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Functional Commitments
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Q Commit “commitment”
) .0

Commit(crs, x) — (o, st)

Takes a common reference string and commits to an input x

Outputs commitment o and commitment state st



Functional Commitments

Open + Verity
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Commit(crs, x) — (o, st)
Open(st, /) » m

Takes the commitment state and a function f and outputs an opening

Verify(crs,o, (f,v),m) - 0/1

Checks whether m is valid opening of g to value y with respect to [




Functional Commitments

Open + Verity
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Correctness: if (o,st) « Commit(crs,x) and m « Open(st, f)

then Verify(crs, o, (f,f(x)),n) =1

Can open commitment to x to value y = f(x) for any function f



Functional Commitments

o

Open + Verity

Binding: efficient adversary cannot open o to two different values
with respect to the same f

. £

o

T[O/ m Verify(crs, o, (f,y),mp) = 1

T4 Verify(crs, o, (f,y1),m1) =1



Functional Commitments

Open + Verity
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Succinctness: commitments and openings should be short
 Short commitment: |o| = poly(4, log |x|)
* Short opening: || = poly(4, log|x| )




Special Cases of Functional Commitments

Vector commitments:

| ind; (xq, ..., X)) = Xx;

commit to a vector, open at an index

Polynomial commitments:

fo(ag, ..,ag) = ag + ayx + -+ ayzx?
——— [E5

commit to a polynomial, open to the evaluation at x




Commitments as Proofs on Committed Data

Commit(crs, data)

o

—

m, f (data)
————-

m is a proof that the data satisfies some property
(e.g., committed input is in a certain range)

Succinctness: both the commitment and the proof are short



Succinct Functional Commitments

(not an exhaustive list!)

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20] vector commitment q-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[KZG10, Lee20] polynomial commitment q-type pairing assumptions

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[CLM23, FLV23] polynomial commitment k-R-ISIS assumption (lattices)

[LRY16] linear functions q-type pairing assumptions
[ACLMT22, CLM23] constant-degree polynomials k-R-ISIS assumption (lattices)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs
[dCP23] Boolean circuits SIS (non-succinct openings in general)
[KLVW23] Boolean circuits batch arguments for NP

[BCFL23] Boolean circuits twin k-R-ISIS (lattice) / HIKER (pairing)

[WW23a, WW23b] Boolean circuits £-succinct SIS



Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Why bilinear maps? Schemes have the best succinctness
* Pairing-based SNARKs just have a constant number of group elements

Can we construct a functional commitment for general circuits where the size of the
commitment and the opening contain a constant number of group elements?

Namely: match the succinctness of pairing-based SNARKs, but only using standard pairing-
based assumptions (no knowledge assumptions or ideal models)



Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Scheme Function Class |crs| |o] || Assumption

[LRY16, Gro16] arithmetic circuits 0(s) 0(1) 0(1) generic group

[LRY16] linear functions 0(?) 0(1) 0(m) subgroup decision

[LM19] linear functions 0(fm) 0(1) 0(1) generic group

[LP20] p-sparse polynomials 0(u) 0O(m) 0(1) Uber assumption

[CFT22] degree-d polynomials O(Kdm) 0(d) 0(d) £4-Diffie-Hellman exponent
[BCFL23] arithmetic circuits 0(s®) 0(1) 0(d) hinted kernel (g-type)
[KLVW?23] arithmetic circuits poly (1) 0(1) poly(4) k-Lin

This work arithmetic circuits O(s®) 0(1) 0o(1) bilateral k-Lin

£ = input length, m = output length, s = circuit size

metrics in # group elements




This Work

This work: functional commitments for general circuits using pairings

Scheme Function Class |crs| |o] || Assumption

This work arithmetic circuits 0(s®) 0(1) 0(1) bilateral k-Lin

First pairing-based construction for general circuits based on falsifiable assumptions
where commitment and openings contain constant number of group elements

