_i=\bm{t}_i+\bm{c}$ for all $i\in[\ell]$

New approach to sample $A_1, ..., A_\ell$ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and arbitrary targets $t_1, ..., t_\ell$
- (A₁ Previous construction [Wat24]: structured CRS in both modes, required sub-expor Previous construction [Wat24]: structured CRS in both modes, required sub-exponential
- SIS modulus, and CRS size is quadratic in the length of the hidden-bit string

Applicati Our NIZK essentially achieves the same set of properties as those obtained via the

- Sta correlation-intractability framework and SIS with poly commitments, and openings and transparent setup)
- Dual-mode NIZK from LWE with polynomial modulus and a transparent setup in statistical ZK mode (and CRS size linear in the length of the hidden-bits string)

Given A_1 *, ...,* $A_\ell \in \mathbb{Z}_q^{n \times m}$ and t_1 , ..., $t_\ell \in \mathbb{Z}_q^n$, f ind $\bm{c}\in\mathbb{Z}_q^n$ and short $\bm{\pi}_1, ..., \bm{\pi}_{\ell}\in\mathbb{Z}_q^m$ where $\bm{A}_i\bm{\pi}_i=\bm{t}_i+\bm{c}$ for all $i\in[\ell]$

New approach to sample $A_1, ..., A_\ell$ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and arbitrary targets $t_1, ..., t_\ell$
- $(A_1,...,A_\ell,$ td) can be *publicly* derived from a uniform random matrix $\bm{B} \gets \mathbb{Z}_q^{n \times m \, \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Applications:

- Statistically-hiding vector commitments from SIS with $poly(\lambda, \log \ell)$ -size public parameters, commitments, and openings (and transparent setup)
- Dual-mode NIZK from LWE with polynomial modulus and a transparent setup in statistical ZK mode (and CRS size linear in the length of the hidden-bits string)
- *Subsequent work [BLNWW24]:* statistical ZAP argument from LWE via the hidden-bits approach

Given
$$
A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}
$$
 and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$,
find $c \in \mathbb{Z}_q^n$ and short $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

 x_i e_1 $\left\vert \begin{array}{c} \text{ } \\ \text{ } \\ \text{ } \end{array} \right\vert$ $\left\vert \begin{array}{c} \\ \text{ } \\ \text{ } \end{array} \right\vert$

commitment to vector $\pmb{x}\in\mathbb{Z}_q^\ell$

To commit to \pmb{x} : use td to sample $(\pmb{\pi}_1, ..., \pmb{\pi}_{\ell}, \pmb{c})$

Verification checks $\boldsymbol{\pi}_{i}$ is small and

$$
A_i \boldsymbol{\pi}_i = x_i \boldsymbol{e}_1 + \boldsymbol{c}
$$

 e_1 : first basis vector

Given
$$
A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}
$$
 and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$,
find $c \in \mathbb{Z}_q^n$ and short $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

$$
\text{Given } A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m} \text{ and } t_1, \dots, t_\ell \in \mathbb{Z}_q^n,
$$
\n
$$
\text{find } c \in \mathbb{Z}_q^n \text{ and short } \pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m \text{ where } A_i \pi_i = t_i + c \text{ for all } i \in [\ell].
$$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

Given
$$
A_1, ..., A_\ell \in \mathbb{Z}_q^{n \times m}
$$
 and $t_1, ..., t_\ell \in \mathbb{Z}_q^n$,
find $c \in \mathbb{Z}_q^n$ and short $\pi_1, ..., \pi_\ell \in \mathbb{Z}_q^m$ where $A_i \pi_i = t_i + c$ for all $i \in [\ell]$

The Wee-Wu blueprint [WW23] (in the language of shifted multi-preimage sampling):

