Succinct Functional Commitments for Circuits from k-Lin

Hoeteck Wee and David Wu May 2024

Functional Commitments

Functional Commitments

Commit(crs, $x) \rightarrow(\sigma, \mathrm{st})$
Takes a common reference string and commits to an input x
Outputs commitment σ and commitment state st

Functional Commitments

Open + Verify

Commit(crs, $x) \rightarrow(\sigma$, st)
Open(st, f) $\rightarrow \pi$
Takes the commitment state and a function f and outputs an opening π Verify(crs, $\sigma,(f, y), \pi) \rightarrow 0 / 1$

Checks whether π is valid opening of σ to value y with respect to f

Functional Commitments

Open + Verify

Binding: efficient adversary cannot open σ to two different values with respect to the same f

Functional Commitments

Open + Verify

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma|=\operatorname{poly}(\lambda, \log |x|)$
- Short opening: $|\pi|=\operatorname{poly}(\lambda, \log |x|)$

Special Cases of Functional Commitments

Vector commitments:

$$
\operatorname{ind}_{i}\left(x_{1}, \ldots, x_{n}\right):=x_{i}
$$

$\left[x_{1}, x_{2}, \ldots, x_{n}\right]$

commit to a vector, open at an index

Polynomial commitments:

$$
f_{x}\left(\alpha_{0}, \ldots, \alpha_{d}\right):=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{d} x^{d}
$$

$\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}\right]$
commit to a polynomial, open to the evaluation at x

Commitments as Proofs on Committed Data

Commit(crs, data)

$$
\pi, f \text { (data) }
$$

π is a proof that the data satisfies some property (e.g., committed input is in a certain range)

Succinctness: both the commitment and the proof are short

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[CLM23, FLV23]	polynomial commitment	k-R-ISIS assumption (lattices)
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22, CLM23]	constant-degree polynomials	k - -ISIS assumption (lattices)
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[dCP23]	Boolean circuits	SIS (non-succinct openings in general)
[KLVW23]	Boolean circuits	batch arguments for NP
[BCFL23]	Boolean circuits	twin k - R-ISIS (lattice) / HiKER (pairing)
[WW23a, WW23b]	Boolean circuits	ℓ-succinct SIS

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings
Why bilinear maps? Schemes have the best succinctness

- Pairing-based SNARKs just have a constant number of group elements

Can we construct a functional commitment for general circuits where the size of the commitment and the opening contain a constant number of group elements?

Namely: match the succinctness of pairing-based SNARKs, but only using standard pairingbased assumption (no knowledge assumptions or ideal models)

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Scheme	Function Class	$\|c r s\|$	$\|\sigma\|$	$\|\pi\|$	Assumption
[LRY16, Gro16]	arithmetic circuits	$O(s)$	$O(1)$	$O(1)$	generic group
[LRY16]	linear functions	$O(\ell)$	$O(1)$	$O(m)$	subgroup decision
[LM19]	linear functions	$O(\ell m)$	$O(1)$	$O(1)$	generic group
[LP20]	μ-sparse polynomials	$O(\mu)$	$O(m)$	$O(1)$	über assumption
[CFT22]	degree- d polynomials	$O\left(\ell^{d} m\right)$	$O(d)$	$O(d)$	ℓd-Diffie-Hellman exponent
[BCFL23]	arithmetic circuits	$O\left(s^{5}\right)$	$O(1)$	$O(d)$	hinted kernel $(q$-type)
[KLVW23]	arithmetic circuits	poly (λ)	$O(1)$	poly (λ)	k-Lin
This work	arithmetic circuits	$O\left(s^{5}\right)$	$O(1)$	$O(\mathbb{1})$	bilateral k-Lin

$\ell=$ input length, $m=$ output length,$s=$ circuit size
metrics in \# group elements

This Work

This work: functional commitments for general circuits using pairings

Scheme	Function Class	$\|\operatorname{crs}\|$	$\|\sigma\|$	$\|\pi\|$	Assumption
This work	arithmetic circuits	$O\left(s^{5}\right)$	$O(1)$	$O(\mathbb{1})$	bilateral k-Lin

