
Recent Advancements in
Private Information Retrieval

David Wu

based on joint works with Alexander Burton and Samir Menon

Private Information Retrieval (PIR)
[CGKS95]

𝒓𝟏

𝒓𝟐

⋮

𝒓𝑵

𝒓𝒊

record 𝑖

Privacy: Does not learn index 𝑖

Efficiency: communication is sublinear
in database size (ideally: polylog 𝑁)

client database

Private Information Retrieval (PIR)
[CGKS95]

record 𝑖

Basic building block in many privacy-preserving protocols

𝒓𝟏

𝒓𝟐

⋮

𝒓𝑵

client database

Metadata-private messaging

Private content delivery

Certificate transparency auditing

Contact discovery

Private navigation

Private web search Private DNS

Private contact tracing

Password breach checking

Efficiency Metrics

query

response

1 Query size

2 Server Throughput

database size

server computation time

“measures how fast the server can
respond as a function of database size”

Efficiency Metrics

query

response

1 Query size

2 Server Throughput

database size

server computation time

“measures how fast the server can
respond as a function of database size”

Without preprocessing,
server must perform a linear

scan over the database

Efficiency Metrics

query

response

1 Query size

2 Server Throughput

database size

server computation time

3 Rate

record size

response size

“measures how fast the server can
respond as a function of database size”

“measures communication
overhead in responses”

public parameters 4 Public parameter sizeClient generates a
reusable set of public

parameters

Communication/Computation Trade-offs in PIR

Throughput (MB/s)

O
n

lin
e

C
o

m
m

u
n

ic
at

io
n

 (
K

B
)

Retrieving 256-byte record from a million-record database

102 103 10410

104

102

1

10

YPIR
103

HintlessPIR

SimplePIR
SealPIR

FastPIR

OnionPIR

Requires uploading a hint

Requires downloading a hint

No hints requiredThis talk: communication-
efficient PIR

Respire

Spiral

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix

0

0

1

0

Encrypt a 0/1 vector indicating the row
containing the desired record

Homomorphically compute product
between query vector and database matrix

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

𝑟11 𝑟12 𝑟13 𝑟14

𝑟21 𝑟22 𝑟23 𝑟24

𝑟31 𝑟32 𝑟33 𝑟34

𝑟41 𝑟42 𝑟43 𝑟44

Arrange the database as a

𝑁-by- 𝑁 matrix

0

0

1

0

Encrypt a 0/1 vector indicating the row
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product
between query vector and database matrix

Database is in the clear, so additive
homomorphism suffices

PIR from Homomorphic Encryption
[KO97]

Starting point: a 𝑁 construction (𝑁 = number of records)

Encrypt a 0/1 vector indicating the row
containing the desired record

𝑟31 𝑟32 𝑟33 𝑟34

Homomorphically compute product
between query vector and database matrix

Client decrypts to
learn records

Response size: 𝑂𝜆 𝑁

PIR from Homomorphic Encryption
[KO97]

𝑟112𝑟111

𝑟122𝑟121 Select along the first dimension

𝑟312𝑟311

𝑟322𝑟321

Output is encrypted

Approach: Use homomorphic multiplication [GH19, PT20, ALPRSSY21, MCR21]

𝑟312𝑟311

𝑟322𝑟321

𝑟322𝑟321 𝑟321

Sub- 𝑵 communication: view the database as hypercube

0 0 1 0

0 1 1 0

SPIRAL: Composing FHE Schemes

Follows Gentry-Halevi blueprint of composing two lattice-based encryption schemes:

Scheme 1: Regev’s encryption scheme [Reg04]

Scheme 2: Gentry-Sahai-Waters encryption scheme [GSW13]

Small ciphertexts (amortized); only supports additive homomorphism

Ciphertexts in lattice-based schemes are noisy encodings
Homomorphic operations increase noise; more noise = larger parameters = less efficiency

Large ciphertexts; supports homomorphic multiplication (with additive noise growth)

Can we get the best of both worlds?

