
Succinct Functional Commitments
for Circuits from 𝑘-Lin

Hoeteck Wee and David Wu

June 2024

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

𝜋

𝝈

𝑥
Commit

“opening”

“commitment”

𝝈

Functional Commitments

Takes a common reference string and commits to an input 𝑥

Outputs commitment 𝜎 and commitment state st

𝑥
Commit

Commit crs, 𝑥 → 𝜎, st

“commitment”

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Open st, 𝑓 → 𝜋
Takes the commitment state and a function 𝑓 and outputs an opening 𝜋

Verify crs, 𝜎, 𝑓, 𝑦 , 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to value 𝑦 with respect to 𝑓

𝜋

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

𝜋

Correctness: if (𝜎, st) ← Commit(crs, 𝑥) and 𝜋 ← Open st, 𝑓

then Verify crs, 𝜎, 𝑓, 𝑓 𝑥 , 𝜋 = 1

Can open commitment to 𝑥 to value 𝑦 = 𝑓 𝑥 for any function 𝑓

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝜋

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Succinctness: commitments and openings should be short
• Short commitment: 𝜎 = poly 𝜆, log 𝑥
• Short opening: 𝜋 = poly 𝜆, log 𝑥

𝜋

Special Cases of Functional Commitments

Vector commitments:

Polynomial commitments:

𝑥1, 𝑥2, … , 𝑥𝑛 𝑥𝑖

ind𝑖 𝑥1, … , 𝑥𝑛 ≔ 𝑥𝑖

commit to a vector, open at an index

𝛼0, 𝛼1, … , 𝛼𝑑

𝑓𝑥 𝛼0, … , 𝛼𝑑 ≔ 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑑𝑥𝑑

𝑦

commit to a polynomial, open to the evaluation at 𝑥

Commitments as Proofs on Committed Data

𝝈
Commit crs, data

𝜋, 𝑓 data

𝜋 is a proof that the data satisfies some property
(e.g., committed input is in a certain range)

Succinctness: both the commitment and the proof are short

[dCP23] Boolean circuits SIS (non-succinct openings in general)

Succinct Functional Commitments

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22, CLM23] constant-degree polynomials 𝑘-𝑅-ISIS assumption (lattices)

(not an exhaustive list!)

[BCFL23] Boolean circuits twin 𝑘-𝑅-ISIS (lattice) / HiKER (pairing)

[KLVW23] Boolean circuits batch arguments for NP

[WW23a, WW23b] Boolean circuits ℓ-succinct SIS

[CLM23, FLV23] polynomial commitment 𝑘-R-ISIS assumption (lattices)

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Why bilinear maps? Schemes have the best succinctness
• Pairing-based SNARKs just have a constant number of group elements

Can we construct a functional commitment for general circuits where the size of the
commitment and the opening contain a constant number of group elements?

Namely: match the succinctness of pairing-based SNARKs, but only using standard pairing-
based assumptions (no knowledge assumptions or ideal models)

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Scheme Function Class Assumptioncrs 𝜎 𝜋

[LRY16, Gro16] arithmetic circuits generic group𝑂 𝑠 𝑂 1 𝑂 1

[LRY16] linear functions subgroup decision𝑂 ℓ 𝑂 1 𝑂 𝑚

[LM19] linear functions generic group𝑂 ℓ𝑚 𝑂 1 𝑂 1

[LP20] 𝜇-sparse polynomials über assumption𝑂 𝜇 𝑂 𝑚 𝑂 1

[CFT22] degree-𝑑 polynomials ℓ𝑑-Diffie-Hellman exponent𝑂 ℓ𝑑𝑚 𝑂 𝑑 𝑂 𝑑

[BCFL23] arithmetic circuits hinted kernel (𝑞-type)𝑂 𝑠5 𝑂 1 𝑂 𝑑

[KLVW23] arithmetic circuits 𝑘-Linpoly 𝜆 𝑂 1 poly 𝜆

This work arithmetic circuits bilateral 𝒌-Lin𝑶 𝒔𝟓 𝑶 𝟏 𝑶 𝟏

ℓ = input length, 𝑚 = output length, 𝑠 = circuit size metrics in # group elements

This Work

This work: functional commitments for general circuits using pairings

Scheme Function Class Assumptioncrs 𝜎 𝜋

This work arithmetic circuits bilateral 𝒌-Lin𝑶 𝒔𝟓 𝑶 𝟏 𝑶 𝟏

• First pairing-based construction for general circuits based on falsifiable assumptions
where commitment and openings contain constant number of group elements
• Previously: needed SNARKs (non-falsifiable assumptions)

• First scheme that only makes black-box use of cryptographic primitives/algorithms where
the commitment + opening size is poly 𝜆 bits
• Previously: need non-black-box techniques (e.g., SNARKs or BARGs for NP)

This Work

This work: functional commitments for general circuits using pairings

Scheme Function Class Assumptioncrs 𝜎 𝜋

This work arithmetic circuits bilateral 𝒌-Lin𝑶 𝒔𝟓 𝑶 𝟏 𝑶 𝟏

Additional implications (for free!):
• SNARG for P/poly with a universal setup with constant-size proofs (CRS only depends on

the size of the circuit)
• Previously (from pairings): SNARG for P/poly with circuit-dependent CRS [GZ21]

• Homomorphic signature for general (bounded-size) circuits with constant-size signatures
• Previously (from pairings): Signature size scaled with the depth of the circuit [BCFL23]

Constant number
of group elements

(all results without relying on knowledge assumptions or ideal models)

