Succinct Functional Commitments for Circuits from *k*-Lin

Hoeteck Wee and <u>David Wu</u> May 2024

 $Commit(crs, x) \rightarrow (\sigma, st)$

Takes a common reference string and commits to an input xOutputs commitment σ and commitment state st

Commit(crs, x) \rightarrow (σ , st) Open(st, f) $\rightarrow \pi$

Takes the commitment state and a function f and outputs an opening π

Verify(crs,
$$\sigma$$
, (f, y) , π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y with respect to f

Binding: efficient adversary cannot open σ to two different values with respect to the same f

$$\pi_{0} (f, y_{0}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{0}), \pi_{0}) = 1$$

$$\pi_{1} (f, y_{1}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{1}), \pi_{1}) = 1$$

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma| = poly(\lambda, \log |x|)$
- Short opening: $|\pi| = \text{poly}(\lambda, \log|x|)$

Special Cases of Functional Commitments

Vector commitments:

$$[x_1, x_2, \dots, x_n] \qquad \qquad \text{ind}_i(x_1, \dots, x_n) \coloneqq x_i$$

commit to a vector, open at an index

Polynomial commitments:

commit to a polynomial, open to the evaluation at x

Commitments as Proofs on Committed Data

 π is a proof that the data satisfies some property (e.g., committed input is in a certain range)

Succinctness: both the commitment and the proof are short

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[CLM23, FLV23]	polynomial commitment	k-R-ISIS assumption (lattices)
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22, CLM23]	constant-degree polynomials	k-R-ISIS assumption (lattices)
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[dCP23]	Boolean circuits	SIS (non-succinct openings in general)
[KLVW23]	Boolean circuits	batch arguments for NP
[BCFL23]	Boolean circuits	twin <i>k-R-</i> ISIS (lattice) / HiKER (pairing)
[WW23a, WW23b]	Boolean circuits	ℓ-succinct SIS

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Why bilinear maps? Schemes have the best succinctness

• Pairing-based SNARKs just have a constant number of group elements

Can we construct a functional commitment for general circuits where the size of the commitment and the opening contain a **constant** number of group elements?

Namely: match the succinctness of pairing-based SNARKs, but only using standard pairing-based assumption (no knowledge assumptions or ideal models)

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Scheme	Function Class	crs	$ \sigma $	$ \pi $	Assumption
[LRY16, Gro16]	arithmetic circuits	0(s)	0(1)	0(1)	generic group
[LRY16]	linear functions	$O(\ell)$	0(1)	O(m)	subgroup decision
[LM19]	linear functions	$O(\ell m)$	0(1)	0(1)	generic group
[LP20]	μ -sparse polynomials	$O(\mu)$	O(m)	0(1)	über assumption
[CFT22]	degree-d polynomials	$O(\ell^d m)$	O(d)	O(d)	ℓ^d -Diffie-Hellman exponent
[BCFL23]	arithmetic circuits	$O(s^{5})$	0(1)	O(d)	hinted kernel (q -type)
[KLVW23]	arithmetic circuits	$poly(\lambda)$	0(1)	$poly(\lambda)$	<i>k</i> -Lin
This work	arithmetic circuits	$O(s^5)$	0 (1)	0 (1)	bilateral k-Lin
ℓ = input length, m = output length, s = circuit size				metrics	in # group elements

This Work

This work: functional commitments for general circuits using pairings

Scheme	Function Class	crs	$ \sigma $	$ \pi $	Assumption
This work	arithmetic circuits	$O(s^5)$	0 (1)	0 (1)	bilateral k-Lin

- First pairing-based construction for general circuits based on falsifiable assumptions where commitment and openings contain constant number of group elements
 - Previously: needed SNARKs (non-falsifiable assumptions)
- First scheme that only makes **black-box** use of cryptographic primitives/algorithms where the commitment + opening size is $poly(\lambda)$ bits
 - **Previously:** need non-black-box techniques (e.g., SNARKs or BARGs for NP)

This Work

This work: functional commitments for general circuits using pairings

Scheme	Function Class	crs	$ \sigma $	$ \pi $	Assumption
This work	arithmetic circuits	$O(s^5)$	0 (1)	0 (1)	bilateral <i>k</i> -Lin
Additional imp	olications (for free!):	Constant number of group elements			

- SNARG for P/poly with a universal setup with constant-size proofs (CRS only depends on the size of the circuit)
 - **Previously (from pairings):** SNARG for P/poly with circuit-dependent CRS [GZ21]
- Homomorphic signature for general (bounded-size) circuits with constant-size signatures
 - **Previously (from pairings):** Signature size scaled with the *depth* of the circuit [BCFL23]

(all results without relying on knowledge assumptions or ideal models)