* Previously: needed SNARKs (non-falsifiable assumptions)
First scheme that only makes black-box use of cryptographic primitives/algorithms where

the commitment + opening size is poly(4) bits
* Previously: need non-black-box techniques (e.g., SNARKs or BARGs for NP)



This Work

This work: functional commitments for general circuits using pairings

Scheme Function Class |crs| |o] || Assumption

This work arithmetic circuits 0(s®) 0(1) 0(1) bilateral k-Lin

Constant number
Additional implications (for free!): of group elements

* SNARG for P/poly with a universal setup with constant-size proofs (CRS only depends on
the size of the circuit)
* Previously (from pairings): SNARG for P/poly with circuit-dependent CRS [Gz21]
« Homomorphic signature for general (bounded-size) circuits with constant-size signatures
* Previously (from pairings): Signature size scaled with the depth of the circuit [BcFL23]

(all results without relying on knowledge assumptions or ideal models)



Starting Point: Chainable Commitment

Chainable commitment [BcFL23] Instead of committing to x

Let f: Z — Z% be a vector-valued function and opening to y = f(x)

X1 V1 l

Can think of commitment Open to commitment to
as a subset product: X Y2 y = f(x)

Chain binding: cannot

where h; are in the CRS Xp V4 UDEM @iy U 1T dlStlf)Ct
— 1 | commitments 04yt Ogut

succinct commitment to _ . succinct commitment to
succinct opening

vector x vector y = f(x)
o, I o,



Starting Point: Chainable Commitment

Chainable commitment for quadratic functions = functional commitment for circuits

[BCFL23]
Assume: each gate gate
computes quadratic u
function gate
gate gate
gate
gate Commitments to internal
B layers and output layer
Commit to . 7 > >
input wires o 01 %) O3

4 /'\7-[2/'\ 7T3/‘

opening

Chainable commitment openings for each layer



Starting Point: Chainable Commitment

Chainable commitment for quadratic functions = functional commitment for circuits

Commitment: o
. ro /
Openlng: (0-1) 02,03,7T01,TT;, T[S)

Opening scales with
depth of circuit

Commit to
input wires

[BCFL23]

gate

gate

gate
gate

gate
gate

Commitments to internal
layers and output layer

01

Tl'-l /‘\T[Z/\ 77'-3/’

0 03

opening

Chainable commitment openings for each layer




Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Commitment: (same as before) Verifier know output (z4, ..., 2Z4):

X1 | X2 Z1 | 23 Zq

= Oout

Opening: commit to all wires (i.e., concatenated together) twice

X1 | X2 ‘ ‘x{) Yi Y2 | ‘Yt Z1 | 22 ' ‘Zd ‘ < 01
\\ J \\ J J
Y Y Y
Input layer Intermediate layer Output layer
AL A A
'4 N [ N [ N\
X1 | X2 ' ‘X{ Yi|Yz | ‘Yt Z1 | 22 Zd < 0>




Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Everything is short, but how
do we argue binding?



Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Commitment: (same as before) Verifier know output (z4, ..., Z;):

X1 | X2 Z1 | 23 Zq

= Oout

Opening: commit to all wires (i.e., concatenated together) twice

X1 | X2 -‘x{) Y1 | Y2 “")’t Z1 | 22 "Zd‘_> 01

Neither g; nor o, is a quadratic function of gjppy¢
With bilinear maps, we only know how to check quadratic functions

—> 0,

X1 | X2 "X{ Y1 |Y2 1~ ‘Yt Z1 | 22 Zq




Approach Overview

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

!
A I O A W1

Initially: no guarantees on what o4, g4, g,, 0, commit to

/
[ O O I

Cannot use chain binding to argue that o; and o, are equal since
they are not a quadratic function of gy,

Our approach: argue that a prefix of g;, g, are still equal



Approach Overview

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

!
A I O A W1

Initially: no guarantees on what o4, g4, g,, 0, commit to

Input consistency: 1, 7’ includes an opening that asserts that the
first £ components of g4, g, are consistent with gy,