18 KB plaintext ⇒ 43 KB ciphertext (2.4× expansion)
1 MB plaintext ⇒ 1.3 MB ciphertext (1.3× expansion)

1 bit plaintext ⇒ 2.5 MB ciphertext

allows the use of
smaller lattice

dimension and modulus

SPIRAL: Composing FHE Schemes

Follows Gentry-Halevi blueprint of composing two lattice-based encryption schemes:

Scheme 1: Regev’s encryption scheme [Reg04]

Scheme 2: Gentry-Sahai-Waters encryption scheme [GSW13]

Small ciphertexts (amortized); only supports additive homomorphism

Ciphertexts in lattice-based schemes are noisy encodings
Homomorphic operations increase noise; more noise = larger parameters = less efficiency

Large ciphertexts; supports homomorphic multiplication (with additive noise growth)

SPIRAL: Use GSW for homomorphic multiplication, Regev for communication

18 KB plaintext ⇒ 43 KB ciphertext (2.4× expansion)
1 MB plaintext ⇒ 1.3 MB ciphertext (1.3× expansion)

1 bit plaintext ⇒ 2.5 MB ciphertext

allows the use of
smaller lattice

dimension and modulus

Regev Encodings (over Rings)

Regev encoding of a scalar 𝑚 ∈ 𝑅:

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝒔T

𝒄

≈ 𝑚

secret key encoding message

• Secret key allows recovery of noisy version of
original message

• To support decryption of “small” values 𝑡 ∈
𝑅𝑝, we encode 𝑡 as Τ𝑞 𝑝 𝑡

• Decryption recovers noisy version of (𝑞/𝑝)𝑡
and rounding yields 𝑡

[Reg04, LPR10]

rate =
log 𝑝

2 log 𝑞
<

1

2

OnionPIR: rate = 0.24

𝑅𝑞
2 𝑅𝑞

2 𝑅𝑞

Matrix Regev Encodings (over Rings)

Regev encoding of a matrix 𝑴 ∈ 𝑅𝑞
𝑛×𝑛:

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T
𝑪

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈ 𝑴

𝑅𝑞
𝑛×𝑛

Idea: “Reuse” encryption randomness

[PVW08, LPR10]

rate =
𝑛2 log 𝑝

𝑛 𝑛+1 log 𝑞
=

𝑛2

𝑛2+𝑛

log 𝑝

log 𝑞

Additively homomorphic:

𝑺T𝑪1 ≈ 𝑴1

𝑺T𝑪2 ≈ 𝑴2

𝑺T 𝑪1 + 𝑪2 ≈ 𝑴1 + 𝑴2

Gentry-Sahai-Waters Encodings

GSW encoding of a bit 𝜇 ∈ 0,1 :

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T
𝑪

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈
𝜇

[GSW13]

𝑅𝑞
(𝑛+1)×𝑚

𝑚 = 𝑛 + 1 log 𝑞

Gadget matrix [MP12]:

𝑮 =
𝒈T

⋱
𝒈T

𝒈T = 1 2 22 ⋯ 2 log𝑧 𝑞

“Powers-of-2” matrix

𝑺T
𝑮

𝑅𝑞
𝑛× 𝑛+1

Construction will use other
decomposition bases

Main property: for every vector 𝒗 ∈ ℤ𝑞
𝑛+1, can

define 𝑮−1 𝒗 ∈ 0,1 𝑚 where 𝑮𝑮−1 𝒗 = 𝒗
“binary decomposition”

Gentry-Sahai-Waters Encodings

GSW encoding of a bit 𝜇 ∈ 0,1 :

All elements are polynomials in the ring 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1) where 𝑑 = 2𝑘

𝑺T
𝑪

𝑅𝑞
𝑛× 𝑛+1

𝑅𝑞
𝑛+1 ×𝑛

≈
𝜇

[GSW13]

𝑅𝑞
(𝑛+1)×𝑚

𝑚 = 𝑛 + 1 log 𝑞

Gadget matrix [MP12]:

𝑮 =
𝒈T

⋱
𝒈T

𝒈T = 1 2 22 ⋯ 2 log𝑧 𝑞

“Powers-of-2” matrix

𝑺T
𝑮

𝑅𝑞
𝑛× 𝑛+1

Construction will use other
decomposition bases

rate =
1

𝑑 𝑛+1 2 log 𝑞

Concretely: 𝑑 = 2048, 𝑛 ≥ 1, 𝑞 = 256

Regev-GSW Homomorphism
[CGGI18]

𝑺T𝑪Reg ≈ 𝑴

𝑺T𝑪GSW ≈ 𝜇𝑺T𝑮

𝑺T𝑪GSW𝑮−1 𝑪Reg ≈ 𝜇𝑺T𝑪Reg ≈ 𝜇𝑴

𝑪GSW𝑮−1 𝑪Reg is a Regev encoding of 𝜇𝑴

Regev-GSW Homomorphism
[CGGI18]

Regev encoding of 𝑴 ∈ ℤ𝑞
𝑛×𝑛:

𝑪 ≈ 𝑴

secret key encoding message

𝑺T

ℤ𝑞
𝑛×(𝑛+1)

ℤ𝑞
(𝑛+1)×𝑛

ℤ𝑞
𝑛×𝑛

GSW encoding of 𝜇 ∈ ℤ𝑞:

𝑪 ≈
ℤ𝑞

(𝑛+1)×𝑚

𝑺T

ℤ𝑞
𝑛×(𝑛+1)

Key property: given Regev encoding of message 𝑴 and GSW encoding
of scalar 𝜇, can efficiently derive a Regev encoding of 𝜇 ⋅ 𝑴

𝑪0 𝜇𝐈𝑛 2𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

Redundant encoding of 𝜇

𝑺T = −𝒔 𝐈𝑛] ∈ 𝑅𝑞
𝑛× 𝑛+1

The Gentry-Halevi Blueprint

Database is represented as 2𝜈1 × 2 × 2 × ⋯ × 2
2𝜈2

 hypercube

Query contains 2𝜈1 matrix Regev ciphertexts

Query contains 𝜈2 GSW ciphertexts

0 𝐈𝑛 0 0 0 0

Indicator for index along first dimension

0 1 1 0

Each GSW ciphertext
participates in only one

multiplication with a
Regev ciphertext!

Response is a single
matrix Regev ciphertext

[GH19]

Indicator for index along subsequent dimensions

0 1 0 0

0

1

Regev encodings of first
query dimension

𝑑201𝑑200

𝑑211𝑑210

The Gentry-Halevi Blueprint
[GH19]

Additive homomorphism

Regev encodings of
database slice

Plaintext database
R

egev-G
SW

h

o
m

o
m

o
rp

h
ism

GSW encodings of
second query dimension

𝑑211𝑑210Regev-GSW homomorphism

1 0

𝑑210

GSW encodings of third
query dimension

Response is a single
Regev ciphertext

The Gentry-Halevi Blueprint

Database is represented as 2𝜈1 × 2 × 2 × ⋯ × 2
2𝜈2

 hypercube

Query contains 2𝜈1 matrix Regev ciphertexts

Query contains 𝜈2 GSW ciphertexts

0 𝐈𝑛 0 0 0 0

Indicator for index along first dimension

0 1 1 0

Drawback: large queries

Can compress using
polynomial encoding

method of Angel et al.
[ACLS18]

Estimated size:
4 MB/ciphertext

Estimated query size:
30 MB

[GH19]

Indicator for index along subsequent dimensions

The Gentry-Halevi Blueprint

Database is represented as 2𝜈1 × 2 × 2 × ⋯ × 2
2𝜈2

 hypercube

Query contains 2𝜈1 matrix Regev ciphertexts

Query contains 𝜈2 GSW ciphertexts

0 𝐈𝑛 0 0 0 0

Indicator for index along first dimension

0 1 1 0

Indicator for index along subsequent dimensions

Drawback: large queries

Can compress using
polynomial encoding

method of Angel et al.
[ACLS18]

Estimated size:
4 MB/ciphertext

Estimated query size:
30 MB

SealPIR query size:
66 KB

[GH19]

The SPIRAL Protocol

Key idea: Expand Regev encodings into GSW encodings

OnionPIR [MCR21]: use Regev-GSW homomorphism for the scalar case

SPIRAL: General toolkit to translate between Regev and GSW

Transformations useful for query compression and response packing

Assembling GSW Encodings

Goal: use Regev encodings to construct 𝑪 such that 𝑺T𝑪 ≈ 𝜇𝑺T𝑮

𝜇𝑺T𝑮 = 𝑪0 𝜇𝐈𝑛 2𝜇𝐈𝑛 22𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

𝑪 = 𝑨 𝑩0 𝑩1 𝑩2 ⋯ 𝑩𝑡 Break 𝑪 into blocks

Assembling GSW Encodings

Goal: use Regev encodings to construct 𝑪 such that 𝑺T𝑪 ≈ 𝜇𝑺T𝑮

𝜇𝑺T𝑮 = 𝑪0 𝜇𝐈𝑛 2𝜇𝐈𝑛 22𝜇𝐈𝑛 ⋯ 2𝑡𝜇𝐈𝑛

𝑺T𝑪 = 𝑺T𝑨 𝑺T𝑩0 𝑺T𝑩1 𝑺T𝑩2 ⋯ 𝑺T𝑩𝑡 Break 𝑪 into blocks

Standard Regev
encodings of
𝜇, 2𝜇, … , 2𝑡𝜇

Leverage “key-
switching”