- First pairing-based construction for general circuits based on falsifiable assumptions where commitment and openings contain constant number of group elements
- Previously: needed SNARKs (non-falsifiable assumptions)
- First scheme that only makes black-box use of cryptographic primitives/algorithms where the commitment + opening size is poly (λ) bits
- Previously: need non-black-box techniques (e.g., SNARKs or BARGs for NP)

This Work

This work: functional commitments for general circuits using pairings

Scheme	Function Class	$\|c r s\|$	$\|\sigma\|$	$\|\pi\|$	Assumption
This work	arithmetic circuits	$\boldsymbol{O}\left(s^{5}\right)$	$O(\mathbb{1})$	$O(1)$	bilateral k-Lin
			Constant number of group elements		
Additional implications (for free!):					

- SNARG for P/poly with a universal setup with constant-size proofs (CRS only depends on the size of the circuit)
- Previously (from pairings): SNARG for P/poly with circuit-dependent CRS [Gz21]
- Homomorphic signature for general (bounded-size) circuits with constant-size signatures
- Previously (from pairings): Signature size scaled with the depth of the circuit [BCFL23]
(all results without relying on knowledge assumptions or ideal models)

Starting Point: Chainable Commitment

Chainable commitment [BCFL23]

Let $f: \mathbb{Z}_{p}^{k} \rightarrow \mathbb{Z}_{p}^{\ell}$ be a vector-valued function

Can think of commitment as a subset product:

$$
\sigma=\prod_{i \in[k]} h_{i}^{x_{i}}
$$

where h_{i} are in the CRS
succinct commitment to vector \boldsymbol{x}

x_{1}
x_{2}
\vdots
x_{k}

succinct opening π

Instead of committing to x and opening to $\boldsymbol{y}=f(\boldsymbol{x})$

y_{1}
y_{2}
\vdots
y_{ℓ}

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions \Rightarrow functional commitment for circuits

Assume: each gate computes quadratic function

Chainable commitment openings for each layer

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions \Rightarrow functional commitment for circuits

Commitment: σ
Opening: $\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}, \pi_{1}, \pi_{2}, \pi_{3}\right)$

Opening scales with depth of circuit

Chainable commitment openings for each layer

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings
Commitment: (same as before) Verifier know output $\left(z_{1}, \ldots, z_{t}\right)$:

Opening: commit to all wires (i.e., concatenated together) twice

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Everything is short, but how do we argue binding?

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings
Commitment: (same as before) \quad Verifier know output $\left(z_{1}, \ldots, z_{t}\right)$:

Opening: commit to all wires (i.e., concatenated together) twice

Neither σ_{1} nor σ_{2} is a quadratic function of $\sigma_{\text {input }}$
With bilinear maps, we only know how to check quadratic functions

| x_{1} | x_{2} | \cdots | x_{k} | y_{1} | y_{2} | \cdots | y_{ℓ} | z_{1} | z_{2} | \cdots | z_{t} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\rightarrow \sigma_{2}$

Technical Tool: Projective Chainable Commitments

x_{1}	\cdots	x_{j}	0	\cdots	0

| x_{1} | \cdots | x_{j} | x_{j+1} | \cdots | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |$\sigma_{2}^{(j+1)}$

Intuitively: can associate CRS with an index j that allows projecting a commitment σ_{1} onto a commitment to the first j indices

Vanilla chain binding: given $\left(\sigma_{1}, \sigma_{2}, \pi\right)$ and $\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \pi^{\prime}\right)$
If $\sigma_{1}=\sigma_{1}^{\prime}$ and

- $\left(\sigma_{2}, \pi, f\right)$ is a valid opening for σ_{1}
- $\left(\sigma_{2}^{\prime}, \pi^{\prime}, f\right)$ is a valid opening for σ_{1}^{\prime}

Then, $\sigma_{2}=\sigma_{2}^{\prime}$

Technical Tool: Projective Chainable Commitments

x_{1}	\cdots	x_{j}	x_{i+1}	\cdots	x_{n}

| x_{1} | \cdots | x_{j} | x_{j+1} | \cdots | x_{n} |
| :--- | :--- | :--- | :--- | :--- | :--- |$\rightarrow \sigma_{2}$

$\operatorname{Project}\left(\sigma_{1}, j\right)$
$\operatorname{Project}\left(\sigma_{2}, j+1\right)$