 $A_1, ..., A_\ell$ common reference string: the string of t commitment to vector $\pmb{x}\in\mathbb{Z}_q^\ell$ A_i $\boldsymbol{\pi}_i$ x_i e_1 $\left\vert \begin{array}{c} \text{ } \\ \text{ } \\ \text{ } \end{array} \right\vert$ $\left\vert \begin{array}{c} \\ \text{ } \\ \text{ } \end{array} \right\vert$ opening for bit i \blacksquare **Hiding proof:** • Distribution of $(\boldsymbol{\pi}_1, ..., \boldsymbol{\pi}_{\ell}, \boldsymbol{c})$ is statistically close to sampling $\boldsymbol{c} \leftarrow \mathbb{Z}_q^n$ and $\boldsymbol{\pi}_i \leftarrow \boldsymbol{A}_i^{-1} (x_i \boldsymbol{e}_1 + \boldsymbol{c})$ • Commitment and openings independent of the values of unopened inputs!

Hidden-bits generator [FLS90, QRW19]

Used to compile (information-theoretic) NIZK in the hidden-bits model to NIZK in CRS model

common reference string (CRS)

$$
c \longrightarrow 0 1 0 0 1 0 1 1 1 1
$$

short commitment c determines a long pseudorandom string (length ℓ)

$$
\boxed{\pi_1 \mid \pi_2 \mid \pi_3 \mid \pi_4 \mid \pi_5 \mid \pi_6 \mid \pi_7 \mid \pi_8 \mid \pi_9}
$$

local openings for each bit x_i with respect to \boldsymbol{c} and CRS

Binding: Can only open c to single bit $x_i \in \{0,1\}$ at each index $i \in [\ell]$ **Hiding:** x_i is pseudorandom given \boldsymbol{c} and (x_j, π_j) for $j \neq i$ **Succinctness:** $|c| = \text{poly}(\lambda, \log \ell)$

Hidden-bits generator [FLS90, QRW19]

Used to compile (information-theoretic) NIZK in the hidden-bits model to NIZK in CRS model

common reference string (CRS)

0 1 0 0 1 0 1 1 1

short commitment c determines a long pseudorandom string (length ℓ)

Dual mode if CRS can be sampled to be either $\frac{\pi}{6}$ π ₇ π ₈ π ₉ statistically binding or statistically hiding

$$
\boxed{\pi_6 \mid \pi_7 \mid \pi_8 \mid \pi_9}
$$

local openings for each bit x_i with respect to \boldsymbol{c} and CRS

Binding: Can only open c to single bit $x_i \in \{0,1\}$ at each index $i \in [\ell]$ **Hiding:** x_i is pseudorandom given \boldsymbol{c} and (x_j, π_j) for $j \neq i$ **Succinctness:** $|c| = \text{poly}(\lambda, \log \ell)$

The Waters [Wat24] (dual-mode) hidden-bits generator from LWE:

commitment is a vector $\boldsymbol{c}\in\mathbb{Z}_q^n$

openings are short vectors π_i where $A_i \pi_i = c$ (sampled using aux)

The Waters [Wat24] (dual-mode) hidden-bits generator from LWE:

The Waters [Wat24] (dual-mode) hidden-bits generator from LWE:

commitment is a vector $\boldsymbol{c}\in\mathbb{Z}_q^n$

openings are short vectors π_i where $A_i \pi_i = c$ (sampled using aux)

hidden bits are $x_1, ..., x_\ell \in \{0,1\}$ where $x_i = \left[\boldsymbol{v}_i^\text{T}\boldsymbol{\pi}_i\right]$

The Waters [Wat24] (dual-mode) hidden-bits generator from LWE:

commitment is a vector $\boldsymbol{c}\in\mathbb{Z}_q^n$

openings are short vectors π_i where $A_i \pi_i = c$ (sampled using aux)

hidden bits are $x_1, ..., x_\ell \in \{0,1\}$ where $x_i = \left[\boldsymbol{v}_i^\text{T}\boldsymbol{\pi}_i\right]$

Observe: aux is basically used to solve the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and targets $t_1, ..., t_\ell = 0$