[see paper for details]

≈ ≈

Query Compression in SPIRAL

Database is represented as 2𝜈1 × 2 × 2 × ⋯ × 2
2𝜈2

 hypercube

Query contains 2𝜈1 matrix Regev encodings

Query contains 𝜈2 GSW encodings

0 𝐈𝑛 0 0

Indicator for index along first dimension

0 1 1 0

Indicator for index along subsequent dimensions

0

1

0

0

0 0 0 0

1 2 22 23

1 2 22 23

0 0 0 0

Compress into scalar
Regev encodings

1

𝑓

2 Pack scalars into
single encodings

Similar techniques possible for response compression [see paper]

[ACLS18, CCR19]

(easy to lift from scalar encoding
to matrix encoding)

The SPIRAL Protocol

public parameters

Key-switching matrices for
ciphertext expansion and

translation

record 𝑖

The SPIRAL Protocol

public parameters

query

Single scalar Regev
encoding

𝑓 Homomorphic
expansion

0 𝐈𝑛 0 0

0 1 1

The SPIRAL Protocol

public parameters

query

Homomorphic
expansion

0 𝐈𝑛 0 0

0 1 1

Regev encodings
for first dimension

GSW encodings for
subsequent dimensions

Regev-GSW folding

First dimension processing

The SPIRAL Protocol

public parameters

query

Homomorphic
expansion

Regev-GSW folding

First dimension processing

response compression/packing

0 𝐈𝑛 0 0

0 1 1

Basic Comparisons

Database Metric SealPIR FastPIR OnionPIR SPIRAL

𝟐𝟏𝟖 records
30 KB records

(7.9 GB database)

Public Param. Size

Query Size

Response Size

Server Compute

3 MB

66 KB

3 MB

74.91 s

1 MB

8 MB

262 KB

50.5 s

5 MB

63 KB

127 KB

52.7 s

18 MB

14 KB

84 KB

24.5 s

Database configuration preferred by OnionPIR

Compared to OnionPIR:
 reduce query size by 4.5×
 reduce response size by 2×
 reduce compute time by 2×

 increase public parameter size by 3.6×

Throughput:

Rate: 0.24 0.36

322 MB/s149 MB/s

Comparisons against other communication-efficient schemes (i.e., ones that do not have server hints)

In particular, these exclude subsequent schemes such as FrodoPIR, SimplePIR, and Piano

Basic Comparisons (with Large Records)

Throughput for 100 GB database (𝟐𝟐𝟎 records):
• SPIRAL: 310 MB/S (322 S)
• SealPIR: 102 MB/s (977 s)
• FastPIR: 189 MB/s (528 s)
• OnionPIR: 122 MB/s (817 s)

All measurements based on single-
thread/single-core processing

SPIRAL also has smaller query size and
response size, but larger public parameters

The Streaming Setting

Streaming setting: same query reused over multiple databases

Private video stream (database 𝐷𝑖 contains 𝑖th block of media)

Private voice calls (repeated polling of the same “mailbox”)

Goal: minimize online costs (i.e., server compute, response size)
Consider larger public parameters or query size (amortized over lifetime of stream)

[GCMSAW16]

[AS16, AYAAG21]

Approach: send all of the Regev encodings (and only use Regev-GSW translation)

The Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Packed versions rely on
response compression

(larger public
parameters, higher

throughput)

Packing outperforms
non-packed protocol
for streaming settings

The Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Packing outperforms
non-packed protocol
for streaming settings

Packed versions rely on
response compression

(larger public
parameters, higher

throughput)

Peaks at ≈1.9 GB/s
(over 12× faster than earlier

constructions)

The Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Packing outperforms
non-packed protocol
for streaming settings

1.94 GB/s and a rate of 0.81
(125 MB public parameter and 30 MB query)

Memory bandwidth on system: ≈10 GB/s

The Streaming Setting

Streaming throughput: ignoring query expansion costs, assuming optimal record size for each system

Packing outperforms
non-packed protocol
for streaming settings

Cost of privately streaming a 2 GB movie from
database of 214 movies estimated to be 1.9×

more expensive than direct download
(based on AWS compute costs)

The SPIRAL Family of PIR

Techniques to translate between FHE schemes enables new trade-offs in single-server PIR

Automatic parameter selection to choose lattice parameters based on database configuration

Base version of SPIRAL

Query size: 14 KB
Rate: 0.41
Throughput: 333 MB/s

4.5× smaller
2.1× higher
2.9× higher

(Database with 214 records of size 100 KB)

Streaming versions of SPIRAL

Rate: 0.81
Throughput: 1.9 GB/s

3.4× smaller
12.3× higher

Used for both query compression and response compression

RESPIRE: The Small Record Setting

Suppose database has small records (∼ 256 bytes)

Query size: 16 KB
Response size: 20 KB
Throughput: 200 MB/s

Both queries and responses are
much larger than the record!