Starting Point: Chainable Commitment

Chainable commitment [BCFL23] Instead of committing to x and opening to y = f(x)Let $f: \mathbb{Z}_p^k \to \mathbb{Z}_p^\ell$ be a vector-valued function x_1 y_1 Can think of commitment Open to commitment to as a subset product: x_2 y_2 $\mathbf{y} = f(\mathbf{x})$ $\sigma = \left[\begin{array}{c} h_i^{x_i} \end{array} \right]$ • Chain binding: cannot open σ_{in} to two distinct where h_i are in the CRS y_ℓ x_k commitments $\sigma_{out}, \sigma'_{out}$ succinct commitment to succinct commitment to succinct opening π vector $\mathbf{y} = f(\mathbf{x})$ vector *x* $\sigma_{\mathbf{x}}$ $\sigma_{\mathbf{v}}$

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions \Rightarrow functional commitment for circuits

Chainable commitment openings for each layer

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions \Rightarrow functional commitment for circuits

Commitment: σ Opening: $(\sigma'_1, \sigma'_2, \sigma'_3, \pi_1, \pi_2, \pi_3)$

Opening scales with depth of circuit

Chainable commitment openings for each layer

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Opening: commit to **all** wires (i.e., concatenated together) **twice**

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Input layer Intermediate layer Output layer

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Opening: commit to **all** wires (i.e., concatenated together) **twice**

$$x_1 \quad x_2 \quad \cdots \quad x_k \quad y_1 \quad y_2 \quad \cdots \quad y_\ell \quad z_1 \quad z_2 \quad \cdots \quad z_t \quad \longrightarrow \quad \sigma_1$$

Neither σ_1 nor σ_2 is a quadratic function of σ_{input}

With bilinear maps, we only know how to check quadratic functions

$$x_1$$
 x_2 \cdots x_k y_1 y_2 \cdots y_ℓ z_1 z_2 \cdots z_t \rightarrow σ_2

Technical Tool: Projective Chainable Commitments

Technical Tool: Projective Chainable Commitments

Prove statements of the following form:

- Input consistency: first k wires in σ_1 is consistent with σ_{input}
- Gate consistency: first j + 1 wires in σ_2 is consistent with first j wires in σ_1

This is a **quadratic** relation (since we have the intermediate wires)

Prove statements of the following form:

- Input consistency: first k wires in σ_1 is consistent with σ_{input}
- Gate consistency: first j + 1 wires in σ_2 is consistent with first j wires in σ_1
- Internal consistency: first j wires in σ_1 is consistent with first j wires in σ_2
- Output consistency: last t wires in σ_1 are consistent with σ_{output}

$$x_1 x_2 \cdots x_k \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

Initially: no guarantees on what $\sigma_1, \sigma_1', \sigma_2, \sigma_2'$ commit to

Step 1: Input consistency between σ_{in} and σ_1, σ_1'

Projective chain binding: σ_1, σ'_1 are both openings for σ_{in} so $Project(\sigma_1, k) = Project(\sigma'_1, k)$

$$x_1 x_2 \cdots x_k \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_1 and σ'_1 agree on first k components:Note: we do not know what valuesProject(σ_1, k) = Project(σ'_1, k)they have, only that they agree

Step 1: Input consistency between σ_{in} and σ_1, σ_1'

Projective chain binding: σ_1, σ'_1 are both openings for σ_{in} so $Project(\sigma_1, k) = Project(\sigma'_1, k)$

$$x_1 x_2 \cdots x_k \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_1 and σ'_1 agree on first k components:Note: we do not know what valuesProject(σ_1, k) = Project(σ'_1, k)they have, only that they agree

$$\sigma_2, \sigma_2$$

Step 2: Gate consistency between first k wires in σ_1, σ_1' with first k + 1 wires in σ_2, σ_2'

Since $Project(\sigma_1, k) = Project(\sigma'_1, k)$, projective chain binding implies $Project(\sigma_2, k + 1) = Project(\sigma'_2, k + 1)$

$$x_1 x_2 \cdots x_k \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_2 and σ'_2 agree on first k + 1 components: Project $(\sigma_2, k + 1) = Project(\sigma'_2, k + 1)$

Step 2: Gate consistency between first k wires in σ_1, σ_1' with first k + 1 wires in σ_2, σ_2'

Since $Project(\sigma_1, k) = Project(\sigma'_1, k)$, projective chain binding implies $Project(\sigma_2, k + 1) = Project(\sigma'_2, k + 1)$

$$x_1 x_2 \cdots x_k \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_2 and σ'_2 agree on first k + 1 components: Project $(\sigma_2, k + 1) = Project(\sigma'_2, k + 1)$

