Succinct Functional Commitments for Circuits from *k*-Lin

Hoeteck Wee and <u>David Wu</u> June 2024

 $Commit(crs, x) \rightarrow (\sigma, st)$

Takes a common reference string and commits to an input xOutputs commitment σ and commitment state st

Commit(crs, x) \rightarrow (σ , st) Open(st, f) $\rightarrow \pi$

Takes the commitment state and a function f and outputs an opening π

Verify(crs,
$$\sigma$$
, (f, y) , π) $\rightarrow 0/1$

Checks whether π is valid opening of σ to value y with respect to f

Correctness: if $(\sigma, \text{st}) \leftarrow \text{Commit}(\text{crs}, x)$ and $\pi \leftarrow \text{Open}(\text{st}, f)$ then $\text{Verify}(\text{crs}, \sigma, (f, f(x)), \pi) = 1$

Can open commitment to x to value y = f(x) for any function f

Binding: efficient adversary **cannot** open σ to two different values with respect to the **same** f

$$\pi_{0} (f, y_{0}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{0}), \pi_{0}) = 1$$

$$\pi_{1} (f, y_{1}) \quad \text{Verify}(\text{crs}, \sigma, (f, y_{1}), \pi_{1}) = 1$$

Succinctness: commitments and openings should be short

- Short commitment: $|\sigma| = \text{poly}(\lambda, \log |x|)$
- Short opening: $|\pi| = \text{poly}(\lambda, \log|x|)$

Special Cases of Functional Commitments

Vector commitments:

$$[x_1, x_2, \dots, x_n] \qquad \qquad \text{ind}_i(x_1, \dots, x_n) \coloneqq x_i$$

commit to a vector, open at an index

Polynomial commitments:

commit to a polynomial, open to the evaluation at x

Commitments as Proofs on Committed Data

 π is a proof that the data satisfies some property (e.g., committed input is in a certain range)

Succinctness: both the commitment and the proof are short

Succinct Functional Commitments

(not an exhaustive list!)

Scheme	Function Class	Assumption
[Mer87]	vector commitment	collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20]	vector commitment	q-type pairing assumptions
[CF13, LM19, BBF19]	vector commitment	groups of unknown order
[PPS21]	vector commitment	short integer solutions (SIS)
[KZG10, Lee20]	polynomial commitment	q-type pairing assumptions
[BFS19, BHRRS21, BF23]	polynomial commitment	groups of unknown order
[CLM23, FLV23]	polynomial commitment	k-R-ISIS assumption (lattices)
[LRY16]	linear functions	q-type pairing assumptions
[ACLMT22, CLM23]	constant-degree polynomials	k-R-ISIS assumption (lattices)
[LRY16]	Boolean circuits	collision-resistant hash functions + SNARKs
[dCP23]	Boolean circuits	SIS (non-succinct openings in general)
[KLVW23]	Boolean circuits	batch arguments for NP
[BCFL23]	Boolean circuits	twin <i>k-R-</i> ISIS (lattice) / HiKER (pairing)
[WW23a, WW23b]	Boolean circuits	ℓ-succinct SIS

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Why bilinear maps? Schemes have the best succinctness

• Pairing-based SNARKs just have a constant number of group elements

Can we construct a functional commitment for general circuits where the size of the commitment and the opening contain a **constant** number of group elements?

Namely: match the succinctness of pairing-based SNARKs, but only using standard pairing-based assumptions (no knowledge assumptions or ideal models)

Pairing-Based Functional Commitments

This work: functional commitments for general circuits using pairings

Scheme	Function Class	crs	$ \sigma $	$ \pi $	Assumption
[LRY16, Gro16]	arithmetic circuits	0(s)	0(1)	0(1)	generic group
[LRY16]	linear functions	$O(\ell)$	0(1)	O(m)	subgroup decision
[LM19]	linear functions	$O(\ell m)$	0(1)	0(1)	generic group
[LP20]	μ -sparse polynomials	$O(\mu)$	O(m)	0(1)	über assumption
[CFT22]	degree-d polynomials	$O(\ell^d m)$	O(d)	O(d)	ℓ^d -Diffie-Hellman exponent
[BCFL23]	arithmetic circuits	$O(s^{5})$	0(1)	O(d)	hinted kernel (q -type)
[KLVW23]	arithmetic circuits	$poly(\lambda)$	0(1)	$poly(\lambda)$	<i>k</i> -Lin
This work	arithmetic circuits	$O(s^5)$	0 (1)	0 (1)	bilateral k-Lin
ℓ = input lenge	gth, <i>m</i> = output length,	ize	metrics	in # group elements	

This Work

This work: functional commitments for general circuits using pairings

Scheme	Function Class	crs	$ \sigma $	$ \pi $	Assumption
This work	arithmetic circuits	$O(s^5)$	0 (1)	0 (1)	bilateral k-Lin

- First pairing-based construction for general circuits based on falsifiable assumptions where commitment and openings contain constant number of group elements
 - Previously: needed SNARKs (non-falsifiable assumptions)
- First scheme that only makes **black-box** use of cryptographic primitives/algorithms where the commitment + opening size is $poly(\lambda)$ bits
 - **Previously:** need non-black-box techniques (e.g., SNARKs or BARGs for NP)