Starting Point: Chainable Commitment

Chainable commitment [BCFL23]

Let 𝑓: ℤ𝑝
ℓ → ℤ𝑝

𝑑 be a vector-valued function

𝑥1

𝑥2

⋮

𝑥ℓ

𝜎𝒙

succinct commitment to
vector 𝒙

𝑦1

𝑦2

⋮

𝑦𝑑

𝜎𝒚

succinct commitment to
vector 𝒚 = 𝑓 𝒙succinct opening 𝜋

Instead of committing to 𝒙
and opening to 𝒚 = 𝑓 𝒙

Open to commitment to
𝒚 = 𝑓 𝒙

Can think of commitment
as a subset product:

𝜎 = ෑ

𝑖∈ ℓ

ℎ𝑖
𝑥𝑖

where ℎ𝑖 are in the CRS

Chain binding: cannot
open 𝜎in to two distinct
commitments 𝜎out, 𝜎out

′

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions ⇒ functional commitment for circuits

gate

gate

gate

gate

gate

gate

𝜎
Commit to
input wires 𝜎1

′ 𝜎2
′

Commitments to internal
layers and output layer

𝜎3
′

𝜋1 𝜋2 𝜋3

Chainable commitment openings for each layer

[BCFL23]

Assume: each gate
computes quadratic

function

opening

opening

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions ⇒ functional commitment for circuits

gate

gate

gate

gate

gate

gate

𝜎
Commit to
input wires 𝜎1

′ 𝜎2
′

Commitments to internal
layers and output layer

𝜎3
′

𝜋1 𝜋2 𝜋3

Chainable commitment openings for each layer

Commitment: 𝜎
Opening: 𝜎1

′, 𝜎2
′ , 𝜎3

′ , 𝜋1, 𝜋2, 𝜋3

Opening scales with
depth of circuit

[BCFL23]

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝑦1 𝑦2 ⋯ 𝑦𝑡 𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎1

Input layer Intermediate layer Output layer

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝑦1 𝑦2 ⋯ 𝑦𝑡 𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎2

Commitment: (same as before)

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Opening: commit to all wires (i.e., concatenated together) twice

Verifier know output 𝑧1, … , 𝑧𝑑 :

𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎out

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝑦1 𝑦2 ⋯ 𝑦𝑡 𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎1

Input layer Intermediate layer Output layer

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝑦1 𝑦2 ⋯ 𝑦𝑡 𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎2

Commitment: (same as before)

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Opening: commit to all wires (i.e., concatenated together) twice

Verifier know output 𝑧1, … , 𝑧𝑑 :

𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎out

Everything is short, but how
do we argue binding?

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Commitment: (same as before)

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Opening: commit to all wires (i.e., concatenated together) twice

Verifier know output 𝑧1, … , 𝑧𝑡 :

𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎out

Neither 𝜎1 nor 𝜎2 is a quadratic function of 𝜎input

With bilinear maps, we only know how to check quadratic functions

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝑦1 𝑦2 ⋯ 𝑦𝑡 𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎1

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝑦1 𝑦2 ⋯ 𝑦𝑡 𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎2

Approach Overview

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

Initially: no guarantees on what 𝜎1, 𝜎1
′, 𝜎2, 𝜎2

′ commit to

Cannot use chain binding to argue that 𝜎1 and 𝜎1
′ are equal since

they are not a quadratic function of 𝜎in

Our approach: argue that a prefix of 𝜎1, 𝜎1
′ are still equal

Approach Overview

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

Initially: no guarantees on what 𝜎1, 𝜎1
′, 𝜎2, 𝜎2

′ commit to

Input consistency: 𝜋, 𝜋′ includes an opening that asserts that the
first ℓ components of 𝜎1, 𝜎1

′ are consistent with 𝜎in

Approach Overview

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ 𝜎1, 𝜎1
′

Input consistency: 𝜋, 𝜋′ includes an opening that asserts that the
first ℓ components of 𝜎1, 𝜎1

′ are consistent with 𝜎in

Close to a chain binding property: prover is opening 𝜎in to output commitments 𝜎1, 𝜎1
′

Caveat: Only reasoning about the first ℓ components of 𝜎1 and 𝜎1
′ (not the entire vector)

Approach Overview

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ

If we establish that the first ℓ components of 𝜎1, 𝜎1
′ agree, we can try to

argue that the first ℓ + 1 components of 𝜎2, 𝜎2
′ also agree

Observation: first ℓ + 1 components of 𝜎2, 𝜎2
′ is a quadratic

function of the first ℓ components of 𝜎1, 𝜎1
′

corresponds to a
single gate

Approach Overview

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥ℓ ෤𝑦1

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ

If we establish that the first ℓ components of 𝜎1, 𝜎1
′ agree, we can try to

argue that the first ℓ + 1 components of 𝜎2, 𝜎2
′ also agree

Observation: first ℓ + 1 components of 𝜎2, 𝜎2
′ is a quadratic

function of the first ℓ components of 𝜎1, 𝜎1
′

corresponds to a
single gate

Approach Overview

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥ℓ ෤𝑦1

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ

Repeat this process: if 𝜎2, 𝜎2
′ agree on the first ℓ + 1 values, then

𝜎1, 𝜎1
′ agree on the first ℓ + 1 values

Approach Overview

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥ℓ ෤𝑦1

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ ො𝑦1

Repeat this process: if 𝜎2, 𝜎2
′ agree on the first ℓ + 1 values, then

𝜎1, 𝜎1
′ agree on the first ℓ + 1 values

Approach Overview

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ ො𝑦1 ො𝑦2 ⋯ ො𝑦𝑡 Ƹ𝑧1 Ƹ𝑧2 ⋯ Ƹ𝑧𝑑