Reason: LWE ciphertexts are big

Recall that query consists of (packed) Regev ciphertext (at least one element of 𝑅𝑞)

• 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1)
• For correctness + security, need 𝑑 ∼ 2048 and 𝑞 ~ 256

• Single ciphertext already ≥ 14 KB

Can we reduce communication when records are small?

RESPIRE: The Small Record Setting

Suppose database has small records (∼ 256 bytes)

Query size: 16 KB
Response size: 20 KB
Throughput: 200 MB/s

Reason: LWE ciphertexts are big

Recall that query consists of (packed) Regev ciphertext (at least one element of 𝑅𝑞)

• 𝑅 = ℤ 𝑥 /(𝑥𝑑 + 1)
• For correctness + security, need 𝑑 ∼ 2048 and 𝑞 ~ 256

• Single ciphertext already ≥ 14 KB

Can we reduce communication when records are small?

Query size: 4.1 KB
Response size: 2.0 KB
Throughput: 204 MB/s

RESPIRE

3.9× smaller

10× smaller

Query Expansion, Revisited

Query contains 2𝜈1 matrix Regev encodings

Query contains 𝜈2 GSW encodings

0 𝐈𝑛 0 0

Indicator for index along first dimension

0 1 1 0
Indicator for index along subsequent dimensions

0

1

0

0

0 0 0 0

1 2 22 23

1 2 22 23

0 0 0 0

Compress into scalar
Regev encodings

1

𝑓

2 Pack scalars into single
encodings

[ACLS18, CCR19]

When database is small, we only need to pack a small number of coefficients into an encoding

Each plaintext value is a polynomial of degree 𝑑 and can hold 𝑑 values in ℤ𝑞

1 1 0 1 0 0 0 01 + 𝑥 + 𝑥3 𝑑 = 8

Query Expansion, Revisited

Query contains 2𝜈1 matrix Regev encodings

Query contains 𝜈2 GSW encodings

0 𝐈𝑛 0 0

Indicator for index along first dimension

0 1 1 0
Indicator for index along subsequent dimensions

0

1

0

0

0 0 0 0

1 2 22 23

1 2 22 23

0 0 0 0

Compress into scalar
Regev encodings

1

𝑓

2 Pack scalars into single
encodings

[ACLS18, CCR19]

When database is small, we only need to pack a small number of coefficients into an encoding

Each plaintext value is a polynomial of degree 𝑑 and can hold 𝑑 values in ℤ𝑞

1 1 0 1 0 0 0 01 + 𝑥 + 𝑥3 𝑑 = 8 Unused space!

RESPIRE Query Compression

If we want to encode (i.e., pack ℎ independent values into a single ciphertext), it suffices
to communicate a vector of dimension ℎ rather than 𝑑

Encoding

Let 𝑑 be the ring dimension

1 1 0 1
ℎ = 4
𝑑 = 8

RESPIRE Query Compression

If we want to encode (i.e., pack ℎ independent values into a single ciphertext), it suffices
to communicate a vector of dimension ℎ rather than 𝑑

Encoding

Let 𝑑 be the ring dimension

1 1 0 1
ℎ = 4
𝑑 = 8

Only encode the components that are needed,
“truncate” the ciphertext polynomial

RESPIRE Query Compression

If we want to encode (i.e., pack ℎ independent values into a single ciphertext), it suffices
to communicate a vector of dimension ℎ rather than 𝑑

1 1 0 1 0 0 0 0
Encoding

Let 𝑑 be the ring dimension

Decoding

1 1 0 1
ℎ = 4
𝑑 = 8

Select record as usual,
send back to client

RESPIRE Query Compression

If we want to encode (i.e., pack ℎ independent values into a single ciphertext), it suffices
to communicate a vector of dimension ℎ rather than 𝑑

1 1 0 1 0 0 0 0
Encoding

Let 𝑑 be the ring dimension

Decoding

1 1 0 1
ℎ = 4
𝑑 = 8

Select record as usual,
send back to client

Decoding relies on automorphisms to extract
the relevant entries of the original vector

RESPIRE Response Compression

Let 𝑑 be the ring dimension

Suppose record is much smaller than a single ring element

1 1 0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

“Ring switching” [BGV12, GHPS12]: translate ciphertext over big ring to a ciphertext over a subring

(1 million 256 byte records)

Query size: 4.1 KB
Response size: 2.0 KB
Throughput: 204 MB/s

RESPIRE

Both query and response is “smaller” than
standard RLWE ciphertext!