This Work

This work: functional commitments for general circuits using pairings

Scheme	Function Class	crs	$ \sigma $	$ \pi $	Assumption
This work	arithmetic circuits	$O(s^5)$	0 (1)	0 (1)	bilateral <i>k</i> -Lin
Additional imp	olications (for free!):		Constant n of group el		

- SNARG for P/poly with a universal setup with constant-size proofs (CRS only depends on the size of the circuit)
 - **Previously (from pairings):** SNARG for P/poly with circuit-dependent CRS [GZ21]
- Homomorphic signature for general (bounded-size) circuits with constant-size signatures
 - **Previously (from pairings):** Signature size scaled with the *depth* of the circuit [BCFL23]

(all results without relying on knowledge assumptions or ideal models)

Starting Point: Chainable Commitment

Chainable commitment [BCFL23] Instead of committing to x and opening to y = f(x)Let $f: \mathbb{Z}_p^{\ell} \to \mathbb{Z}_p^d$ be a vector-valued function x_1 y_1 Can think of commitment Open to commitment to as a subset product: x_2 y_2 $\mathbf{y} = f(\mathbf{x})$ $\sigma = \left[\begin{array}{c} h_i^{x_i} \end{array} \right]$ • Chain binding: cannot $i \in [\ell]$ open σ_{in} to two distinct where h_i are in the CRS y_d χ_{ℓ} commitments $\sigma_{out}, \sigma'_{out}$ succinct commitment to succinct commitment to succinct opening π vector $\mathbf{y} = f(\mathbf{x})$ vector *x* $\sigma_{\mathbf{x}}$ $\sigma_{\mathbf{v}}$

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions \Rightarrow functional commitment for circuits

Chainable commitment openings for each layer

Starting Point: Chainable Commitment

Chainable commitment for quadratic functions \Rightarrow functional commitment for circuits

Commitment: σ Opening: $(\sigma'_1, \sigma'_2, \sigma'_3, \pi_1, \pi_2, \pi_3)$

Opening scales with depth of circuit

Chainable commitment openings for each layer

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Opening: commit to **all** wires (i.e., concatenated together) **twice**

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Our Approach: Commit to All Wires

Goal: Constant number of group elements for commitment and openings

Opening: commit to **all** wires (i.e., concatenated together) **twice**

$$x_1 \quad x_2 \quad \cdots \quad x_\ell \quad y_1 \quad y_2 \quad \cdots \quad y_t \quad z_1 \quad z_2 \quad \cdots \quad z_d \quad \longrightarrow \quad \sigma_1$$

Neither σ_1 nor σ_2 is a quadratic function of σ_{input}

With bilinear maps, we only know how to check quadratic functions

$$x_1 \quad x_2 \quad \cdots \quad x_\ell \quad y_1 \quad y_2 \quad \cdots \quad y_t \quad z_1 \quad z_2 \quad \cdots \quad z_d \quad \longrightarrow \quad \sigma_2$$

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

Initially: no guarantees on what $\sigma_1, \sigma_1', \sigma_2, \sigma_2'$ commit to

Cannot use chain binding to argue that σ_1 and σ'_1 are equal since they are not a quadratic function of σ_{in}

Our approach: argue that a **prefix** of σ_1 , σ'_1 are still equal

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

Initially: no guarantees on what $\sigma_1, \sigma_1', \sigma_2, \sigma_2'$ commit to

Input consistency: π, π' includes an opening that asserts that the first ℓ components of σ_1, σ'_1 are consistent with σ_{in}

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

Close to a chain binding property: prover is opening σ_{in} to output commitments σ_1, σ_1'

Caveat: Only reasoning about the first ℓ components of σ_1 and σ'_1 (*not* the entire vector)

Input consistency: π, π' includes an opening that asserts that the first ℓ components of σ_1, σ'_1 are consistent with σ_{in}

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_1, σ_1'

If we establish that the first ℓ components of σ_1, σ'_1 agree, we can try to argue that the first $\ell + 1$ components of σ_2, σ'_2 also agree

corresponds to a single gate

Observation: first $\ell + 1$ components of σ_2, σ'_2 is a quadratic function of the first ℓ components of σ_1, σ'_1

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

$$\sigma_1, \sigma_1'$$

If we establish that the first ℓ components of σ_1, σ_1' agree, we can try to argue that the first $\ell + 1$ components of σ_2, σ_2' also agree

\tilde{x}_1 \tilde{x}_2 \cdots \tilde{x}_ℓ \tilde{y}_1	σ_2, σ_2'
---	-----------------------

corresponds to a single gate

Observation: first $\ell + 1$ components of σ_2, σ'_2 is a quadratic function of the first ℓ components of σ_1, σ'_1

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

Repeat this process: if σ_2, σ'_2 agree on the first $\ell + 1$ values, then σ_1, σ'_1 agree on the first $\ell + 1$ values

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

Repeat this process: if σ_2, σ'_2 agree on the first $\ell + 1$ values, then σ_1, σ'_1 agree on the first $\ell + 1$ values