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥ℓ ෤𝑦1 ෤𝑦2 ⋯ ෤𝑦𝑡 ǁ𝑧1 ǁ𝑧2 ⋯ ǁ𝑧𝑑

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

Iterate to conclude that 𝜎1, 𝜎1
′ actually agree on all values

(including the outputs), which implies binding

Approach Overview

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝑦1 𝑦2 ⋯ 𝑦𝑡 𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎1, 𝜎2

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎out

Prove statements of the following form:
• Input consistency: first ℓ wires in 𝜎1 is consistent with 𝜎in

• Gate consistency: first 𝑗 + 1 wires in 𝜎2 is consistent with first 𝑗 wires in 𝜎1

• Internal consistency: first 𝑗 wires in 𝜎1 is consistent with first 𝑗 wires in 𝜎2

• Output consistency: last 𝑡 wires in 𝜎1 are consistent with 𝜎out

Main technical tool: way to reason
about prefixes of a committed vector

Projective Chainable Commitments

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 𝑥ℓ 𝜎1

Project(𝜎1, 𝑗)

𝑥1 ⋯ 𝑥𝑗 0 ⋯ 0 𝜎1
𝑗

Intuitively: can associate CRS with
an index 𝑗 that allows projecting a

commitment 𝜎1 onto a
commitment to the first 𝑗 indices

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 𝑥ℓ 𝜎2

Project(𝜎2, 𝑗 + 1)

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 0 𝜎2
𝑗+1

Projective chain binding: given (𝜎1, 𝜎2, 𝜋) and 𝜎1
′, 𝜎2

′ , 𝜋′

If Project(td, 𝜎1, 𝑗) = Project(td, 𝜎1
′, 𝑗) and

• 𝜎2, 𝜋, 𝑓 is a valid opening for 𝜎1

• 𝜎2
′ , 𝜋′, 𝑓 is a valid opening for 𝜎1

′

Then, Project(td, 𝜎2, 𝑗 + 1) = Project(td, 𝜎2
′ , 𝑗 + 1)

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

Step 1: Input consistency between 𝜎in and 𝜎1, 𝜎1
′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

Projective chain binding: 𝜎1, 𝜎1
′ are both openings for 𝜎in so Project 𝜎1, ℓ = Project 𝜎1

′, ℓ

Initially: no guarantees on what 𝜎1, 𝜎1
′, 𝜎2, 𝜎2

′ commit to

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ

Step 1: Input consistency between 𝜎in and 𝜎1, 𝜎1
′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

Projective chain binding: 𝜎1, 𝜎1
′ are both openings for 𝜎in so Project 𝜎1, ℓ = Project 𝜎1

′, ℓ

𝜎1 and 𝜎1
′ agree on first ℓ components:

Project 𝜎1, ℓ = Project 𝜎1
′, ℓ

Note: we do not know what values
they have, only that they agree

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ 𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

𝜎1 and 𝜎1
′ agree on first ℓ components:

Project 𝜎1, ℓ = Project 𝜎1
′, ℓ

Note: we do not know what values
they have, only that they agree

Step 2: Gate consistency between first ℓ wires in 𝜎1, 𝜎1
′ with

first ℓ + 1 wires in 𝜎2, 𝜎2
′

Since Project 𝜎1, ℓ = Project 𝜎1
′, ℓ , projective chain binding implies Project 𝜎2, ℓ + 1 = Project 𝜎2

′ , ℓ + 1

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥ℓ ෤𝑦1

Step 2: Gate consistency between first 𝑘 wires in 𝜎1, 𝜎1
′

with first ℓ + 1 wires in 𝜎2, 𝜎2
′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

𝜎2 and 𝜎2
′ agree on first ℓ + 1 components:

Project 𝜎2, ℓ + 1 = Project 𝜎2
′ , ℓ + 1

Since Project 𝜎1, ℓ = Project 𝜎1
′, ℓ , projective chain binding implies Project 𝜎2, ℓ + 1 = Project 𝜎2

′ , ℓ + 1

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥ℓ ෤𝑦1

Step 3: Internal consistency between first ℓ + 1 wires in
𝜎2, 𝜎2

′ with first ℓ + 1 wires in 𝜎1, 𝜎1
′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

𝜎2 and 𝜎2
′ agree on first ℓ + 1 components:

Project 𝜎2, ℓ + 1 = Project 𝜎2
′ , ℓ + 1

Since Project 𝜎2, ℓ + 1 = Project 𝜎2
′ , ℓ + 1 , projective chain binding implies Project 𝜎1, ℓ + 1 = Project 𝜎1

′, ℓ + 1

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥ℓ ෤𝑦1

Step 3: Internal consistency between first ℓ + 1 wires in
𝜎2, 𝜎2

′ with first ℓ + 1 wires in 𝜎1, 𝜎1
′

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

𝜎1 and 𝜎1
′ agree on first ℓ + 1 components:

Project 𝜎1, ℓ + 1 = Project 𝜎1
′, ℓ + 1

Since Project 𝜎2, ℓ + 1 = Project 𝜎2
′ , ℓ + 1 , projective chain binding implies Project 𝜎1, ℓ + 1 = Project 𝜎1

′, ℓ + 1

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ ො𝑦1

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ ො𝑦1

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥ℓ ෤𝑦1

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

𝜎1 and 𝜎1
′ agree on first ℓ + 1 components:

Project 𝜎1, ℓ + 1 = Project 𝜎1
′, ℓ + 1

Observe: we have established that Project 𝜎1, ℓ + 1 = Project(𝜎1
′, ℓ + 1)

Can iterate this strategy for each index ℓ + 1, ℓ + 2, … to argue that 𝜎1, 𝜎1
′ agree on all components

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ ො𝑦1 ො𝑦2 ⋯ ො𝑦𝑡 Ƹ𝑧1 Ƹ𝑧2 ⋯ Ƹ𝑧𝑑

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥ℓ ෤𝑦1 ෤𝑦2 ⋯ ෤𝑦𝑡 ǁ𝑧1 ǁ𝑧2 ⋯ ǁ𝑧𝑑

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

Observe: we have established that Project 𝜎1, ℓ + 1 = Project(𝜎1
′, ℓ + 1)

Can iterate this strategy for each index ℓ + 1, ℓ + 2, … to argue that 𝜎1, 𝜎1
′ agree on all components

Using Projective Chainable Commitments

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Consider two different openings: 𝜎1, 𝜎2, 𝜎out, 𝜋 and 𝜎1
′, 𝜎2

′ , 𝜎out
′ , 𝜋′

ො𝑥1 ො𝑥2 ⋯ ො𝑥ℓ ො𝑦1 ො𝑦2 ⋯ ො𝑦𝑡 Ƹ𝑧1 Ƹ𝑧2 ⋯ Ƹ𝑧𝑑

෤𝑥1 ෤𝑥2 ⋯ ෤𝑥ℓ ෤𝑦1 ෤𝑦2 ⋯ ෤𝑦𝑡 ǁ𝑧1 ǁ𝑧2 ⋯ ǁ𝑧𝑑

𝜎1, 𝜎1
′

𝜎2, 𝜎2
′

If 𝜎1 = 𝜎1
′, then final output commitment check ensures 𝜎out = 𝜎out

′

Similar proof strategy as [GZ21, CJJ21, KLVW23]

Constructing Projective Chainable Commitments

Starting point: Kiltz-Wee [KW15] proof system for proving membership in linear spaces

Suppose we want to support openings to a fixed linear function

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Let 𝔾, 𝔾𝑇 , 𝑒 be a pairing group and let 𝑔 be a generator of 𝔾

Common reference string contains two vectors 𝑔𝒕 and 𝑔ො𝒕 where 𝒕 ← ℤ𝑝
ℓ and ො𝒕 ← ℤ𝑝

𝑑

Vector 𝒕 is used to commit to the inputs and vector ො𝒕 is used to commit to outputs

Commitment to input 𝒙 ∈ ℤ𝑝
ℓ is 𝜎in = 𝑔𝒕T𝒙

Commitment to output 𝒚 ∈ ℤ𝑝
𝑑 is 𝜎out = 𝑔ො𝒕T𝒚

Basically a Pedersen (vector) commitment:

if 𝑔𝒕 = ℎ1, … , ℎℓ , then 𝜎 = ς𝑖∈ ℓ ℎ𝑖
𝑥𝑖

Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Commitment to input 𝒙 ∈ ℤ𝑝
ℓ is 𝜎in = 𝑔𝒕T𝒙 Commitment to output 𝒚 ∈ ℤ𝑝

𝑑 is 𝜎out = 𝑔ො𝒕T𝒚

To support openings to the linear function 𝑴 (𝒙 ↦ 𝑴𝒙), we also include in the CRS 𝑔𝒛T
 where

𝒛T = 𝑤𝒕T − 𝑟ො𝒕T𝑴 ∈ ℤ𝑝
ℓ and 𝑟, 𝑤 ← ℤ𝑝

Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Commitment to input 𝒙 ∈ ℤ𝑝
ℓ is 𝜎in = 𝑔𝒕T𝒙 Commitment to output 𝒚 ∈ ℤ𝑝

𝑑 is 𝜎out = 𝑔ො𝒕T𝒚

To support openings to the linear function 𝑴 (𝒙 ↦ 𝑴𝒙), we also include in the CRS 𝑔𝒛T
 where

𝒛T = 𝑤𝒕T − 𝑟ො𝒕T𝑴 ∈ ℤ𝑝
ℓ and 𝑟, 𝑤 ← ℤ𝑝

Intuitively: 𝒛 “recodes” an input
commitment with respect to 𝒕 to an

output commitment with respect to ො𝒕

Chainable Commitments for Linear Functions

Suppose we want to support openings to a fixed linear function

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Commitment to input 𝒙 ∈ ℤ𝑝
ℓ is 𝜎in = 𝑔𝒕T𝒙 Commitment to output 𝒚 ∈ ℤ𝑝

𝑑 is 𝜎out = 𝑔ො𝒕T𝒚

To support openings to the linear function 𝑴 (𝒙 ↦ 𝑴𝒙), we also include in the CRS 𝑔𝒛T
 where

𝒛T = 𝑤𝒕T − 𝑟ො𝒕T𝑴 ∈ ℤ𝑝
ℓ and 𝑟, 𝑤 ← ℤ𝑝

Opening: 𝜋 = 𝑔𝒛T𝒙 Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

For now, we consider the designated-verifier setting where secret key needed to check proofs