/
L L1 | oo




Approach Overview

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

2 N N I

Close to a chain binding property: prover is opening g;, to output commitments oy, 04

N\

X1

X

Caveat: Only reasoning about the first £ components of g; and g (not the entire vector)

Input consistency: 1, 7’ includes an opening that asserts that the
first £ components of g4, g, are consistent with gy,



Approach Overview

X1 | X2 "xf‘_»a-in

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ ’
‘ 1 *e ‘ ‘ ‘ ‘ ‘ ‘ 01,01
If we establish that the first £ components of 07, g, agree, we can try to
argue that the first £ + 1 components of g,, o, also agree

Observation: first £ + 1 components of g5, g, is a quadratic
function of the first £ components of g4, g;

X

!
‘ ‘ ‘ ‘ 02, 0-2 corresponds to a

single gate




Approach Overview

X1 | X2 ‘xf ‘_’ Oin

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

| | | L[| ouof

If we establish that the first £ components of 07, g, agree, we can try to
argue that the first £ + 1 components of g,, o, also agree

Observation: first £ + 1 components of g5, g, is a quadratic
function of the first £ components of g4, g;

X1 | X2

!
‘ ‘ ‘ ‘ 02, 0-2 corresponds to a

single gate




Approach Overview

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

el VLT L] oo

/
I I I I

Repeat this process: if 0,, 0, agree on the first £ + 1 values, then
01,0, agree on the first £ + 1 values



Approach Overview

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

!
I 0 I

‘ ‘x{) Y1

/
I I I I

Repeat this process: if 0,, 0, agree on the first £ + 1 values, then
01,0, agree on the first £ + 1 values



Approach Overview

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N

Zq

N

Zdq

s o o - - /
-‘x{) Yi | Y2 |- ‘Yt 23 01,01

~

41

~

Y2

~

Zq Zq 0», 0'2’

| % 7

Iterate to conclude that g, o{ actually agree on all values
(including the outputs), which implies binding



Approach Overview

Main technical tool: way to reason
about prefixes of a committed vector

Prove statements of the following form:
* Input consistency: first £ wires in gy is consistent with gy,
* Gate consistency: first j + 1 wires in g, is consistent with first j wires in gy
* Internal consistency: first j wires in gy is consistent with first j wires in o,
* Output consistency: last t wires in gy are consistent with o,,t



Projective Chainable Commitments

T L= ELLEELT— o
Project(al,j)l Project(o,, ] + 1)1
X1 . ‘X] ‘ 0 ‘ ‘ 0 ‘—} O_f]) X1 - ‘xj Xjitq | oo ‘ 0 ‘q 0_2(]+1)

Intuitively: can associate CRS with
an index j that allows projecting a
commitment g4 onto a
commitment to the first j indices

Projective chain binding: given (o4, 0,, ™) and (o4, 0,, ")
If Project(td, o1, j) = Project(td, oy, j) and

* (0y,m, ) is avalid opening for o,

* (a,,7',f)is avalid opening for g,
Then, Project(td, g,,j + 1) = Project(td, g;,j + 1)




Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

!
A I O A W1

Initially: no guarantees on what o4, g4, g,, 0, commit to

/
[ O O I

Step 1: Input consistency between gy, and gy, g;

Projective chain binding: g;, g, are both openings for g, so Project(gy,¥) = Project(ay, )



Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

] | ] ||

g, and o agree on first £ components:  Note: we do not know what values
Project(oy,¥) = Project(oy,?) they have, only that they agree

/
HEEEEEE | [ | o0

Step 1: Input consistency between gy, and gy, g;

N\

- /
X1 | X2 01,01

Projective chain binding: g;, g, are both openings for g, so Project(gy,¥) = Project(ay, )



Using Projective Chainable Commitments

‘x1 X2 "xf‘_»a-in

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ N\ ’
o fe [ fe] | | | | [ | oo
g, and o agree on first £ components:  Note: we do not know what values
Project(oy,¥) = Project(oy,?) they have, only that they agree
!
07,09