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

$$\hat{x}_1 \quad \hat{x}_2 \quad \cdots \quad \hat{x}_\ell \quad \hat{y}_1 \quad \hat{y}_2 \quad \cdots \quad \hat{y}_t \quad \hat{z}_1 \quad \hat{z}_2 \quad \cdots \quad \hat{z}_d \quad \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_1'$$

$$\tilde{x}_1 \quad \tilde{x}_2 \quad \cdots \quad \tilde{x}_\ell \quad \tilde{y}_1 \quad \tilde{y}_2 \quad \cdots \quad \tilde{y}_t \quad \tilde{z}_1 \quad \tilde{z}_2 \quad \cdots \quad \tilde{z}_d \quad \sigma_2, \sigma_2'$$

Iterate to conclude that σ_1, σ_1' actually agree on **all** values (including the outputs), which implies binding

Prove statements of the following form:

- Main technical tool: way to reason about prefixes of a committed vector
- **Input consistency:** first ℓ wires in σ_1 is consistent with σ_{in}
- **Gate consistency:** first j + 1 wires in σ_2 is consistent with first j wires in σ_1
- **Internal consistency:** first j wires in σ_1 is consistent with first j wires in σ_2
- **Output consistency:** last t wires in σ_1 are consistent with σ_{out}

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

Initially: no guarantees on what $\sigma_1, \sigma_1', \sigma_2, \sigma_2'$ commit to

Step 1: Input consistency between σ_{in} and σ_1, σ_1'

Projective chain binding: σ_1, σ'_1 are both openings for σ_{in} so $Project(\sigma_1, \ell) = Project(\sigma'_1, \ell)$

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_1 and σ'_1 agree on first ℓ components:Note: we do not know what valuesProject(σ_1, ℓ) = Project(σ'_1, ℓ)they have, only that they agree

$$\sigma_2, \sigma_2'$$

Step 1: Input consistency between σ_{in} and σ_1, σ_1'

Projective chain binding: σ_1, σ'_1 are both openings for σ_{in} so $Project(\sigma_1, \ell) = Project(\sigma'_1, \ell)$

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_1 and σ'_1 agree on first ℓ components:Note: we do not know what valuesProject(σ_1, ℓ) = Project(σ'_1, ℓ)they have, only that they agree

$$\sigma_2, \sigma_2'$$

Step 2: Gate consistency between first ℓ wires in σ_1, σ'_1 with first $\ell + 1$ wires in σ_2, σ'_2

Since $Project(\sigma_1, \ell) = Project(\sigma'_1, \ell)$, projective chain binding implies $Project(\sigma_2, \ell + 1) = Project(\sigma'_2, \ell + 1)$

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_2 and σ'_2 agree on first $\ell + 1$ components: Project $(\sigma_2, \ell + 1) = Project(\sigma'_2, \ell + 1)$

Step 2: Gate consistency between first k wires in σ_1, σ_1' with first $\ell + 1$ wires in σ_2, σ_2'

Since $Project(\sigma_1, \ell) = Project(\sigma'_1, \ell)$, projective chain binding implies $Project(\sigma_2, \ell + 1) = Project(\sigma'_2, \ell + 1)$

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_2 and σ'_2 agree on first $\ell + 1$ components: Project $(\sigma_2, \ell + 1) = Project(\sigma'_2, \ell + 1)$

Step 3: Internal consistency between first $\ell + 1$ wires in σ_2, σ'_2 with first $\ell + 1$ wires in σ_1, σ'_1

Since $Project(\sigma_2, \ell + 1) = Project(\sigma'_2, \ell + 1)$, projective chain binding implies $Project(\sigma_1, \ell + 1) = Project(\sigma'_1, \ell + 1)$

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_1 and σ'_1 agree on first $\ell + 1$ components: Project $(\sigma_1, \ell + 1) = Project(\sigma'_1, \ell + 1)$

Step 3: Internal consistency between first $\ell + 1$ wires in σ_2, σ'_2 with first $\ell + 1$ wires in σ_1, σ'_1

Since $Project(\sigma_2, \ell + 1) = Project(\sigma'_2, \ell + 1)$, projective chain binding implies $Project(\sigma_1, \ell + 1) = Project(\sigma'_1, \ell + 1)$

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

 σ_1 and σ'_1 agree on first $\ell + 1$ components: Project $(\sigma_1, \ell + 1) = Project(\sigma'_1, \ell + 1)$

\tilde{x}_1	\tilde{x}_2	•••	\widetilde{x}_{ℓ}	\tilde{y}_1								σ_2,σ_2'
---------------	---------------	-----	------------------------	---------------	--	--	--	--	--	--	--	----------------------

Observe: we have established that $Project(\sigma_1, \ell + 1) = Project(\sigma'_1, \ell + 1)$ Can iterate this strategy for each index $\ell + 1, \ell + 2, ...$ to argue that σ_1, σ'_1 agree on **all** components

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

$$\hat{x}_1 \quad \hat{x}_2 \quad \cdots \quad \hat{x}_\ell \quad \hat{y}_1 \quad \hat{y}_2 \quad \cdots \quad \hat{y}_t \quad \hat{z}_1 \quad \hat{z}_2 \quad \cdots \quad \hat{z}_d \quad \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_1'$$

$$\tilde{x}_1 \quad \tilde{x}_2 \quad \cdots \quad \tilde{x}_\ell \quad \tilde{y}_1 \quad \tilde{y}_2 \quad \cdots \quad \tilde{y}_t \quad \tilde{z}_1 \quad \tilde{z}_2 \quad \cdots \quad \tilde{z}_d \quad \sigma_2, \sigma_2'$$