Solution is $(\boldsymbol{\pi}_1, ..., \boldsymbol{\pi}_{\ell}, \boldsymbol{c})$ where $\boldsymbol{A}_i \boldsymbol{\pi}_i = \boldsymbol{t}_i + \boldsymbol{c} = \boldsymbol{c}$

Our dual-mode hidden-bits generator from LWE:

commitment is a vector $\boldsymbol{c}\in\mathbb{Z}_q^n$

openings are short vectors π_i where $A_i\pi_i = c$ (from shifted multi-preimage sampler)

hidden bits are $x_1, ..., x_\ell \in \{0,1\}$ where $x_i = \left[\boldsymbol{v}_i^\text{T}\boldsymbol{\pi}_i\right]$

binding mode: $\boldsymbol{v}_i^{\mathrm{T}} = \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{A}_i + \boldsymbol{e}_i^{\mathrm{T}}$ *essentially the same argument as in [Wat24]*

value x_i is essentially determined by CRS and \boldsymbol{c} : $\bm{v}_i^{\rm T}\bm{\pi}_i=\bm{s}_i^{\rm T} \bm{A}_i \bm{\pi}_i+\bm{e}_i^{\rm T} \bm{\pi}_i \approx \bm{s}_i^{\rm T}\bm{c} \ \ \text{(since } \bm{e}_i^{\rm T}\bm{\pi}_i \text{ is small)}$

Our dual-mode hidden-bits generator from LWE:

commitment is a vector $\boldsymbol{c}\in\mathbb{Z}_q^n$

openings are short vectors π_i where $A_i \pi_i = c$ (from shifted multi-preimage sampler) hidden bits are $x_1, ..., x_\ell \in \{0,1\}$ where $x_i = \left[\boldsymbol{v}_i^\text{T}\boldsymbol{\pi}_i\right]$

hiding mode: $\boldsymbol{v}_i \leftarrow \mathbb{Z}_q^m$ distribution of $(\bm{\pi}_1,...,\bm{\pi}_{\ell},\bm{c})$ is statistically close to sampling $\bm{c}\leftarrow\mathbb{Z}_q^n$ and $\bm{\pi}_i\leftarrow A_i^{-1}(\bm{c})$ by leftover hash lemma (with seed \pmb{v}_i , source $\pmb{\pi}_i$, we conclude that $\pmb{v}_i^{\rm T}\pmb{\pi}_i$ is uniform) *different argument from [Wat24]*

Our dual-mode hidden-bits generator from LWE:

commitment is a vector $\boldsymbol{c}\in\mathbb{Z}_q^n$

openings are short vectors π_i where $A_i \pi_i$

hidden bits are $x_1, ..., x_\ell \in \{0,1\}$ where x_i

(and thus, super-polynomial modulus q) Argument in [Wat24] relied on noise smudging

hiding mode: $\boldsymbol{v}_i \leftarrow \mathbb{Z}_q^m$ *different argument from [Wat24]*

distribution of $(\bm{\pi}_1,...,\bm{\pi}_{\ell},\bm{c})$ is statistically close to sampling $\bm{c}\leftarrow\mathbb{Z}_q^n$ and $\bm{\pi}_i\leftarrow A_i^{-1}(\bm{c})$ by leftover hash lemma (with seed \pmb{v}_i , source $\pmb{\pi}_i$, we conclude that $\pmb{v}_i^{\rm T}\pmb{\pi}_i$ is uniform)

Our dual-mode hidden-bits generator from LWE:

commitment is a vector $\boldsymbol{c}\in\mathbb{Z}_q^n$

openings are short vectors π_i where $A_i\pi_i = c$ (from shifted multi-preimage sampler) hidden bits are $x_1, ..., x_\ell \in \{0,1\}$ where $x_i = \left[\boldsymbol{v}_i^\text{T}\boldsymbol{\pi}_i\right]$

binding mode: $\boldsymbol{v}_i^{\mathrm{T}} = \boldsymbol{s}_i^{\mathrm{T}} \boldsymbol{A}_i + \boldsymbol{e}_i^{\mathrm{T}}$ hiding mode: $\boldsymbol{v}_i \leftarrow \mathbb{Z}_q^m$

modes are indistinguishable if LWE holds with respect to A_i (given td, $A_1, ..., A_\ell$)