Step 2: Gate consistency between first £ wires in g4, 0; with
first £ + 1 wires in g5, 0,

Since Project(ay, ¥) = Project(o{, £), projective chain binding implies Project(o,, ¥ + 1) = Project(o,,€ + 1)



Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ N\ ’
wlflefae] [ [ ][] [ || ouo
g, and g, agree on first £ + 1 components:
Project(o,, € + 1) = Project(o,, € + 1)
~ ~ ~ ~ /4
wlnf-Jufn] [ [ | [ [ | | ono

Step 2: Gate consistency between first k wires in a4, 0
with first £ + 1 wires in g5, 0,

Since Project(ay,¥) = Project(o4, £), projective chain binding implies Project(o,,? + 1) = Project(g,,€ + 1)



Using Projective Chainable Commitments

X1 | X2 "xf‘_»a-in

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ N\ ’
wlflefae] [ [ ][] [ || ouo
g, and g, agree on first £ + 1 components:
Project(o,, € + 1) = Project(o,, € + 1)
~ ~ ~ ~ /4
wlnf-Jufn] [ [ | [ [ | | ono

Step 3: Internal consistency between first £ + 1 wires in
g,, 0, with first £ + 1 wires in 0y, 0{

Since Project(a,, ¢ + 1) = Project(a,, £ + 1), projective chain binding implies Project(o, £ + 1) = Project(o{,¢ + 1)



Using Projective Chainable Commitments

X1 | X2 "xf‘_»a-in

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ N\ N\ ’
X1 | X2 ‘ ‘x{) Y1 ‘ ‘ ‘ ‘ ‘ ‘ 01,01
g, and o agree on first £ + 1 components:
Project(oq,¢ + 1) = Project(o{,¥ + 1)
~ ~ ~ ~ /4
wlnf-Jufn] [ [ | [ [ | | ono

Step 3: Internal consistency between first £ + 1 wires in
g,, 0, with first £ + 1 wires in 0y, 0{

Since Project(a,, ¢ + 1) = Project(a,, £ + 1), projective chain binding implies Project(o;, £ + 1) = Project(o{,¢ + 1)



Using Projective Chainable Commitments

X1 | X2 "xf‘_»a-in

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N\ N\ N\ N\ ’
X1 | X2 | ‘x{) Y1 ‘ ‘ ‘ ‘ ‘ ‘ 01,01
g, and o agree on first £ + 1 components:
Project(oq,¢ + 1) = Project(o{,¥ + 1)
~ ~ ~ ~ /4
wlnf-Jufn] [ [ | [ [ | | ono

Observe: we have established that Project(ag;, ¥ + 1) = Project(a{,€ + 1)
Can iterate this strategy for each index £ + 1, + 2, ... to argue that oy, o{ agree on all components



Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N

Zq

N

Zdq

s | |5 A - /
-‘x{) Yi | Y2 | ‘Yt Z2 01,01

~

41

~

Y2

~

Z1 Zq 0», 0'2’

= 7

Observe: we have established that Project(ag;, ¥ + 1) = Project(a{,€ + 1)
Can iterate this strategy for each index £ + 1, + 2, ... to argue that oy, o{ agree on all components



Using Projective Chainable Commitments

X1 | X2

Consider two different openings: (g1, 05, 0out, ™) and (a4, 05, Oy, T')

N

Zq

N

Zdq

Nz | 92 [ |90 |2 |22 04,04

~

41

~

Y2

~

Zq Zq 0», 0'2’

| % 7

If 0, = o4, then final output commitment check ensures o,,t = T4yt

Similar proof strategy as [GZ21, CJJ21, KLVW23]



Constructing Projective Chainable Commitments

Starting point: Kiltz-Wee [kw15] proof system for proving membership in linear spaces

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € ZZ where M € Z**

Let (G, G, e) be a pairing group and let g be a generator of G

Common reference string contains two vectors g¢ and gi where t « Zf; and t « Zg
Vector t is used to commit to the inputs and vector £ is used to commit to outputs
tT