Observe: we have established that $Project(\sigma_1, \ell + 1) = Project(\sigma'_1, \ell + 1)$ Can iterate this strategy for each index $\ell + 1, \ell + 2, ...$ to argue that σ_1, σ'_1 agree on **all** components

$$x_1 x_2 \cdots x_\ell \longrightarrow \sigma_{in}$$

Consider two different openings: $(\sigma_1, \sigma_2, \sigma_{out}, \pi)$ and $(\sigma'_1, \sigma'_2, \sigma'_{out}, \pi')$

$$\hat{x}_1 \quad \hat{x}_2 \quad \cdots \quad \hat{x}_\ell \quad \hat{y}_1 \quad \hat{y}_2 \quad \cdots \quad \hat{y}_t \quad \hat{z}_1 \quad \hat{z}_2 \quad \cdots \quad \hat{z}_d \quad \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_1'$$

$$\tilde{x}_1 \mid \tilde{x}_2 \mid \cdots \mid \tilde{x}_\ell \mid \tilde{y}_1 \mid \tilde{y}_2 \mid \cdots \mid \tilde{y}_t \mid \tilde{z}_1 \mid \tilde{z}_2 \mid \cdots \mid \tilde{z}_d \quad \sigma_2, \sigma_2'$$

If $\sigma_1 = \sigma'_1$, then final output commitment check ensures $\sigma_{out} = \sigma'_{out}$ Similar proof strategy as [GZ21, CJJ21, KLVW23]

Constructing Projective Chainable Commitments

Starting point: Kiltz-Wee [KW15] proof system for proving membership in linear spaces

Suppose we want to support openings to a *fixed* linear function

$$\pmb{x} \in \mathbb{Z}_p^\ell \mapsto \pmb{M} \pmb{x} \in \mathbb{Z}_p^d$$
 where $\pmb{M} \in \mathbb{Z}_p^{d imes \ell}$

Let $(\mathbb{G}, \mathbb{G}_T, e)$ be a pairing group and let g be a generator of \mathbb{G}

Common reference string contains two vectors g^t and $g^{\hat{t}}$ where $t \leftarrow \mathbb{Z}_p^{\ell}$ and $\hat{t} \leftarrow \mathbb{Z}_p^d$

Vector t is used to commit to the inputs and vector \hat{t} is used to commit to outputs

Commitment to input $x \in \mathbb{Z}_p^{\ell}$ is $\sigma_{in} = g^{t^T x}$ Commitment to output $y \in \mathbb{Z}_p^d$ is $\sigma_{out} = g^{\hat{t}^T y}$

Basically a Pedersen (vector) commitment: if $g^t = [h_1, ..., h_\ell]$, then $\sigma = \prod_{i \in [\ell]} h_i^{x_i}$

Suppose we want to support openings to a *fixed* linear function

$$\pmb{x} \in \mathbb{Z}_p^\ell \mapsto \pmb{M} \pmb{x} \in \mathbb{Z}_p^d$$
 where $\pmb{M} \in \mathbb{Z}_p^{d imes \ell}$

Commitment to input $x \in \mathbb{Z}_p^{\ell}$ is $\sigma_{in} = g^{t^T x}$ Commitment to output $y \in \mathbb{Z}_p^d$ is $\sigma_{out} = g^{\hat{t}^T y}$

To support openings to the linear function $M(x \mapsto Mx)$, we also include in the CRS $g^{z^{T}}$ where

$$\boldsymbol{z}^{\mathrm{T}} = \boldsymbol{w} \boldsymbol{t}^{\mathrm{T}} - r \hat{\boldsymbol{t}}^{\mathrm{T}} \boldsymbol{M} \in \mathbb{Z}_{p}^{\ell}$$
 and $r, \boldsymbol{w} \leftarrow \mathbb{Z}_{p}$

Suppose we want to support openings to a *fixed* linear function

$$x\in\mathbb{Z}_p^\ell\mapsto Mx\in\mathbb{Z}_p^d$$
 where $M\in\mathbb{Z}_p^{d imes\ell}$

Intuitively: z "recodes" an input commitment with respect to t to an output commitment with respect to \hat{t}

Commitment to output $\mathbf{y} \in \mathbb{Z}_p^d$ is $\sigma_{\text{out}} = g^{\hat{t}^{\mathrm{T}}\mathbf{y}}$

 $(x \mapsto Mx)$, we also include in the CRS $g^{z^{T}}$ where

$$\mathbf{z}^{\mathrm{T}} = w\mathbf{t}^{\mathrm{T}} - r\hat{\mathbf{t}}^{\mathrm{T}}\mathbf{M} \in \mathbb{Z}_{p}^{\ell}$$
 and $r, w \leftarrow \mathbb{Z}_{p}$

Suppose we want to support openings to a *fixed* linear function

$$\pmb{x} \in \mathbb{Z}_p^\ell \mapsto \pmb{M} \pmb{x} \in \mathbb{Z}_p^d$$
 where $\pmb{M} \in \mathbb{Z}_p^{d imes \ell}$

Commitment to input $x \in \mathbb{Z}_p^{\ell}$ is $\sigma_{in} = g^{t^T x}$ Commitment to output $y \in \mathbb{Z}_p^d$ is $\sigma_{out} = g^{\hat{t}^T y}$