More Recent Developments in PIR

Server preprocessing (client downloads hint at beginning of protocol)

SimplePIR, DoublePIR [HHCMV23]

Suitable for databases with small records (a few bits), but has a large hint (hundred of MB)

Very high throughput (nearly memory bandwidth!)

HintlessPIR [LMRS24], YPIR [MW24]

SimplePIR without the hint (by leveraging bootstrapping/key-switching)

Comparable throughput (for big databases), slightly more communication

Piano [ZPSZ23]

Sublinear server computational costs (can scale better to databases that are >100 GB)

Preprocessing phase requires streaming the entire database

More Recent Developments in PIR

Server preprocessing (without hint)

Doubly-efficient PIR [LMW23]

Server encodes the database to answer queries in sublinear time

Concrete efficiency not yet clear

Many other directions!

Protocols for batch queries [MR23]

Supporting keyword search [PSY23]

Authenticating the response [CNCWF23]

Takeaway: PIR is an exciting area to work in with many different trade-offs to explore!

SPIRAL and RESPIRE

Thank you!

SPIRAL: https://eprint.iacr.org/2022/368.pdf
RESPIRE: https://eprint.iacr.org/2024/1165.pdf
Code: https://github.com/menonsamir/spiral-rs

Techniques to translate between FHE
schemes enables new trade-offs in single-
server PIR

Useful for both query compression and
response compression

https://eprint.iacr.org/2022/368.pdf
https://eprint.iacr.org/2024/1165.pdf
https://github.com/menonsamir/spiral-rs

	Slide 1: Recent Advancements in Private Information Retrieval
	Slide 2: Private Information Retrieval (PIR)
	Slide 3: Private Information Retrieval (PIR)
	Slide 4: Efficiency Metrics
	Slide 5: Efficiency Metrics
	Slide 6: Efficiency Metrics
	Slide 7: Communication/Computation Trade-offs in PIR
	Slide 8: PIR from Homomorphic Encryption
	Slide 9: PIR from Homomorphic Encryption
	Slide 10: PIR from Homomorphic Encryption
	Slide 11: PIR from Homomorphic Encryption
	Slide 12: PIR from Homomorphic Encryption
	Slide 13: Spiral: Composing FHE Schemes
	Slide 14: Spiral: Composing FHE Schemes
	Slide 15: Regev Encodings (over Rings)
	Slide 16: Matrix Regev Encodings (over Rings)
	Slide 17: Gentry-Sahai-Waters Encodings
	Slide 18: Gentry-Sahai-Waters Encodings
	Slide 19: Regev-GSW Homomorphism
	Slide 20: Regev-GSW Homomorphism
	Slide 21: The Gentry-Halevi Blueprint
	Slide 22
	Slide 23: The Gentry-Halevi Blueprint
	Slide 24: The Gentry-Halevi Blueprint
	Slide 25: The Spiral Protocol
	Slide 26: Assembling GSW Encodings
	Slide 27: Assembling GSW Encodings
	Slide 28: Query Compression in Spiral
	Slide 29: The Spiral Protocol
	Slide 30: The Spiral Protocol
	Slide 31: The Spiral Protocol
	Slide 32: The Spiral Protocol
	Slide 33: Basic Comparisons
	Slide 34: Basic Comparisons (with Large Records)
	Slide 35: The Streaming Setting
	Slide 36: The Streaming Setting
	Slide 37: The Streaming Setting
	Slide 38: The Streaming Setting
	Slide 39: The Streaming Setting
	Slide 40: The Spiral Family of PIR
	Slide 41: Respire: The Small Record Setting
	Slide 42: Respire: The Small Record Setting
	Slide 43: Query Expansion, Revisited
	Slide 44: Query Expansion, Revisited
	Slide 45: Respire Query Compression
	Slide 46: Respire Query Compression
	Slide 47: Respire Query Compression
	Slide 48: Respire Query Compression
	Slide 49: Respire Response Compression
	Slide 50: More Recent Developments in PIR
	Slide 51: More Recent Developments in PIR
	Slide 52: Spiral and Respire