Commitment to input x € Z, is oy, = g *

Basically a Pedersen (vector) commitment:

iTy if gt = [hq, ..., hp], theno = [Ligpe hf"

Commitment to output y € Z3 is 0oy = g



Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € Z% where M € Z&**

tTx tTy

Commitment to input x € Zf; iSO, = ¢ Commitment to output y € Zg IS Ogut = 9

To support openings to the linear function M (x — Mx), we also include in the CRS gZT where

ZT=WtT—rfTMEZf; and  1,w <« Z,



Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € Z% where M € Z&**

Intuitively: z “recodes” an input
commitment with respect to t to an

. . +T
Commitment to output y € Z§ is goye = g* ?

output commitment with respect to t

(x » Mx), we also include in the CRS gZT where

ZT=WtT—rfTMEZf; and  1,w <« Z,



Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € Z% where M € Z&**

tT tTy

Commitment to input x € Zp isog, =g9""* Commitment to output y € Zp IS Ogut = 9

To support openings to the linear function M (x — Mx), we also include in the CRS gZT where
z'=wt' —rt'M eZ, and 1w,

For now, we consider the designated-verifier setting where secret key needed to check proofs
Oin

Tr
Oout

7T

Opening: m = g* * Verification relation: Check that T =

Secret verification key: r, w gV wt'x wt'x X
=T Correctness: —» =9 9 _ gwtT=rt™M)x _ o2Tx _
Oout grtTy grtTMx




Security for Linear Functions

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € Z% where M € Z&**

. 2 T 5T

Common reference string: g%, gt, gt —t M
w
Verification relation: Check that T = :r‘“

out
Suppose adversary produces the following:

Input commitment o, = g°¢

. A Al
Output commitments o, = 95,05, = g°

Openings ™ = g",m’ = g"’

If the openings are valid, then
vV=wc—r1C
v =wc—rc’

Thus, v —v' =r(¢c —¢")

Non-zero since ¢ # ¢’




Security for Linear Functions

Suppose we want to support openings to a fixed linear function

Under DDH, wt computationally hides value of r

. t 7 wtl—riTm Technically: DDH does not hold in a symmetric pairing
Common reference string: g,9,9 group, but can use asymmetric group (or k-Lin)
w
Oin

Verification relation: Check that T =

r

ol ¢ Distribution of (¢ — ¢') is
pseudorandom from the perspective
of the adversary, so this check passes

Input commitment 0;, = g with probability 1/p

Suppose adversary produces the following:

al

Output commitments o, = g%, 0.y = g Thus, v —v' =r(¢c —¢")

Openings ™ = g",m’ = g”’

Non-zero since ¢ # ¢’




Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € Z% where M € Z&**

, 2 T_ 3T T

Common reference string: g¢, gt, g%t "t M Oin = g° "
air i’

Verification relation: Check that m = Gr‘“ Oout = 9"~

out

Lots of caveats:
Only supports fixed functions

Only supports linear functions

Only designated-verifier



Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € Z% where M € Z&**

, 2 T_ 3T T

Common reference string: g¢, gt, g%t "t M Oin = g° "
air i’

Verification relation: Check that m = Gr‘“ Oout = 9"~

out

Caveat: Only supports fixed functions

Extend to arbitrary functions by relying on linear homomorphism

T

Suppose we publish g?1 = gWit' =78 M1 gnd gZz = gW2t' =8 M2 i the CRS

T T, . .
Oin = gt x g%*t?1* is an openingtoy = a;M{x
- O.alW1
_ Aty in _ Wi tTx—rily _ _aywitTx—artTMix _ aqz1x
Oout = g —=4 =g =g

out



Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € Z% where M € Z&**

, 2 T_ 3T T

Common reference string: g¢, gt, g%t "t M Oin = g° "
air i’

