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Functional Encryption (FE)
[SS10, O’N10, BSW11]

master secret key

𝑓1 𝑓2 𝑓3

learns 𝑓1(𝑥) learns 𝑓2(𝑥) learns 𝑓3(𝑥)

What if the key-issuer is 
compromised?

Central point of failure

Key issuer can decrypt all
ciphertexts

Users do not have control over keys



Functional Encryption vs. Public-Key Encryption

Public-key encryption is decentralized

Functional encryption is centralized

Every user generates their own key (no coordination or trust needed)

Does not support fine-grained decryption

Central (trusted) authority generates 
individual keys

Supports fine-grained decryption capabilities

Can we get the best of 
both worlds?



Registration-Based Encryption (RBE)

(Alice, pk1)

sk1

[GHMR18]

(Bob, pk2)
sk2 sk3

(Carol, pk3)

Special case of
identity-based encryption (IBE)

Decryption keys are
associated with identities

Key issuer replaced 
with key curator

Users chooses their own public/secret key and 
register their public key with the curator



Registration-Based Encryption (RBE)

(Alice, pk1)

sk1

[GHMR18]

Users chooses their own public/secret key and 
register their public key with the curator

(Bob, pk2)
sk2 sk3

(Carol, pk3)

mpk

Aggregate public 
keys together

Key issuer replaced 
with key curator

Aggregated key is short: for 𝐿 
users, mpk = poly(𝜆, log 𝐿)

Key curator is 
deterministic and 

transparent (no secrets)



Registration-Based Encryption (RBE)

(Alice, pk1)

sk1

[GHMR18]

(Bob, pk2)
sk2 sk3

(Carol, pk3)

mpk

Aggregate public 
keys together

Key issuer replaced 
with key curator

message

id: Carol

Encrypt mpk, Carol, message

Master public key functions as the public key for 
an identity-based encryption scheme



Registration-Based Encryption (RBE)

sk

[GHMR18]

mpk

Aggregate public 
keys together

Key issuer replaced 
with key curator

To decrypt, users periodically
retrieve a helper decryption key hsk

(function of mpk and user’s public key pk1)

hsk hsk = poly(𝜆, log 𝐿)

# key updates per user = poly 𝜆, log 𝐿

Note: As users join, the master public key is updated, so users occasionally need to retrieve 
a new helper decryption key

(Alice, pk)



Registration-Based Encryption (RBE)
[GHMR18]

mpk

Aggregate public 
keys together

Key issuer replaced 
with key curator

• Initial constructions based on indistinguishability obfuscation or hash garbling 
(based on CDH, QR, LWE) – all require non-black-box use of cryptography

• High concrete efficiency costs: ciphertext is 4.5 TB for supporting 2 billion 
users [CES21]

Can we construct RBE schemes that only need black-box use of cryptography?

Can we construct support more general policies (beyond identity-based encryption)?



Removing Trust from Functional Encryption

(pk1, 𝑓1)

sk1

(pk2, 𝑓2)
sk2 sk3

(pk3, 𝑓3)

mpk

Aggregate public 
keys together

Key issuer replaced 
with key curator

Users chooses their own key and register the public key 
(together with function 𝒇) with the curator

Note: 𝑓 could also be chosen by the key curator

mpk = poly(𝜆, log 𝐿)



Removing Trust from Functional Encryption

sk1 sk2 sk3

Aggregate public 
keys together

𝑥Encrypt mpk, 𝑥

𝑓1 𝑥 𝑓2 𝑥 𝑓3 𝑥

mpk is essentially a key for a 
functional encryption scheme

mpk

mpk = poly(𝜆, log 𝐿)

(pk1, 𝑓1)
(pk2, 𝑓2)

(pk3, 𝑓3)



Registration-based encryption [GHMR18, GHMMRS19, GV20, CES21, DKLLMR23, GKMR23, ZZGQ23, FKP23]

Registered attribute-based encryption (ABE)
• Monotone Boolean formulas [HLWW23, ZZGQ23, GLWW24]

• Inner products [FFMMRV23, ZZGQ23]

• Arithmetic branching program [ZZGQ23]

• Boolean circuits [HLWW23, FWW23]

Distributed/flexible broadcast [BZ14, KMW23, FWW23, GLWW23, GKPW24, CW24]

Registered traitor tracing [BLMMRW24]

Registered functional encryption
• Linear functions [DPY23]

• Quadratic functions [ZLZGQ24]

• Boolean circuits [FFMMRV23, DPY23]

This talk

Registration-Based Cryptography

Can we construct RBE schemes that only need black-box use of cryptography?

Can we construct support more general policies (beyond identity-based encryption)?

YES!

YES!