Techniques also give a statistical ZAP argument from quasi-polynomial-hard LWE [BLNWW24]

$$
\text{Given } A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m} \text{ and } t_1, \dots, t_\ell \in \mathbb{Z}_q^n,
$$
\n
$$
\text{find } c \in \mathbb{Z}_q^n \text{ and short } \pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m \text{ where } A_i \pi_i = t_i + c \text{ for all } i \in [\ell].
$$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample
$$
A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}
$$
 and give out a **trapdoor** for the matrix
\n
$$
D_\ell = \begin{bmatrix} A_1 & & & & \\ & \ddots & & & \\ & & A_\ell & & G \end{bmatrix} \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 2 & \cdots & 2^t & & \\ & & \ddots & & \\ & & & 1 & 2 & \cdots & 2^t \end{bmatrix}
$$
\n $t = \lfloor \log q \rfloor - 1$

Using trapdoor for \boldsymbol{D}_ℓ , can sample (Gaussian) solutions to the linear system

¹ ⋱ ⋮ ^ℓ ⋅ 1 ⋮ ℓ ො = 1 ⋮ ℓ for all ∈ ℓ , = − ො set = − ො

$$
\text{Given } A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m} \text{ and } t_1, \dots, t_\ell \in \mathbb{Z}_q^n,
$$
\n
$$
\text{find } c \in \mathbb{Z}_q^n \text{ and short } \pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m \text{ where } A_i \pi_i = t_i + c \text{ for all } i \in [\ell].
$$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample
$$
A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}
$$
 and give out a **trapdoor** for the matrix
\n
$$
D_\ell = \begin{bmatrix} A_1 & \cdots & \cdots & 1 \\ & \ddots & \vdots & \\ & & A_\ell & \mathbf{G} \end{bmatrix} \qquad \mathbf{G} = \begin{bmatrix} 1 & 2 & \cdots & 2^t & & \\ & & \ddots & & \\ & & & 1 & 2 & \cdots & 2^t \end{bmatrix}
$$

- Trapdoor for \bm{D}_ℓ is sufficient to solve the shifted multi-preimage sampling problem with respect to \bm{A}_1 , ..., \bm{A}_ℓ
- When $A_1, ..., A_\ell$ are uniform, trapdoor for D_ℓ can be obtained given **all but one** trapdoors of $A_1, ..., A_\ell$ (because G has a public trapdoor)
- LWE/SIS hold with respect to any A_i given $A_1, ..., A_\ell$ and trapdoor for D_ℓ
- Limitation: trapdoor for \boldsymbol{D}_ℓ is a structured matrix (and size ℓ^2)

$$
\text{Given } A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m} \text{ and } t_1, \dots, t_\ell \in \mathbb{Z}_q^n,
$$
\n
$$
\text{find } c \in \mathbb{Z}_q^n \text{ and short } \pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m \text{ where } A_i \pi_i = t_i + c \text{ for all } i \in [\ell].
$$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample
$$
A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}
$$
 and give out a **trapdoor** for the matrix
\n
$$
D_\ell = \begin{bmatrix} A_1 & & & G \\ & \ddots & & \vdots \\ & & A_\ell & G \end{bmatrix} \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 2 & \cdots & 2^t & & \\ & & \ddots & & \\ & & & 1 & 2 & \cdots & 2^t \end{bmatrix}
$$