Intuitively: can associate CRS with an index j that allows projecting a commitment σ_{1} onto a
commitment to the first j indices

Projective chain binding: given $\left(\sigma_{1}, \sigma_{2}, \pi\right)$ and $\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \pi^{\prime}\right)$ If $\operatorname{Project}\left(\operatorname{td}, \sigma_{1}, j\right)=\operatorname{Project}\left(\operatorname{td}, \sigma_{1}^{\prime}, j\right)$ and

- $\left(\sigma_{2}, \pi, f\right)$ is a valid opening for σ_{1}
- $\left(\sigma_{2}^{\prime}, \pi^{\prime}, f\right)$ is a valid opening for σ_{1}^{\prime}

Then, $\operatorname{Project}\left(\operatorname{td}, \sigma_{2}, j+1\right)=\operatorname{Project}\left(\operatorname{td}, \sigma_{2}^{\prime}, j+1\right)$

Using Projective Chainable Commitments

Prove statements of the following form:

- Input consistency: first k wires in σ_{1} is consistent with $\sigma_{\text {input }}$
- Gate consistency: first $j+1$ wires in σ_{2} is consistent with first j wires in σ_{1}

Using Projective Chainable Commitments

z_{1}	z_{2}	\cdots	z_{t}
-2	$\rightarrow \sigma_{\text {out }}$		

This is a quadratic

Prove statements of the following form:

- Input consistency: first k wires in σ_{1} is consistent with $\sigma_{\text {input }}$
- Gate consistency: first $j+1$ wires in σ_{2} is consistent with first j wires in σ_{1}
- Internal consistency: first j wires in σ_{1} is consistent with first j wires in σ_{2}
- Output consistency: last t wires in σ_{1} are consistent with $\sigma_{\text {output }}$

Using Projective Chainable Commitments

x_{1}	x_{2}	\cdots	x_{k}

Consider two different openings: $\left(\sigma_{1}, \sigma_{2}, \sigma_{\text {out }}, \pi\right)$ and ($\left.\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{\text {out }}^{\prime}, \pi^{\prime}\right)$

Initially: no guarantees on what $\sigma_{1}, \sigma_{1}^{\prime}, \sigma_{2}, \sigma_{2}^{\prime}$ commit to

Step 1: Input consistency between $\sigma_{\text {in }}$ and $\sigma_{1}, \sigma_{1}^{\prime}$
Projective chain binding: $\sigma_{1}, \sigma_{1}^{\prime}$ are both openings for $\sigma_{\text {in }}$ so $\operatorname{Project}\left(\sigma_{1}, k\right)=\operatorname{Project}\left(\sigma_{1}^{\prime}, k\right)$

Using Projective Chainable Commitments

x_{1}	x_{2}	\cdots	x_{k}

Consider two different openings: $\left(\sigma_{1}, \sigma_{2}, \sigma_{\text {out }}, \pi\right)$ and ($\left.\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{\text {out }}^{\prime}, \pi^{\prime}\right)$

Step 1: Input consistency between $\sigma_{\text {in }}$ and $\sigma_{1}, \sigma_{1}^{\prime}$
Projective chain binding: $\sigma_{1}, \sigma_{1}^{\prime}$ are both openings for $\sigma_{\text {in }}$ so $\operatorname{Project}\left(\sigma_{1}, k\right)=\operatorname{Project}\left(\sigma_{1}^{\prime}, k\right)$

Using Projective Chainable Commitments

x_{1}	x_{2}	\cdots	x_{k}

Consider two different openings: $\left(\sigma_{1}, \sigma_{2}, \sigma_{\text {out }}, \pi\right)$ and ($\left.\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{\text {out }}^{\prime}, \pi^{\prime}\right)$

\hat{x}_{1}	\hat{x}_{2}	\cdots	\hat{x}_{k}								

σ_{1} and σ_{1}^{\prime} agree on first k components: Note: we do not know what values
$\operatorname{Project}\left(\sigma_{1}, k\right)=\operatorname{Project}\left(\sigma_{1}^{\prime}, k\right) \quad$ they have, only that they agree