Step 3: Internal consistency between first k + 1 wires in σ_2, σ'_2 with first k + 1 wires in σ_1, σ'_1

Since $Project(\sigma_2, k + 1) = Project(\sigma'_2, k + 1)$, projective chain binding implies $Project(\sigma_1, k + 1) = Project(\sigma'_1, k + 1)$

$$x_1 x_2 \cdots x_k \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_1 and σ'_1 agree on first k + 1 components: Project $(\sigma_1, k + 1) = Project(\sigma'_1, k + 1)$

Step 3: Internal consistency between first k + 1 wires in σ_2, σ'_2 with first k + 1 wires in σ_1, σ'_1

Since $Project(\sigma_2, k + 1) = Project(\sigma'_2, k + 1)$, projective chain binding implies $Project(\sigma_1, k + 1) = Project(\sigma'_1, k + 1)$

$$x_1 x_2 \cdots x_k \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

\hat{x}_1 \hat{x}_2 \cdots \hat{x}_k \hat{y}_1	σ_1, σ_1'
--	-----------------------

 σ_1 and σ'_1 agree on first k + 1 components: Project $(\sigma_1, k + 1) = Project(\sigma'_1, k + 1)$

\tilde{x}_1 \tilde{x}_2 \cdots \tilde{x}_k \tilde{y}_1	σ_2, σ_2'
--	-----------------------

Observe: we have established that $Project(\sigma_1, k + 1) = Project(\sigma'_1, k + 1)$ Can iterate this strategy for each index k + 1, k + 2, ... to argue that σ_1, σ'_1 agree on **all** components

$$x_1 x_2 \cdots x_k \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

$$\hat{x}_1 \quad \hat{x}_2 \quad \cdots \quad \hat{x}_k \quad \hat{y}_1 \quad \hat{y}_2 \quad \cdots \quad \hat{y}_\ell \quad \hat{z}_1 \quad \hat{z}_2 \quad \cdots \quad \hat{z}_t \quad \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_1'$$

$$\tilde{x}_1 \quad \tilde{x}_2 \quad \cdots \quad \tilde{x}_k \quad \tilde{y}_1 \quad \tilde{y}_2 \quad \cdots \quad \tilde{y}_\ell \quad \tilde{z}_1 \quad \tilde{z}_2 \quad \cdots \quad \tilde{z}_\ell \quad \sigma_2, \sigma_2'$$

Observe: we have established that $Project(\sigma_1, k + 1) = Project(\sigma'_1, k + 1)$ Can iterate this strategy for each index k + 1, k + 2, ... to argue that σ_1, σ'_1 agree on **all** components

$$x_1 x_2 \cdots x_k \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

$$\hat{x}_1 \quad \hat{x}_2 \quad \cdots \quad \hat{x}_k \quad \hat{y}_1 \quad \hat{y}_2 \quad \cdots \quad \hat{y}_\ell \quad \hat{z}_1 \quad \hat{z}_2 \quad \cdots \quad \hat{z}_t \quad \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_1'$$

$$\tilde{x}_1 \mid \tilde{x}_2 \mid \cdots \mid \tilde{x}_k \mid \tilde{y}_1 \mid \tilde{y}_2 \mid \cdots \mid \tilde{y}_\ell \mid \tilde{z}_1 \mid \tilde{z}_2 \mid \cdots \mid \tilde{z}_\ell \quad \sigma_2, \sigma_2'$$

If $\sigma_1 = \sigma'_1$, then final output commitment check ensures $\sigma_{out} = \sigma'_{out}$ Similar proof strategy as [GZ21, CJJ21, KLVW23]

Constructing Projective Chainable Commitments

Starting point: Kiltz-Wee [KW15] proof system for proving membership in linear spaces

Basic scheme supports opening to a **fixed** linear function Extend to **any** linear function using multiple copies of the scheme (for basis functions) Extend to quadratic functions via tensoring and linearization

Projective chainable commitments: embed commitment in a vector space Real commitment lie in one subspace, projected commitment lie in a "shadow" subspace *similar projection as [GZ19], but with additional locality constraints*

Security follows from bilateral k-Lin

[see paper for details]

Summary

This work: functional commitments for general circuits using pairings

Scheme	Function Class	crs	$ \sigma $	$ \pi $	Assumption
This work	arithmetic circuits	$O(s^5)$	0 (1)	0 (1)	bilateral k-Lin

- First pairing-based construction for general circuits based on falsifiable assumptions where commitment and openings contain constant number of group elements
- First scheme that only makes black-box use of cryptographic primitives/algorithms where the commitment + opening size is poly(λ) bits

Open problem: Construction with shorter CRS (e.g., linear-size)? Then, parameters would match state-of-the-art pairing-based SNARKs.

Thank you!

https://eprint.iacr.org/2024/688