This work: set $\pmb{A}_i = \pmb{B} - \pmb{u}_i^{\rm T} \otimes \pmb{G}$ where \pmb{u}_i is binary representation of i

$$
A_1 = \begin{array}{|c|c|c|} \hline B_1 - 0 \cdot G & B_2 - 0 \cdot G & \cdots & B_\ell - 1 \cdot G \end{array}
$$

$$
\text{Given } A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m} \text{ and } t_1, \dots, t_\ell \in \mathbb{Z}_q^n,
$$
\n
$$
\text{find } c \in \mathbb{Z}_q^n \text{ and short } \pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m \text{ where } A_i \pi_i = t_i + c \text{ for all } i \in [\ell]
$$

The Wee-Wu approach [WW23] for shifted multi-preimage sampling:

Sample
$$
A_1, ..., A_\ell \leftarrow \mathbb{Z}_q^{n \times m}
$$
 and give out a **trapdoor** for the matrix
\n
$$
D_\ell = \begin{bmatrix} A_1 & \cdots & A_\ell \end{bmatrix} \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 2 & \cdots & 2^t \\ & & \ddots & & \\ & & & 1 & 2 & \cdots & 2^t \end{bmatrix}
$$

This work: set $\pmb{A}_i = \pmb{B} - \pmb{u}_i^{\rm T} \otimes \pmb{G}$ where \pmb{u}_i is binary representation of i

- $\textbf{\textit{•}}\ \ \ \ \ \textbf{\textit{B}}\in\mathbb{Z}_q^{n\times m\lceil\log{ \ell}\rceil}$ (slightly wider)
- The matrix \boldsymbol{D}_{ℓ} has a **public** trapdoor

Homomorphic computation using lattices [GSW13, BGGHNSVV14]

Encodes a vector $\bm{x} \in \{0,1\}^{\ell}$ with respect to matrix $\bm{B} = [\bm{B}_1| \cdots |\bm{B}_{\ell}] \in \mathbb{Z}_q^{n \times \ell m}$

$$
B_1 - x_1 G \qquad B_2 - x_2 G \qquad \qquad \cdots \qquad B_\ell - x_\ell G \qquad B - x^T \otimes G
$$

Given any function $f: \{0,1\}^\ell \to \{0,1\}$, there exists a short matrix $\boldsymbol{H}_{\boldsymbol{B},f,\boldsymbol{x}}$ where

$$
(B - x^T \otimes G) \cdot H_{B,f,x} = B_f - f(x) \cdot G
$$

encoding of x with respect to B
encoding of $f(x)$ with respect to B_f

Given \bm{B} and f , can efficiently compute the matrix \bm{B}_f

Define the indicator function

$$
\delta_{\boldsymbol{u}}(\boldsymbol{x}) = \begin{cases} 1, & \boldsymbol{x} = \boldsymbol{u} \\ 0, & \boldsymbol{x} \neq \boldsymbol{u} \end{cases}
$$

For simplicity, we will write • $B_u := B_{\delta_u}$ • $H_{B,u,x} := H_{B,\delta_u,x}$

$$
(B-x^T \otimes G) \cdot H_{B,u,x} = B_u - \delta_u(x) \cdot G = \begin{cases} B_u - G & x = u \\ B_u & x \neq u \end{cases}
$$

Let $\bm u_1, ..., \bm u_\ell \in \{0,1\}^{\lceil \log \ell \rceil}$ be distinct vectors (e.g., $\bm u_i$ is bit representation of $i)$

Consider the matrix
$$
D_{\ell} = \begin{bmatrix} A_1 & & & & \ A_1 & & & \ A_{\ell} & & G \end{bmatrix}
$$
 \therefore $A_{\ell} = B - u_{\ell} \otimes G$

$$
(B - x^T \otimes G) \cdot H_{B,u,x} = B_u - \delta_u(x) \cdot G = \begin{cases} B_u - G & x = u \\ B_u & x \neq u \end{cases}
$$