To support openings to the linear function $M(x \mapsto Mx)$, we also include in the CRS $g^{z^{T}}$ where

$$\mathbf{z}^{\mathrm{T}} = w\mathbf{t}^{\mathrm{T}} - r\hat{\mathbf{t}}^{\mathrm{T}}\mathbf{M} \in \mathbb{Z}_{p}^{\ell}$$
 and $r, w \leftarrow \mathbb{Z}_{p}$

For now, we consider the **designated-verifier** setting where **secret key** needed to check proofs **Opening:** $\pi = g^{z^T x}$ **Verification relation:** Check that $\pi = \frac{\sigma_{in}^w}{\sigma_{out}^r}$ **Secret verification key:** r, w**Correctness:** $\frac{\sigma_{in}^w}{\sigma_{out}^r} = \frac{g^{wt^T x}}{g^{r\hat{t}^T y}} = \frac{g^{wt^T x}}{g^{r\hat{t}^T M x}} = g^{(wt^T - r\hat{t}^T M)x} = g^{z^T x} = \pi$

Security for Linear Functions

Suppose we want to support openings to a *fixed* linear function

$$\pmb{x} \in \mathbb{Z}_p^\ell \mapsto \pmb{M} \pmb{x} \in \mathbb{Z}_p^d$$
 where $\pmb{M} \in \mathbb{Z}_p^{d imes \ell}$

Common reference string: $g^t, g^{\hat{t}}, g^{wt^{T}-r\hat{t}^{T}M}$ **Verification relation:** Check that $\pi = \frac{\sigma_{\text{in}}^{W}}{\sigma_{\text{out}}^{r}}$

Suppose adversary produces the following:

Input commitment $\sigma_{in} = g^c$

Output commitments $\sigma_{out} = g^{\hat{c}}$, $\sigma'_{out} = g^{\hat{c}'}$

Openings
$$\pi = g^{\nu}, \pi' = g^{\nu'}$$

If the openings are valid, then

$$v = wc - r\hat{c}$$

$$v' = wc - r\hat{c}'$$
Thus, $v - v' = r(\hat{c} - \hat{c}')$
Non-zero since

Security for Linear Functions

Suppose we want to support openings to a *fixed* linear function

Under DDH, *wt* computationally hides value of *r*

Common reference string:
$$g^{t}, g^{\hat{t}}, g^{wt^{T}-r\hat{t}^{T}M}$$

Verification relation: Check that $\pi = \frac{\sigma_{\text{in}}^{W}}{\sigma_{\text{out}}^{r}}$

Suppose adversary produces the following:

Input commitment $\sigma_{in} = g^c$

Output commitments $\sigma_{out} = g^{\hat{c}}$, $\sigma'_{out} = g^{\hat{c}'}$

Openings
$$\pi = g^{\nu}, \pi' = g^{\nu'}$$

Technically: DDH does not hold in a symmetric pairing group, but can use asymmetric group (or k-Lin)

Distribution of $r(\hat{c} - \hat{c}')$ is pseudorandom from the perspective of the adversary, so this check passes with probability 1/p

Thus,
$$\boldsymbol{v} - \boldsymbol{v}' = r(\hat{\boldsymbol{c}} - \hat{\boldsymbol{c}}')$$

Non-zero since $\hat{c} \neq \hat{c}'$

Suppose we want to support openings to a *fixed* linear function

$$\pmb{x} \in \mathbb{Z}_p^\ell \mapsto \pmb{M} \pmb{x} \in \mathbb{Z}_p^d$$
 where $\pmb{M} \in \mathbb{Z}_p^{d imes \ell}$

 $\sigma_{\rm in} = g^{t^{\rm T} x}$ $\sigma_{\rm out} = g^{\hat{t}^{\rm T} y}$

Common reference string: $g^{t}, g^{\hat{t}}, g^{wt^{T}-r\hat{t}^{T}M}$ **Verification relation:** Check that $\pi = \frac{\sigma_{in}^{W}}{\sigma_{out}^{r}}$

Lots of caveats:

- Only supports **fixed** functions
- Only supports linear functions
- Only **designated-verifier**

Suppose we want to support openings to a *fixed* linear function

$$x \in \mathbb{Z}_p^\ell \mapsto Mx \in \mathbb{Z}_p^d$$
 where $M \in \mathbb{Z}_p^{d imes \ell}$

Common reference string: $g^t, g^{\hat{t}}, g^{wt^{\mathrm{T}}-r\hat{t}^{\mathrm{T}}M}$ $\sigma_{\mathrm{in}} = g^{t^{\mathrm{T}}x}$ Verification relation:Check that $\pi = \frac{\sigma_{\mathrm{in}}^w}{\sigma_{\mathrm{out}}^r}$ $\sigma_{\mathrm{out}} = g^{\hat{t}^{\mathrm{T}}y}$