Verification relation: Check that m = Gr‘“ Oout = 9"~

out

Caveat: Only supports fixed functions

Extend to arbitrary functions by relying on linear homomorphism

T

Suppose we publish g?1 = gWit' =78 M1 gnd gZz = gW2t' =8 M2 i the CRS

—_— th alz}‘

Oin = 9 g*1*1%* is an opening to a; M, x

T, . .
Oout = 9~ 7 g%*2%2% is an opening to a,M,x



Chainable Commitments for Linear Functions

O.a1W1 O.azwz
- “1ZIx 1 azzgx

ngT(alMlx)

=Y =9

g?"/iT((Zzsz)

Caveat: Only supports fixed functions

Extend to arbitrary functions by relying on linear homomorphism

T

T_ /\T T_ AT .
t'=rt" M1 gnd g% = ngt "Mz in the CRS

T
Suppose we pUbIISh gzl — gwl
T T T . .
O-in — gt X ga1Z1x+aK2Z2x IS an opening to y — alMlx + aZsz

a1Wit+awyp ., ] :
o _ galz'fx+azz§x Verification relation for
o’ x e (aMq +a,M;,)x

out




Chainable Commitments for Linear Functions

O_C(1W1 O_C(sz
- “1ZIx 1 azzgx

ngT(alMlx) = g g?"/iT((Zzsz) = g

Caveat: Only supports fixed functions
Extend to arbitrary functions by relying on linear homomorphism

Publish components for complete basis of linear functions

M: . =

L) 1

0 - 0

mei

? 0 Any linear function M can be expressed as
' column j

a linear combination of M; ;




Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € Z% where M € Z&**

, 2 T_ 3T T

Common reference string: g¢, gt, g%t "t M Oin = g° "
air i’

Verification relation: Check that m = Gr‘“ Oout = 9"~

out

Caveat: Only supports linear functions
Can extend to quadratic functions by linearization (and tensoring)

Quadratic function of x is a linear function of x & x [see paper for details]

Prover commits to x &) x and evaluates a

linear function; certify well-formedness of
commitment using pairing




Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function
x € 7}, » Mx € Z% where M € Z&**

. 7 T _ _..3T T
Common reference string: g¢, gt, g%t "t M Oin = g° "
cpe  ne . oin tly
Verification relation: Check that m = Oout = 9

Tr
Oout

Caveat: Only designated-verifier
Solution: encode the verification key  and w in the exponent (following [kw15])



Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € Z% where M € Z&**

Common reference string:

Previous argument required that r was
QI UBLEGENCIROIESS o hytationally hidden, so we cannot just

give out g"
Caveat: Only designated-ver

Solution: encode the verification key  and w in the exponent (following [kw15])



Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

x € 7}, » Mx € Z% where M € Z&**

, 2 T_ 3T T

Common reference string: g¢, gt, g%t "t M Oin = g° "
air i’

Verification relation: Check that 1 = =" Oout = 9"~

Oout

Caveat: Only designated-verifier
Solution: encode the verification key  and w in the exponent (following [kw15])

2 T T T . 5T
2 _
Sample a « Zj CRS: gt’gt’ga,ga W g r,gwt rt' M
Sample w, r « le, Verification relation is now
T
(5.0 A
! J o wtlx—rt! Mx

_ T _ M a — —
Oin = 9 * Oout = 9 * e(g ,Tl') w=g

e (9 aTr» Uout)



Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function
x € 7}, » Mx € Z% where M € Z&**

. 7 T _ _..3T T
Common reference string: g¢, gt, g%t "t M Oip =g >

w
Oin
r

Oout In this approach, r has one unit of entropy
given a'r, so we can still carry out a
similar argument as before

Verification relation: Check that T =

Caveat: Only designated-verifier
Solution: encode the verification key 7 and

2 T T T . 5T
2 _
Sample a « Zj CRS: gt’gt’ga,ga W g r,gwt rt' M
Sample w, r « le, Verification relation is now
T
(5.0 A
! J o wtlx—rt! Mx