^ℓ = ¹ ⋱ ⋮ ^ℓ = − ¹ ⊗ ⋱ ⋮ − ^ℓ ⊗

$$
\begin{bmatrix} B-u_1 \otimes G & & & \begin{bmatrix} G \end{bmatrix} & B-u_{\ell} \otimes G \end{bmatrix} \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix} \times \begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_{\ell},u_1} \\ \vdots & \ddots & \vdots \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_{\ell}}) \end{bmatrix}
$$

$$
(B - x^T \otimes G) \cdot H_{B,u,x} = B_u - \delta_u(x) \cdot G = \begin{cases} B_u - G & x = u \\ B_u & x \neq u \end{cases}
$$

Block in row i and column j :

$$
(B - u_i \otimes G) \cdot \left(-H_{B,u_j,u_i} \right) + G \cdot G^{-1} \left(B_{u_j} \right)
$$

$$
\begin{bmatrix} B-u_1 \otimes G & & & \begin{bmatrix} G \end{bmatrix} & & & G \end{bmatrix} \times \begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_\ell,u_1} \\ \vdots & \ddots & \vdots \\ -H_{B,u_1,u_\ell} & \cdots & -H_{B,u_\ell,u_\ell} \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_\ell}) \end{bmatrix}
$$

$$
(B - x^T \otimes G) \cdot H_{B,u,x} = B_u - \delta_u(x) \cdot G = \begin{cases} B_u - G & x = u \\ B_u & x \neq u \end{cases}
$$

Block in row i and column j :

$$
(B - u_i \otimes G) \cdot \left(-H_{B,u_j,u_i} \right) + G \cdot G^{-1} \left(B_{u_j} \right) = -B_{u_j} + \delta_{u_i}(u_j) \cdot G
$$

$$
\begin{bmatrix} B-u_1 \otimes G & & & \\ & \ddots & & \\ & & B-u_\ell \otimes G \end{bmatrix} \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix} \times \begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_\ell,u_1} \\ \vdots & \ddots & \vdots \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_\ell}) \end{bmatrix}
$$

$$
(B - x^T \otimes G) \cdot H_{B,u,x} = B_u - \delta_u(x) \cdot G = \begin{cases} B_u - G & x = u \\ B_u & x \neq u \end{cases}
$$

Block in row i and column j :

$$
(B - u_i \otimes G) \cdot \left(-H_{B, u_j, u_i} \right) + G \cdot G^{-1} \left(B_{u_j} \right) = -B_{u_j} + \delta_{u_i}(u_j) \cdot G + B_{u_j} = \begin{cases} G, & i = j \\ 0, & i \neq j \end{cases}
$$

$$
\begin{bmatrix} B-u_1 \otimes G & & & \\ & \ddots & & \\ & & B-u_\ell \otimes G \end{bmatrix} \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix} \times \begin{bmatrix} -H_{B,u_1,u_1} & \cdots & -H_{B,u_\ell,u_1} \\ \vdots & \ddots & \vdots \\ -H_{B,u_1,u_\ell} & \cdots & -H_{B,u_\ell,u_\ell} \\ G^{-1}(B_{u_1}) & \cdots & G^{-1}(B_{u_\ell}) \end{bmatrix} = \begin{bmatrix} G \\ \vdots \\ G \end{bmatrix}.
$$

Key observations:

- Matrix \boldsymbol{D}_{ρ} can be described entirely by matrix \boldsymbol{B}
- Vectors $\bm u_1, ..., \bm u_\ell$ just need to be distinct (e.g., $\bm u_i$ is binary representation of i)
- \bm{D}_ℓ has a public trapdoor (determined by $\bm{B}, \bm{u}_1, ..., \bm{u}_\ell$)

• Since we are considering indicator functions, $\left\| \boldsymbol{H}_{\boldsymbol{B},\boldsymbol{u}_i,\boldsymbol{u}_j} \right\| = 1$