Caveat: Only supports fixed functions

Extend to arbitrary functions by relying on linear homomorphism

Suppose we publish
$$g^{\mathbf{z}_1^{\mathrm{T}}} = g^{w_1 t^{\mathrm{T}} - r \hat{t}^{\mathrm{T}} M_1}$$
 and $g^{\mathbf{z}_2^{\mathrm{T}}} = g^{w_2 t^{\mathrm{T}} - r \hat{t}^{\mathrm{T}} M_2}$ in the CRS
 $\sigma_{\mathrm{in}} = g^{t^{\mathrm{T}} x}$
 $g^{\alpha_1 z_1^{\mathrm{T}} x}$ is an opening to $\mathbf{y} = \alpha_1 M_1 x$
 $\sigma_{\mathrm{out}} = g^{\hat{t}^{\mathrm{T}} y}$
 $\frac{\sigma_{\mathrm{in}}^{\alpha_1 w_1}}{\sigma_{\mathrm{out}}^r} = g^{\alpha_1 w_1 t^{\mathrm{T}} x - r \hat{t}^{\mathrm{T}} y} = g^{\alpha_1 w_1 t^{\mathrm{T}} x - \alpha_1 r \hat{t}^{\mathrm{T}} M_1 x} = g^{\alpha_1 z_1^{\mathrm{T}} x}$

Suppose we want to support openings to a *fixed* linear function

$$x \in \mathbb{Z}_p^\ell \mapsto Mx \in \mathbb{Z}_p^d$$
 where $M \in \mathbb{Z}_p^{d imes \ell}$

Common reference string: g^t , $g^{\hat{t}}$, $g^{wt^T - r\hat{t}^T M}$ $\sigma_{in} = g^{t^T x}$ Verification relation:Check that $\pi = \frac{\sigma_{in}^w}{\sigma_{out}^r}$ $\sigma_{out} = g^{\hat{t}^T y}$

Caveat: Only supports fixed functions

Extend to arbitrary functions by relying on linear homomorphism

Suppose we publish $g^{\mathbf{z}_1^T} = g^{w_1 \mathbf{t}^T - r \hat{\mathbf{t}}^T \mathbf{M}_1}$ and $g^{\mathbf{z}_2^T} = g^{w_2 \mathbf{t}^T - r \hat{\mathbf{t}}^T \mathbf{M}_2}$ in the CRS $\sigma_{in} = g^{\mathbf{t}^T \mathbf{x}}$ $g^{\alpha_1 \mathbf{z}_1^T \mathbf{x}}$ is an opening to $\alpha_1 \mathbf{M}_1 \mathbf{x}$

 $\sigma_{\text{out}} = g^{\hat{t}^{\text{T}}y} \qquad g^{\alpha_2 z_2^{\text{T}}x} \text{ is an opening to } \alpha_2 M_2 x$

$$\frac{\sigma_{\text{in}}^{\alpha_1 w_1}}{g^{r \hat{t}^{\mathrm{T}}(\alpha_1 M_1 x)}} = g^{\alpha_1 z_1^{\mathrm{T}} x} \qquad \frac{\sigma_{\text{in}}^{\alpha_2 w_2}}{g^{r \hat{t}^{\mathrm{T}}(\alpha_2 M_2 x)}} = g^{\alpha_2 z_2^{\mathrm{T}} x}$$

Caveat: Only supports **fixed** functions

Extend to arbitrary functions by relying on linear homomorphism

Suppose we publish
$$g^{\mathbf{z}_1^{\mathrm{T}}} = g^{w_1 t^{\mathrm{T}} - r \hat{t}^{\mathrm{T}} M_1}$$
 and $g^{\mathbf{z}_2^{\mathrm{T}}} = g^{w_2 t^{\mathrm{T}} - r \hat{t}^{\mathrm{T}} M_2}$ in the CRS
 $\sigma_{\mathrm{in}} = g^{t^{\mathrm{T}} x}$
 $g^{\alpha_1 z_1^{\mathrm{T}} x + \alpha_2 z_2^{\mathrm{T}} x}$ is an opening to $\mathbf{y} = \alpha_1 M_1 x + \alpha_2 M_2 x$
 $\sigma_{\mathrm{out}} = g^{\hat{t}^{\mathrm{T}} \mathbf{y}}$
 $\frac{\sigma_{\mathrm{in}}^{\alpha_1 w_1 + \alpha_2 w_2}}{\sigma_{\mathrm{out}}^r} = g^{\alpha_1 z_1^{\mathrm{T}} x + \alpha_2 z_2^{\mathrm{T}} x}$
 $Verification relation for $\mathbf{x} \mapsto (\alpha_1 M_1 + \alpha_2 M_2)$$

$$\frac{\sigma_{\text{in}}^{\alpha_1 w_1}}{g^{r \hat{t}^{\mathrm{T}}(\alpha_1 M_1 x)}} = g^{\alpha_1 z_1^{\mathrm{T}} x} \qquad \frac{\sigma_{\text{in}}^{\alpha_2 w_2}}{g^{r \hat{t}^{\mathrm{T}}(\alpha_2 M_2 x)}} = g^{\alpha_2 z_2^{\mathrm{T}} x}$$

Caveat: Only supports **fixed** functions

Extend to arbitrary functions by relying on linear homomorphism

Publish components for complete basis of linear functions

$$\boldsymbol{M}_{i,j} = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \underbrace{\leftarrow}_{\text{column } j} \qquad \text{Any linear function } \boldsymbol{M} \text{ can be expressed as} \\ a \text{ linear combination of } \boldsymbol{M}_{i,j} \\ \uparrow_{\text{row } i} \end{bmatrix}$$