Secret verification key: 𝑟, 𝑤
Correctness: =

𝑔𝑤𝒕T𝒙

𝑔𝑟ො𝒕T𝒚

𝜎in
𝑤

𝜎out
𝑟 =

𝑔𝑤𝒕T𝒙

𝑔𝑟ො𝒕T𝑴𝒙
= 𝑔 𝑤𝒕T−𝑟ො𝒕T𝑴 𝒙 = 𝑔𝒛T𝒙 = 𝜋

Security for Linear Functions

Suppose we want to support openings to a fixed linear function

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕T−𝑟ො𝒕T𝑴

Suppose adversary produces the following:

Input commitment 𝜎in = 𝑔𝑐

Output commitments 𝜎out = 𝑔 Ƹ𝑐 , 𝜎out
′ = 𝑔 Ƹ𝑐′

Openings 𝜋 = 𝑔𝑣 , 𝜋′ = 𝑔𝑣′

If the openings are valid, then

𝑣 = 𝑤𝑐 − 𝑟 Ƹ𝑐
𝑣′ = 𝑤𝑐 − 𝑟 Ƹ𝑐′

Thus, 𝑣 − 𝑣′ = 𝑟 Ƹ𝑐 − Ƹ𝑐′

Non-zero since Ƹ𝑐 ≠ Ƹ𝑐′

Security for Linear Functions

Suppose we want to support openings to a fixed linear function

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕T−𝑟ො𝒕T𝑴

Suppose adversary produces the following:

Input commitment 𝜎in = 𝑔𝑐

Output commitments 𝜎out = 𝑔 Ƹ𝑐 , 𝜎out
′ = 𝑔 Ƹ𝑐′

Openings 𝜋 = 𝑔𝑣 , 𝜋′ = 𝑔𝑣′

If the openings are valid, then

𝑣 = 𝑤𝑐 − 𝑟 Ƹ𝑐
𝑣′ = 𝑤𝑐 − 𝑟 Ƹ𝑐′

Thus, 𝑣 − 𝑣′ = 𝑟 Ƹ𝑐 − Ƹ𝑐′

Non-zero since Ƹ𝑐 ≠ Ƹ𝑐′

Under DDH, 𝑤𝒕 computationally hides value of 𝑟

Distribution of 𝑟 Ƹ𝑐 − Ƹ𝑐′ is
pseudorandom from the perspective
of the adversary, so this check passes

with probability 1/𝑝

Technically: DDH does not hold in a symmetric pairing
group, but can use asymmetric group (or 𝑘-Lin)

Chainable Commitments for Linear Functions

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕T−𝑟ො𝒕T𝑴

Suppose we want to support openings to a fixed linear function

𝜎in = 𝑔𝒕T𝒙

𝜎out = 𝑔ො𝒕T𝒚

Lots of caveats:

Only supports fixed functions

Only supports linear functions

Only designated-verifier

Chainable Commitments for Linear Functions

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕T−𝑟ො𝒕T𝑴

Suppose we want to support openings to a fixed linear function

𝜎in = 𝑔𝒕T𝒙

𝜎out = 𝑔ො𝒕T𝒚

Caveat: Only supports fixed functions

Extend to arbitrary functions by relying on linear homomorphism

Suppose we publish 𝑔𝒛1
T

= 𝑔𝑤1𝒕T−𝑟ො𝒕T𝑴1 and 𝑔𝒛2
T

= 𝑔𝑤2𝒕T−𝑟ො𝒕T𝑴2 in the CRS

𝜎in = 𝑔𝒕T𝒙 𝑔𝛼1𝒛1
T𝒙 is an opening to 𝒚 = 𝛼1𝑴1𝒙

𝜎in
𝛼1𝑤1

𝜎out
𝑟 = 𝑔𝛼1𝑤1𝒕T𝒙−𝑟ො𝒕T𝒚 = 𝑔𝛼1𝑤1𝒕T𝒙−𝛼1𝑟ො𝒕T𝑴1𝒙 = 𝑔𝛼1𝒛1

T𝒙𝜎out = 𝑔ො𝒕T𝒚

Chainable Commitments for Linear Functions

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕T−𝑟ො𝒕T𝑴

Suppose we want to support openings to a fixed linear function

𝜎in = 𝑔𝒕T𝒙

𝜎out = 𝑔ො𝒕T𝒚

Caveat: Only supports fixed functions

Extend to arbitrary functions by relying on linear homomorphism

Suppose we publish 𝑔𝒛1
T

= 𝑔𝑤1𝒕T−𝑟ො𝒕T𝑴1 and 𝑔𝒛2
T

= 𝑔𝑤2𝒕T−𝑟ො𝒕T𝑴2 in the CRS

𝑔𝛼2𝒛2
T𝒙 is an opening to 𝛼2𝑴2𝒙

𝜎in = 𝑔𝒕T𝒙 𝑔𝛼1𝒛1
T𝒙 is an opening to 𝛼1𝑴1𝒙

𝜎out = 𝑔ො𝒕T𝒚

Chainable Commitments for Linear Functions

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕−𝑟ො𝒕𝑴

Suppose we want to support openings to a fixed linear function

𝜎in = 𝑔𝒕T𝒙

𝜎out = 𝑔ො𝒕T𝒚

𝜎in
𝛼1𝑤1

𝑔𝑟ො𝒕T 𝛼1𝑴1𝒙
= 𝑔𝛼1𝒛1

T𝒙
𝜎in

𝛼2𝑤2

𝑔𝑟ො𝒕T 𝛼2𝑴2𝒙
= 𝑔𝛼2𝒛2

T𝒙

Caveat: Only supports fixed functions

Extend to arbitrary functions by relying on linear homomorphism

Suppose we publish 𝑔𝒛1
T

= 𝑔𝑤1𝒕T−𝑟ො𝒕T𝑴1 and 𝑔𝒛2
T

= 𝑔𝑤2𝒕T−𝑟ො𝒕T𝑴2 in the CRS

𝜎in = 𝑔𝒕T𝒙

𝜎in
𝛼1𝑤1+𝛼2𝑤2

𝜎out
𝑟 = 𝑔𝛼1𝒛1

T𝒙+𝛼2𝒛2
T𝒙

𝑔𝛼1𝒛1
T𝒙+𝛼2𝒛2

T𝒙 is an opening to 𝒚 = 𝛼1𝑴1𝒙 + 𝛼2𝑴2𝒙

Verification relation for
𝒙 ↦ (𝛼1𝑴1 + 𝛼2𝑴2)𝒙𝜎out = 𝑔ො𝒕T𝒚

Chainable Commitments for Linear Functions

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕−𝑟ො𝒕𝑴

Suppose we want to support openings to a fixed linear function

𝜎in = 𝑔𝒕T𝒙

𝜎out = 𝑔ො𝒕T𝒚

𝜎in
𝛼1𝑤1

𝑔𝑟ො𝒕T 𝛼1𝑴1𝒙
= 𝑔𝛼1𝒛1

T𝒙
𝜎in

𝛼2𝑤2

𝑔𝑟ො𝒕T 𝛼2𝑴2𝒙
= 𝑔𝛼2𝒛2

T𝒙

Caveat: Only supports fixed functions

Extend to arbitrary functions by relying on linear homomorphism

Publish components for complete basis of linear functions

𝑴𝑖,𝑗 =
0 ⋯ 0
⋮ 1 ⋮
0 ⋯ 0

row 𝑖

column 𝑗

Any linear function 𝑴 can be expressed as
a linear combination of 𝑴𝑖,𝑗

Chainable Commitments for Linear Functions

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕T−𝑟ො𝒕T𝑴

Suppose we want to support openings to a fixed linear function

𝜎in = 𝑔𝒕T𝒙

𝜎out = 𝑔ො𝒕T𝒚

Caveat: Only supports linear functions

Can extend to quadratic functions by linearization (and tensoring)

Quadratic function of 𝒙 is a linear function of 𝒙 ⊗ 𝒙

Prover commits to 𝒙 ⊗ 𝒙 and evaluates a
linear function; certify well-formedness of

commitment using pairing

[see paper for details]

Chainable Commitments for Linear Functions

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕T−𝑟ො𝒕T𝑴

Suppose we want to support openings to a fixed linear function

𝜎in = 𝑔𝒕T𝒙

𝜎out = 𝑔ො𝒕T𝒚

Caveat: Only designated-verifier

Solution: encode the verification key 𝑟 and 𝑤 in the exponent (following [KW15])

Chainable Commitments for Linear Functions

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕T−𝑟ො𝒕T𝑴

Suppose we want to support openings to a fixed linear function

𝜎in = 𝑔𝒕T𝒙

𝜎out = 𝑔ො𝒕T𝒚

Caveat: Only designated-verifier

Solution: encode the verification key 𝑟 and 𝑤 in the exponent (following [KW15])

Previous argument required that 𝑟 was
computationally hidden, so we cannot just

give out 𝑔𝑟

Chainable Commitments for Linear Functions

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕T−𝑟ො𝒕T𝑴

Suppose we want to support openings to a fixed linear function

𝜎in = 𝑔𝒕T𝒙

𝜎out = 𝑔ො𝒕T𝒚

Caveat: Only designated-verifier

Solution: encode the verification key 𝑟 and 𝑤 in the exponent (following [KW15])

Sample 𝒂 ← ℤ𝑝
2

Sample 𝒘, 𝒓 ← ℤ𝑝
2

CRS: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝒂, 𝑔𝒂T𝒘, 𝑔𝒂T𝒓, 𝑔𝒘𝒕T−𝒓ො𝒕T𝑴

Verification relation is now

𝑒 𝑔𝒂T
, 𝝅 =

𝑒 𝑔𝒂T𝒘, 𝜎in

𝑒 𝑔𝒂T𝒓, 𝜎out
𝝅 = 𝑔𝒘𝒕T𝒙−𝒓ො𝒕T𝑴𝒙𝜎in = 𝑔𝒕T𝒙 𝜎out = 𝑔ො𝒕T𝑴𝒙

Chainable Commitments for Linear Functions

𝒙 ∈ ℤ𝑝
ℓ ↦ 𝑴𝒙 ∈ ℤ𝑝

𝑑 where 𝑴 ∈ ℤ𝑝
𝑑×ℓ

Verification relation: Check that 𝜋 =
𝜎in

𝑤

𝜎out
𝑟

Common reference string: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝑤𝒕T−𝑟ො𝒕T𝑴

Suppose we want to support openings to a fixed linear function

𝜎in = 𝑔𝒕T𝒙

𝜎out = 𝑔ො𝒕T𝒚

Caveat: Only designated-verifier

Solution: encode the verification key 𝑟 and 𝑤 in the exponent (following [KW15])