For *any* matrix $\bm{B}\in\mathbb{Z}_q^{n\times m}$ $\lceil\log\ell\rceil$, the matrix \bm{D}_ℓ has a public trapdoor which can be used to solve the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ where $A_i = B - u_i \otimes G$

$$
\begin{bmatrix} A_1 & & & G \\ & \ddots & & \vdots \\ & & A_{\ell} & G \end{bmatrix} \cdot \begin{bmatrix} \pi_1 \\ \vdots \\ \pi_{\ell} \\ \hat{c} \end{bmatrix} = \begin{bmatrix} t_1 \\ \vdots \\ t_{\ell} \end{bmatrix} \qquad \qquad \longrightarrow \qquad \text{for all } i \in [\ell], A_i \pi_i = t_i - G\hat{c}
$$

Summary

Given A_1 *, ...,* $A_\ell \in \mathbb{Z}_q^{n \times m}$ and t_1 , ..., $t_\ell \in \mathbb{Z}_q^n$, f ind $\bm{c}\in\mathbb{Z}_q^n$ and short $\bm{\pi}_1, ..., \bm{\pi}_{\ell}\in\mathbb{Z}_q^m$ where $\bm{A}_i\bm{\pi}_i=\bm{t}_i+\bm{c}$ for all $i\in[\ell]$

New approach to sample $A_1, ..., A_\ell$ together with a trapdoor td where:

- td can be used to sample (Gaussian-distributed) solutions the shifted multi-preimage sampling problem with respect to $A_1, ..., A_\ell$ and arbitrary targets $t_1, ..., t_\ell$
- $(A_1,...,A_\ell,$ td) can be *publicly* derived from a uniform random matrix $\bm{B} \gets \mathbb{Z}_q^{n \times m \, \lceil \log \ell \rceil}$
- SIS/LWE problems are hard with respect to any A_i given B

Applications:

- Statistically-hiding vector commitments from SIS with $poly(\lambda, \log \ell)$ -size public parameters, commitments, and openings (and transparent setup)
- Dual-mode NIZK from LWE with polynomial modulus and a transparent setup in statistical ZK mode (and CRS size linear in the length of the hidden-bits string)
- *Subsequent work [BLNWW24]:* statistical ZAP argument from LWE via the hidden-bits approach

Summary

$$
\text{Given } A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m} \text{ and } t_1, \dots, t_\ell \in \mathbb{Z}_q^n,
$$
\n
$$
\text{find } c \in \mathbb{Z}_q^n \text{ and short } \pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m \text{ where } A_i \pi_i = t_i + c \text{ for all } i \in [\ell]
$$

More broadly: ability to sample *structured preimages* is very useful for many applications

Can enable this by either publishing hints or a trapdoor in the public parameters

$$
\text{Trapdoor for } \boldsymbol{D}_{\ell} = \begin{bmatrix} A_1 & & & \boldsymbol{G} \\ & \ddots & & \boldsymbol{G} \\ & & A_{\ell} & \boldsymbol{G} \end{bmatrix}
$$

Vector commitments Dual-mode NIZK Statistical ZAP arguments [BLNWW24]

security based on standard SIS/LWE

security based on succinct LWE [Wee24]

More power available with other types of trapdoors!

Trapdoor for ^ℓ = ¹ ⋱ ⋮ ^ℓ

Very useful for *compression*

ABE with succinct ciphertexts [Wee24] Functional commitments [WW23b] Distributed broadcast encryption [CW24] (Succinct) registered ABE [CHW24] and more!

Summary

$$
\text{Given } A_1, \dots, A_\ell \in \mathbb{Z}_q^{n \times m} \text{ and } t_1, \dots, t_\ell \in \mathbb{Z}_q^n,
$$
\n
$$
\text{find } c \in \mathbb{Z}_q^n \text{ and short } \pi_1, \dots, \pi_\ell \in \mathbb{Z}_q^m \text{ where } A_i \pi_i = t_i + c \text{ for all } i \in [\ell]
$$

Thank you!

https://eprint.iacr.org/2024/1401