Suppose we want to support openings to a *fixed* linear function

$$x \in \mathbb{Z}_p^\ell \mapsto Mx \in \mathbb{Z}_p^d$$
 where $M \in \mathbb{Z}_p^{d imes \ell}$

Common reference string: $g^t, g^{\hat{t}}, g^{wt^T - r\hat{t}^T M}$ $\sigma_{in} = g^{t^T x}$ Verification relation:Check that $\pi = \frac{\sigma_{in}^w}{\sigma_{out}^r}$ $\sigma_{out} = g^{\hat{t}^T y}$

Caveat: Only supports linear functions

Can extend to quadratic functions by linearization (and tensoring)

Quadratic function of x is a linear function of $x \otimes x$

[see paper for details]

Prover commits to $x \otimes x$ and evaluates a linear function; certify well-formedness of commitment using pairing

Suppose we want to support openings to a *fixed* linear function

$$x \in \mathbb{Z}_p^\ell \mapsto Mx \in \mathbb{Z}_p^d$$
 where $M \in \mathbb{Z}_p^{d imes \ell}$

Common reference string: $g^t, g^{\hat{t}}, g^{wt^{\mathrm{T}}-r\hat{t}^{\mathrm{T}}M}$ $\sigma_{\mathrm{in}} = g^{t^{\mathrm{T}}x}$ Verification relation:Check that $\pi = \frac{\sigma_{\mathrm{in}}^w}{\sigma_{\mathrm{out}}^r}$ $\sigma_{\mathrm{out}} = g^{\hat{t}^{\mathrm{T}}y}$

Caveat: Only designated-verifier

Solution: encode the verification key r and w in the exponent (following [KW15])

Suppose we want to support openings to a *fixed* linear function

$$oldsymbol{x} \in \mathbb{Z}_p^\ell \mapsto oldsymbol{M} oldsymbol{x} \in \mathbb{Z}_p^d$$
 where $oldsymbol{M} \in \mathbb{Z}_p^{d imes \ell}$

Common reference string:

Verification relation: Check t

Previous argument required that r was computationally hidden, so we cannot just give out g^r

Caveat: Only designated-ver

Solution: encode the verification key r and w in the exponent (following [KW15])

Suppose we want to support openings to a *fixed* linear function

$$x \in \mathbb{Z}_p^\ell \mapsto Mx \in \mathbb{Z}_p^d$$
 where $M \in \mathbb{Z}_p^{d imes \ell}$

Common reference string: $g^t, g^{\hat{t}}, g^{wt^T - r\hat{t}^T M}$ $\sigma_{in} = g^{t^T x}$ Verification relation:Check that $\pi = \frac{\sigma_{in}^w}{\sigma_{out}^r}$ $\sigma_{out} = g^{\hat{t}^T y}$

Caveat: Only designated-verifier

Solution: encode the verification key r and w in the exponent (following [KW15]) Sample $a \leftarrow \mathbb{Z}_p^2$ CRS: $g^t, g^{\hat{t}}, g^a, g^{a^Tw}, g^{a^Tr}, g^{wt^T - r\hat{t}^TM}$ Sample $w, r \leftarrow \mathbb{Z}_p^2$ Verification relation is now $\sigma_{in} = g^{t^Tx} \quad \sigma_{out} = g^{\hat{t}^TMx} \quad e\left(g^{a^T}, \pi\right) = \frac{e\left(g^{a^Tw}, \sigma_{in}\right)}{e\left(g^{a^Tr}, \sigma_{out}\right)} \qquad \pi = g^{wt^Tx - r\hat{t}^TMx}$

Suppose we want to support openings to a *fixed* linear function

$$\boldsymbol{x} \in \mathbb{Z}_p^{\ell} \mapsto \boldsymbol{M} \boldsymbol{x} \in \mathbb{Z}_p^{d} \text{ where } \boldsymbol{M} \in \mathbb{Z}_p^{d \times \ell}$$

Common reference string: $g^t, g^{\hat{t}}, g^{wt^{\mathrm{T}} - r\hat{t}^{\mathrm{T}}M}$
Verification relation: Check that $\pi = \frac{\sigma_{\mathrm{in}}^{w}}{\sigma_{\mathrm{out}}^{\mathrm{out}}}$
Caveat: Only designated-verifier
Solution: encode the verification key r and w
Sample $\boldsymbol{a} \leftarrow \mathbb{Z}_p^2$
Sample $\boldsymbol{w}, \boldsymbol{r} \leftarrow \mathbb{Z}_p^2$
CRS: $g^t, g^{\hat{t}}, g^a, g^{a^{\mathrm{T}}w}, g^{a^{\mathrm{T}}r}, g^{wt^{\mathrm{T}} - r\hat{t}^{\mathrm{T}}M}$
Sample $\boldsymbol{w}, \boldsymbol{r} \leftarrow \mathbb{Z}_p^2$
Verification relation is now
 $\sigma_{\mathrm{in}} = g^{t^{\mathrm{T}x}}$
 $\sigma_{\mathrm{out}} = g^{\hat{t}^{\mathrm{T}}Mx}$
 $e\left(g^{a^{\mathrm{T}}}, \pi\right) = \frac{e\left(g^{a^{\mathrm{T}w}}, \sigma_{\mathrm{in}}\right)}{e\left(g^{a^{\mathrm{T}r}}, \sigma_{\mathrm{out}}\right)}$
 $\pi = g^{wt^{\mathrm{T}x - r\hat{t}^{\mathrm{T}}Mx}$