Step 2: Gate consistency between first k wires in $\sigma_{1}, \sigma_{1}^{\prime}$ with first $k+1$ wires in $\sigma_{2}, \sigma_{2}^{\prime}$
Since $\operatorname{Project}\left(\sigma_{1}, k\right)=\operatorname{Project}\left(\sigma_{1}^{\prime}, k\right), \operatorname{projective}$ chain binding implies $\operatorname{Project}\left(\sigma_{2}, k+1\right)=\operatorname{Project}\left(\sigma_{2}^{\prime}, k+1\right)$

Using Projective Chainable Commitments

x_{1}	x_{2}	\cdots	x_{k}

Consider two different openings: $\left(\sigma_{1}, \sigma_{2}, \sigma_{\text {out }}, \pi\right)$ and ($\left.\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{\text {out }}^{\prime}, \pi^{\prime}\right)$

\hat{x}_{1} \hat{x}_{2} \cdots \hat{x}_{k} 0 $\sigma_{1}, \sigma_{1}^{\prime}$						
Project $\left(\sigma_{2}, k+1\right)=\operatorname{Project}\left(\sigma_{2}^{\prime}, k+1\right)$						
\tilde{x}_{1} \tilde{x}_{2} \cdots \tilde{x}_{k} \tilde{y}_{1} 						

Step 2: Gate consistency between first k wires in $\sigma_{1}, \sigma_{1}^{\prime}$ with first $k+1$ wires in $\sigma_{2}, \sigma_{2}^{\prime}$
Since $\operatorname{Project}\left(\sigma_{1}, k\right)=\operatorname{Project}\left(\sigma_{1}^{\prime}, k\right), \operatorname{projective}$ chain binding implies $\operatorname{Project}\left(\sigma_{2}, k+1\right)=\operatorname{Project}\left(\sigma_{2}^{\prime}, k+1\right)$

Using Projective Chainable Commitments

x_{1}	x_{2}	\cdots	x_{k}

Consider two different openings: $\left(\sigma_{1}, \sigma_{2}, \sigma_{\text {out }}, \pi\right)$ and ($\left.\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{\text {out }}^{\prime}, \pi^{\prime}\right)$

Step 3: Internal consistency between first $k+1$ wires in

$$
\sigma_{2}, \sigma_{2}^{\prime} \text { with first } k+1 \text { wires in } \sigma_{1}, \sigma_{1}^{\prime}
$$

Since $\operatorname{Project}\left(\sigma_{2}, k+1\right)=\operatorname{Project}\left(\sigma_{2}^{\prime}, k+1\right), \operatorname{projective~chain~binding~implies~} \operatorname{Project}\left(\sigma_{1}, k+1\right)=\operatorname{Project}\left(\sigma_{1}^{\prime}, k+1\right)$

Using Projective Chainable Commitments

x_{1}	x_{2}	\cdots	x_{k}

Consider two different openings: $\left(\sigma_{1}, \sigma_{2}, \sigma_{\text {out }}, \pi\right)$ and ($\left.\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{\text {out }}^{\prime}, \pi^{\prime}\right)$

Step 3: Internal consistency between first $k+1$ wires in

$$
\sigma_{2}, \sigma_{2}^{\prime} \text { with first } k+1 \text { wires in } \sigma_{1}, \sigma_{1}^{\prime}
$$

Since $\operatorname{Project}\left(\sigma_{2}, k+1\right)=\operatorname{Project}\left(\sigma_{2}^{\prime}, k+1\right), \operatorname{projective~chain~binding~implies~} \operatorname{Project}\left(\sigma_{1}, k+1\right)=\operatorname{Project}\left(\sigma_{1}^{\prime}, k+1\right)$

Using Projective Chainable Commitments

x_{1}	x_{2}	\cdots	x_{k}

Consider two different openings: $\left(\sigma_{1}, \sigma_{2}, \sigma_{\text {out }}, \pi\right)$ and ($\left.\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{\text {out }}^{\prime}, \pi^{\prime}\right)$

\hat{x}_{1}	\hat{x}_{2}	\cdots	\hat{x}_{k}	\hat{y}_{1}								$\sigma_{1}, \sigma_{1}^{\prime}$
σ_{1} and σ_{1}^{\prime} agree on first $k+1$ components: $\operatorname{Project}\left(\sigma_{1}, k+1\right)=\operatorname{Project}\left(\sigma_{1}^{\prime}, k+1\right)$												
\tilde{x}_{1}	\tilde{x}_{2}	...	\tilde{x}_{k}	\tilde{y}_{1}								$\sigma_{2}, \sigma_{2}^{\prime}$