_ T _ M a — —
Oin = 9 * Oout = 9 * e(g ,Tl') w=g

e (9 aTr» Uout)



Projective Chainable Commitments

X1 : ‘ X; x| o ‘x{, ‘_> o) Need a way to projgct a commitment
onto a subset of its components
Project(al,j)l gt =[hy, ..
T L o]—=o® o= W
1

In composite-order groups: introduce a subgroup for components in projection set
Suppose G has order N = pq and let G, o, be the order-p and order-g subgroups of G
Let g,, be a generator of G, and g, be a generator of (&,

t]+1 n

Replaceg with hy = (gpgq) ;hj — (gpgq)tj' +1 =Yy g = gz?



Projective Chainable Commitments

~ Commitment is now . Need a way to project a commitment
Lixi it I
o — 1_[ P H(gpgq) 1_[ £ onto a subset of its components

i=j+1 h
If we con5|der o in the mod -q subgroup, then g [ 1, -

tixi

Uq:

1 1749 Xi
i€lj] o = h;
This is precisely a commitment to the first j

components!

In composite-order groups: introduce a subgroup for components in projection set
Suppose G has order N = pq and let G, o, be the order-p and order-g subgroups of G
Let g,, be a generator of G, and g, be a generator of (&,

tj+1 n

Replaceg with hy = (gpgq) ;hj — (gpgq)tj' +1 =Yy g = gz?



Projective Chainable Commitments

Commitment is now

o — nh i 1_[(9 g.)™ 1_[ tix; Syntactic issue: We were considering
e iSj+1 linear/quadratic functions over Z,

If we con5|der gin the mod -q subgroup, then before; when using composite-order

gl groups, we should view it as functions
q .
ie[j] over the integers

This is precisely a commitment to the first j
components!

Uq:

Main idea: embed two copies of the chainable commitment scheme:
* The normal scheme is embedded in the G,,-subgroup

* The projected scheme is embedded in the G,-subgroup

When reasoning about chain binding, we implement the previous proof argument within
the G, subgroup




Projective Chainable Commitments

Commitment is now

o — nh i 1_[(9 g.)™ 1_[ tix; Syntactic issue: We were considering
e iSj+1 linear/quadratic functions over Z,

If we con5|der gin the mod -q subgroup, then before; when using composite-order

gl groups, we should view it as functions
q .
ie[j] over the integers

This is precisely a commitment to the first j
components!

Uq:

Main idea: embed two copies of the chainable commitment scheme:
* The normal scheme is embedded in the G,,-subgroup
* The projected scheme is embedded in the G,-subgroup

In paper: use prime-order groups and consider two orthogonal subspaces (normal scheme

in one subspace and projected scheme in the other); security reduces to (bilateral) k-Lin
[see paper for details; see also [GZ21] for similar projection approach]




Functional Commitments for Circuits

Goal: Constant number of group elements for commitment and openings

Commitment: Verifier know output (z4, ..., 2Z4):

X1 | X2 Z1 | 23 Zq

= Oout

Opening: commit to all wires (i.e., concatenated together) twice

X1 | X2 -‘x{) Y1 |Y2 | ‘Yt Z1 | 22 "Zd‘_> 01
Use projective chain binding and
an iterative argument to argue binding
X1 | X2 ' ‘X{ Yi | Y2 | ‘Yt Z1 | 22 Zg | = ),




Summary

This work: functional commitments for general circuits using pairings

Scheme Function Class |crs| |o] || Assumption

This work arithmetic circuits 0(s®) 0(1) 0(1) bilateral k-Lin

* First pairing-based construction for general circuits based on falsifiable assumptions
where commitment and openings contain constant number of group elements
* First scheme that only makes black-box use of cryptographic primitives/algorithms where

the commitment + opening size is poly(4) bits

Open problem: Construction with shorter CRS (e.g., linear-size)? Then, parameters would
match state-of-the-art pairing-based SNARKSs

Thank you!
https://eprint.iacr.org/2024/688
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