Need a way to project a commitment onto a subset of its components

$$g^t = [h_1, \dots, h_\ell]$$

$$\sigma = g^{\mathbf{t}^{\mathrm{T}}\mathbf{x}} = \prod_{i \in [\ell]} h_i^{x_i}$$

In **composite-order groups:** introduce a subgroup for components in projection set Suppose \mathbb{G} has order N = pq and let \mathbb{G}_p , \mathbb{G}_q be the order-p and order-q subgroups of \mathbb{G} Let g_p be a generator of \mathbb{G}_p and g_q be a generator of \mathbb{G}_q Replace g^t with $h_1 = (g_p g_q)^{t_1}, \dots, h_j = (g_p g_q)^{t_j}, h_{j+1} = g_p^{t_{j+1}}, \dots, h_\ell = g_p^{t_\ell}$

Commitment is now

$$\sigma = \prod_{i \in [\ell]} h_i^{x_i} = \prod_{i=1}^J (g_p g_q)^{t_i x_i} \prod_{i=j+1}^\ell g_p^{t_i x_i}$$

If we consider σ in the mod-q subgroup, then

$$\sigma_q = \prod_{i \in [j]} g_q^{t_i x_i}$$

This is precisely a commitment to the first *j* components!

Need a way to project a commitment onto a subset of its components

$$g^t = [h_1, \dots, h_\ell]$$

$$\sigma = g^{t^{\mathrm{T}}x} = \prod_{i \in [\ell]} h_i^{x_i}$$

In **composite-order groups:** introduce a subgroup for components in projection set Suppose \mathbb{G} has order N = pq and let \mathbb{G}_p , \mathbb{G}_q be the order-p and order-q subgroups of \mathbb{G} Let g_p be a generator of \mathbb{G}_p and g_q be a generator of \mathbb{G}_q Replace g^t with $h_1 = (g_p g_q)^{t_1}, \dots, h_j = (g_p g_q)^{t_j}, h_{j+1} = g_p^{t_{j+1}}, \dots, h_\ell = g_p^{t_\ell}$

Commitment is now

$$\sigma = \prod_{i \in [\ell]} h_i^{x_i} = \prod_{i=1}^J (g_p g_q)^{t_i x_i} \prod_{i=j+1}^\ell g_p^{t_i x_i}$$

If we consider σ in the mod-q subgroup, then

$$\sigma_q = \prod_{i \in [j]} g_q^{t_i x_i}$$

This is precisely a commitment to the first *j* components!

Syntactic issue: We were considering linear/quadratic functions over \mathbb{Z}_p before; when using composite-order groups, we should view it as functions over the integers

Main idea: embed two copies of the chainable commitment scheme:

- The normal scheme is embedded in the \mathbb{G}_p -subgroup
- The projected scheme is embedded in the \mathbb{G}_q -subgroup

When reasoning about chain binding, we implement the previous proof argument within the \mathbb{G}_q subgroup

Commitment is now

$$\sigma = \prod_{i \in [\ell]} h_i^{x_i} = \prod_{i=1}^J (g_p g_q)^{t_i x_i} \prod_{i=j+1}^\ell g_p^{t_i x_i}$$

If we consider σ in the mod-q subgroup, then

$$\sigma_q = \prod_{i \in [j]} g_q^{t_i x_i}$$

This is precisely a commitment to the first *j* components!

Syntactic issue: We were considering linear/quadratic functions over \mathbb{Z}_p before; when using composite-order groups, we should view it as functions over the integers

Main idea: embed two copies of the chainable commitment scheme:

- The normal scheme is embedded in the \mathbb{G}_p -subgroup
- The projected scheme is embedded in the \mathbb{G}_q -subgroup

In paper: use **prime-order groups** and consider two orthogonal subspaces (normal scheme in one subspace and projected scheme in the other); security reduces to (bilateral) *k*-Lin *[see paper for details; see also [GZ21] for similar projection approach]*

Functional Commitments for Circuits

Goal: Constant number of group elements for commitment and openings

Opening: commit to **all** wires (i.e., concatenated together) **twice**

$$x_1 \quad x_2 \quad \cdots \quad x_\ell \quad y_1 \quad y_2 \quad \cdots \quad y_t \quad z_1 \quad z_2 \quad \cdots \quad z_d \quad \longrightarrow \quad \sigma_1$$

Use projective chain binding and an iterative argument to argue binding

$$x_1$$
 x_2 \cdots x_ℓ y_1 y_2 \cdots y_t z_1 z_2 \cdots z_d \rightarrow σ_2

Summary

This work: functional commitments for general circuits using pairings

Scheme	Function Class	crs	$ \sigma $	$ \pi $	Assumption
This work	arithmetic circuits	$O(s^5)$	0 (1)	0 (1)	bilateral k-Lin

- First pairing-based construction for general circuits based on falsifiable assumptions where commitment and openings contain constant number of group elements
- First scheme that only makes black-box use of cryptographic primitives/algorithms where the commitment + opening size is poly(λ) bits

Open problem: Construction with shorter CRS (e.g., linear-size)? Then, parameters would match state-of-the-art pairing-based SNARKs

Thank you!

https://eprint.iacr.org/2024/688