Observe: we have established that $\operatorname{Project}\left(\sigma_{1}, k+1\right)=\operatorname{Project}\left(\sigma_{1}^{\prime}, k+1\right)$
Can iterate this strategy for each index $k+1, k+2, \ldots$ to argue that $\sigma_{1}, \sigma_{1}^{\prime}$ agree on all components

Using Projective Chainable Commitments

Consider two different openings: $\left(\sigma_{1}, \sigma_{2}, \sigma_{\text {out }}, \pi\right)$ and ($\left.\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{\text {out }}^{\prime}, \pi^{\prime}\right)$

\hat{x}_{1}	\hat{x}_{2}	\cdots	\hat{x}_{k}	\hat{y}_{1}	\hat{y}_{2}	\cdots	\hat{y}_{ℓ}	\hat{z}_{1}	\hat{z}_{2}	\cdots	\hat{z}_{t}

| \tilde{x}_{1} | \tilde{x}_{2} | \cdots | \tilde{x}_{k} | \tilde{y}_{1} | \tilde{y}_{2} | \cdots | \tilde{y}_{ℓ} | \tilde{z}_{1} | \tilde{z}_{2} | \cdots | \tilde{z}_{ℓ} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\sigma_{2}, \sigma_{2}^{\prime}$

Observe: we have established that $\operatorname{Project}\left(\sigma_{1}, k+1\right)=\operatorname{Project}\left(\sigma_{1}^{\prime}, k+1\right)$
Can iterate this strategy for each index $k+1, k+2, \ldots$ to argue that $\sigma_{1}, \sigma_{1}^{\prime}$ agree on all components

Using Projective Chainable Commitments

x_{1}	x_{2}	\cdots	x_{k}

Consider two different openings: $\left(\sigma_{1}, \sigma_{2}, \sigma_{\text {out }}, \pi\right)$ and ($\left.\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{\text {out }}^{\prime}, \pi^{\prime}\right)$

\hat{x}_{1}	\hat{x}_{2}	\cdots	\hat{x}_{k}	\hat{y}_{1}	\hat{y}_{2}	\cdots	\hat{y}_{ℓ}	\hat{z}_{1}	\hat{z}_{2}	\cdots	\hat{z}_{t}

| \tilde{x}_{1} | \tilde{x}_{2} | \cdots | \tilde{x}_{k} | \tilde{y}_{1} | \tilde{y}_{2} | \cdots | \tilde{y}_{ℓ} | \tilde{z}_{1} | \tilde{z}_{2} | \cdots | \tilde{z}_{ℓ} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\sigma_{2}, \sigma_{2}^{\prime}$

If $\sigma_{1}=\sigma_{1}^{\prime}$, then final output commitment check ensures $\sigma_{\text {out }}=\sigma_{\text {out }}^{\prime}$ Similar proof strategy as [GZ21, CJJ21, KLVW23]

Constructing Projective Chainable Commitments

Starting point: Kiltz-Wee [KW15] proof system for proving membership in linear spaces Basic scheme supports opening to a fixed linear function Extend to any linear function using multiple copies of the scheme (for basis functions) Extend to quadratic functions via tensoring and linearization

Projective chainable commitments: embed commitment in a vector space
Real commitment lie in one subspace, projected commitment lie in a "shadow" subspace similar projection as [GZ19], but with additional locality constraints

Security follows from bilateral k-Lin

Summary

This work: functional commitments for general circuits using pairings

Scheme	Function Class	$\|c r s\|$	$\|\sigma\|$	$\|\pi\|$	Assumption
This work	arithmetic circuits	$O\left(s^{5}\right)$	$O(1)$	$O(\mathbb{1})$	bilateral k-Lin

- First pairing-based construction for general circuits based on falsifiable assumptions where commitment and openings contain constant number of group elements
- First scheme that only makes black-box use of cryptographic primitives/algorithms where the commitment + opening size is poly (λ) bits
Open problem: Construction with shorter CRS (e.g., linear-size)? Then, parameters would match state-of-the-art pairing-based SNARKs.

> Thank you!
> https://eprint.iacr.org/2024/688