Sample 𝒂 ← ℤ𝑝
2

Sample 𝒘, 𝒓 ← ℤ𝑝
2

CRS: 𝑔𝒕, 𝑔ො𝒕, 𝑔𝒂, 𝑔𝒂T𝒘, 𝑔𝒂T𝒓, 𝑔𝒘𝒕T−𝒓ො𝒕T𝑴

Verification relation is now

𝑒 𝑔𝒂T
, 𝝅 =

𝑒 𝑔𝒂T𝒘, 𝜎in

𝑒 𝑔𝒂T𝒓, 𝜎out
𝝅 = 𝑔𝒘𝒕T𝒙−𝒓ො𝒕T𝑴𝒙𝜎in = 𝑔𝒕T𝒙 𝜎out = 𝑔ො𝒕T𝑴𝒙

In this approach, 𝒓 has one unit of entropy
given 𝒂T𝒓, so we can still carry out a

similar argument as before

Projective Chainable Commitments

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 𝑥ℓ 𝜎1

Project(𝜎1, 𝑗)

𝑥1 ⋯ 𝑥𝑗 0 ⋯ 0 𝜎1
𝑗

Need a way to project a commitment
onto a subset of its components

𝑔𝒕 = ℎ1, … , ℎℓ

𝜎 = 𝑔𝒕T𝒙 = ෑ

𝑖∈ ℓ

ℎ𝑖
𝑥𝑖

In composite-order groups: introduce a subgroup for components in projection set

Suppose 𝔾 has order 𝑁 = 𝑝𝑞 and let 𝔾𝑝, 𝔾𝑞 be the order-𝑝 and order-𝑞 subgroups of 𝔾

Let 𝑔𝑝 be a generator of 𝔾𝑝 and 𝑔𝑞 be a generator of 𝔾𝑞

Replace 𝑔𝒕 with ℎ1 = 𝑔𝑝𝑔𝑞
𝑡1

, … , ℎ𝑗 = 𝑔𝑝𝑔𝑞
𝑡𝑗

, ℎ𝑗+1 = 𝑔𝑝

𝑡𝑗+1
, … , ℎℓ = 𝑔𝑝

𝑡ℓ

Projective Chainable Commitments

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 𝑥ℓ 𝜎1

Project(𝜎1, 𝑗)

𝑥1 ⋯ 𝑥𝑗 0 ⋯ 0 𝜎1
𝑗

Need a way to project a commitment
onto a subset of its components

𝑔𝒕 = ℎ1, … , ℎℓ

𝜎 = 𝑔𝒕T𝒙 = ෑ

𝑖∈ ℓ

ℎ𝑖
𝑥𝑖

In composite-order groups: introduce a subgroup for components in projection set

Suppose 𝔾 has order 𝑁 = 𝑝𝑞 and let 𝔾𝑝, 𝔾𝑞 be the order-𝑝 and order-𝑞 subgroups of 𝔾

Let 𝑔𝑝 be a generator of 𝔾𝑝 and 𝑔𝑞 be a generator of 𝔾𝑞

Replace 𝑔𝒕 with ℎ1 = 𝑔𝑝𝑔𝑞
𝑡1

, … , ℎ𝑗 = 𝑔𝑝𝑔𝑞
𝑡𝑗

, ℎ𝑗+1 = 𝑔𝑝

𝑡𝑗+1
, … , ℎℓ = 𝑔𝑝

𝑡ℓ

Commitment is now

𝜎 = ෑ

𝑖∈ ℓ

ℎ𝑖
𝑥𝑖 = ෑ

𝑖=1

𝑗

𝑔𝑝𝑔𝑞
𝑡𝑖𝑥𝑖

ෑ

𝑖=𝑗+1

ℓ

𝑔𝑝
𝑡𝑖𝑥𝑖

If we consider 𝜎 in the mod-𝑞 subgroup, then

𝜎𝑞 = ෑ

𝑖∈ 𝑗

𝑔𝑞
𝑡𝑖𝑥𝑖

This is precisely a commitment to the first 𝑗
components!

Projective Chainable Commitments

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 𝑥ℓ 𝜎1

Project(𝜎1, 𝑗)

𝑥1 ⋯ 𝑥𝑗 0 ⋯ 0 𝜎1
𝑗

Need a way to project a commitment
onto a subset of its components

𝑔𝒕 = ℎ1, … , ℎℓ

𝜎 = 𝑔𝒕T𝒙 = ෑ

𝑖∈ ℓ

ℎ𝑖
𝑥𝑖

Commitment is now

𝜎 = ෑ

𝑖∈ ℓ

ℎ𝑖
𝑥𝑖 = ෑ

𝑖=1

𝑗

𝑔𝑝𝑔𝑞
𝑡𝑖𝑥𝑖

ෑ

𝑖=𝑗+1

ℓ

𝑔𝑝
𝑡𝑖𝑥𝑖

If we consider 𝜎 in the mod-𝑞 subgroup, then

𝜎𝑞 = ෑ

𝑖∈ 𝑗

𝑔𝑞
𝑡𝑖𝑥𝑖

This is precisely a commitment to the first 𝑗
components!

Main idea: embed two copies of the chainable commitment scheme:
• The normal scheme is embedded in the 𝔾𝑝-subgroup

• The projected scheme is embedded in the 𝔾𝑞-subgroup

When reasoning about chain binding, we implement the previous proof argument within
the 𝔾𝑞 subgroup

Syntactic issue: We were considering
linear/quadratic functions over ℤ𝑝

before; when using composite-order
groups, we should view it as functions
over the integers

Projective Chainable Commitments

𝑥1 ⋯ 𝑥𝑗 𝑥𝑗+1 ⋯ 𝑥ℓ 𝜎1

Project(𝜎1, 𝑗)

𝑥1 ⋯ 𝑥𝑗 0 ⋯ 0 𝜎1
𝑗

Need a way to project a commitment
onto a subset of its components

𝑔𝒕 = ℎ1, … , ℎℓ

𝜎 = 𝑔𝒕T𝒙 = ෑ

𝑖∈ ℓ

ℎ𝑖
𝑥𝑖

Commitment is now

𝜎 = ෑ

𝑖∈ ℓ

ℎ𝑖
𝑥𝑖 = ෑ

𝑖=1

𝑗

𝑔𝑝𝑔𝑞
𝑡𝑖𝑥𝑖

ෑ

𝑖=𝑗+1

ℓ

𝑔𝑝
𝑡𝑖𝑥𝑖

If we consider 𝜎 in the mod-𝑞 subgroup, then

𝜎𝑞 = ෑ

𝑖∈ 𝑗

𝑔𝑞
𝑡𝑖𝑥𝑖

This is precisely a commitment to the first 𝑗
components!

Main idea: embed two copies of the chainable commitment scheme:
• The normal scheme is embedded in the 𝔾𝑝-subgroup

• The projected scheme is embedded in the 𝔾𝑞-subgroup

In paper: use prime-order groups and consider two orthogonal subspaces (normal scheme
in one subspace and projected scheme in the other); security reduces to (bilateral) 𝑘-Lin

Syntactic issue: We were considering
linear/quadratic functions over ℤ𝑝

before; when using composite-order
groups, we should view it as functions
over the integers

[see paper for details; see also [GZ21] for similar projection approach]

Functional Commitments for Circuits

Goal: Constant number of group elements for commitment and openings

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝑦1 𝑦2 ⋯ 𝑦𝑡 𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎1

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝑦1 𝑦2 ⋯ 𝑦𝑡 𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎2

Commitment:

𝑥1 𝑥2 ⋯ 𝑥ℓ 𝜎in

Opening: commit to all wires (i.e., concatenated together) twice

Verifier know output 𝑧1, … , 𝑧𝑑 :

𝑧1 𝑧2 ⋯ 𝑧𝑑 𝜎out

Use projective chain binding and
an iterative argument to argue binding

Summary

This work: functional commitments for general circuits using pairings

Scheme Function Class Assumptioncrs 𝜎 𝜋

This work arithmetic circuits bilateral 𝒌-Lin𝑶 𝒔𝟓 𝑶 𝟏 𝑶 𝟏

• First pairing-based construction for general circuits based on falsifiable assumptions
where commitment and openings contain constant number of group elements

• First scheme that only makes black-box use of cryptographic primitives/algorithms where
the commitment + opening size is poly 𝜆 bits

Open problem: Construction with shorter CRS (e.g., linear-size)? Then, parameters would
match state-of-the-art pairing-based SNARKs

Thank you!
https://eprint.iacr.org/2024/688

	Slide 1: Succinct Functional Commitments for Circuits from k-Lin
	Slide 2: Functional Commitments
	Slide 3: Functional Commitments
	Slide 4: Functional Commitments
	Slide 5: Functional Commitments
	Slide 6: Functional Commitments
	Slide 7: Functional Commitments
	Slide 8: Special Cases of Functional Commitments
	Slide 9: Commitments as Proofs on Committed Data
	Slide 10: Succinct Functional Commitments
	Slide 11: Pairing-Based Functional Commitments
	Slide 12: Pairing-Based Functional Commitments
	Slide 13: This Work
	Slide 14: This Work
	Slide 15: Starting Point: Chainable Commitment
	Slide 16: Starting Point: Chainable Commitment
	Slide 17: Starting Point: Chainable Commitment
	Slide 18: Our Approach: Commit to All Wires
	Slide 19: Our Approach: Commit to All Wires
	Slide 20: Our Approach: Commit to All Wires
	Slide 21: Approach Overview
	Slide 22: Approach Overview
	Slide 23: Approach Overview
	Slide 24: Approach Overview
	Slide 25: Approach Overview
	Slide 26: Approach Overview
	Slide 27: Approach Overview
	Slide 28: Approach Overview
	Slide 29: Approach Overview
	Slide 30: Projective Chainable Commitments
	Slide 31: Using Projective Chainable Commitments
	Slide 32: Using Projective Chainable Commitments
	Slide 33: Using Projective Chainable Commitments
	Slide 34: Using Projective Chainable Commitments
	Slide 35: Using Projective Chainable Commitments
	Slide 36: Using Projective Chainable Commitments
	Slide 37: Using Projective Chainable Commitments
	Slide 38: Using Projective Chainable Commitments
	Slide 39: Using Projective Chainable Commitments
	Slide 40: Constructing Projective Chainable Commitments
	Slide 41: Chainable Commitments for Linear Functions
	Slide 42: Chainable Commitments for Linear Functions
	Slide 43: Chainable Commitments for Linear Functions
	Slide 44: Security for Linear Functions
	Slide 45: Security for Linear Functions
	Slide 46: Chainable Commitments for Linear Functions
	Slide 47: Chainable Commitments for Linear Functions
	Slide 48: Chainable Commitments for Linear Functions
	Slide 49: Chainable Commitments for Linear Functions
	Slide 50: Chainable Commitments for Linear Functions
	Slide 51: Chainable Commitments for Linear Functions
	Slide 52: Chainable Commitments for Linear Functions
	Slide 53: Chainable Commitments for Linear Functions
	Slide 54: Chainable Commitments for Linear Functions
	Slide 55: Chainable Commitments for Linear Functions
	Slide 56: Projective Chainable Commitments
	Slide 57: Projective Chainable Commitments
	Slide 58: Projective Chainable Commitments
	Slide 59: Projective Chainable Commitments
	Slide 60: Functional Commitments for Circuits
	Slide 61: Summary