Underlined schemes only need 
black-box use of cryptography

Lots of progress in 
this past year!
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Attribute-Based Encryption
[SW05, GPSW06]

master secret key
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Can decrypt Cannot decrypt Cannot decrypt



Attribute-Based Encryption
[SW05, GPSW06]

master secret key

“faculty”

“math”

“student”

“CS”

message

policy: CS and faculty

Users cannot collude to decrypt



Registered Attribute-Based Encryption
[HLWW23]

“faculty”

“CS”

sk1

pk1

Users chooses their own 
public/secret key

mpk

aggregated public key

sk2

“student”

“CS”

“faculty”

“math”

pk2

pk3

sk3

Users join the system by 
registering their public key 

along with a set of attributes

message
ciphertexts associated 

with policy

transparent key curator



Registered Attribute-Based Encryption
[HLWW23]

“faculty”

“CS”

sk1

pk1

Users chooses their own 
public/secret key

mpk

aggregated public key

Users join the system by 
registering their public key 

along with a set of attributes

message

policy: CS and faculty

ciphertexts associated 
with policy

transparent key curator



A Template for Building Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

mpk = poly 𝜆, 𝒰 , log 𝐿

hsk𝑖 = poly 𝜆, 𝒰 , log 𝐿

𝜆: security parameter

𝒰: universe of attributes

[HLWW23]

Simplification: assume that all of the users register at the same time (rather than in an 
online fashion)

Slotted registered ABE:



A Template for Building Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

[HLWW23]

Simplification: assume that all of the users register at the same time (rather than in an 
online fashion)

Slotted registered ABE:

Encrypt mpk, 𝑃, 𝑚 → ct

Decrypt sk𝑖 , hsk𝑖 , ct → 𝑚

Encryption takes master public key and policy 𝑃 (no slot)

Decryption takes secret key sk𝑖  for some slot and the 
helper key hsk𝑖  for that slot



A Template for Building Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

[HLWW23]

Simplification: assume that all of the users register at the same time (rather than in an 
online fashion)

Slotted registered ABE:

Encrypt mpk, 𝑃, 𝑚 → ct

Decrypt sk𝑖 , hsk𝑖 , ct → 𝑚

Encryption takes master public key and policy 𝑃 (no slot)

Decryption takes secret key sk𝑖  for some slot and the 
helper key hsk𝑖  for that slot

Main difference with registered ABE: 
Aggregate takes all 𝐿 keys simultaneously



Slotted Registered ABE to Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Aggregate
mpk

hsk1, … , hsk𝐿

Slotted scheme does not support online registration

Solution: use “powers-of-two” approach (like [GHMR18])

[HLWW23]

Maintain log 𝐿 slotted schemes, where scheme 𝑖 supports 2𝑖 users



Constructing Slotted Registered ABE

Construction will rely on a prime-order pairing group 𝔾, 𝔾𝑇  

Pairing is an efficiently-computable bilinear map 𝑒: 𝔾 × 𝔾 → 𝔾𝑇 from 𝔾 to 𝔾𝑇:

𝑒 𝑔𝑥 , 𝑔𝑦 = 𝑒 𝑔, 𝑔 𝑥𝑦

Multiplies exponents in the target group

[GLWW24]



Constructing Slotted Registered ABE

Will consider a toy scheme with two slots and two attributes 𝑤1, 𝑤2

Policy will be “has attribute 𝑤𝑖”

[GLWW24]

Scheme will rely on a structured common reference string (CRS)

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Attribute component: for each slot, we have an attribute component 𝑈𝑖 = 𝑔𝑢𝑖

Slot components: each slot 𝑖 ∈ 1,2  will have a pair of group elements

𝐴𝑖 = 𝑔𝑡𝑖       𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖𝐴1, 𝐵1 𝐴2, 𝐵2

𝑈1 𝑈2
𝑡𝑖  is a slot exponent
𝑢𝑖 is an attribute exponent



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components: 𝐴1, 𝐵1  and 𝐴2, 𝐵2 𝐴𝑖 = 𝑔𝑡𝑖       𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1, 𝑈2 𝑈𝑖 = 𝑔𝑢𝑖

To decrypt a ciphertext, two properties should hold:
• User should have the secret key for slot 𝑖
• Attributes associated with slot 𝑖 should satisfy the challenge policy

Enforced by the slot components

Enforced by the attribute components



Constructing Slotted Registered ABE
[GLWW24]

User’s individual public/secret key is an ElGamal key-pair

sk = 𝑟,   pk = 𝑔𝑟

Aggregating public keys pk1, pk2  with attribute sets 𝑆1, 𝑆2

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components: 𝐴1, 𝐵1  and 𝐴2, 𝐵2 𝐴𝑖 = 𝑔𝑡𝑖       𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1, 𝑈2 𝑈𝑖 = 𝑔𝑢𝑖

(and some auxiliary information)

Aggregated public key: ෠𝑇 = pk1 ⋅ pk2 = 𝑔𝑟1+𝑟2

Key for attribute 1: ෡𝑈1 = 𝑔𝑢2

Key for attribute 2: ෡𝑈2 = 𝑔𝑢1

product of public keys

product of attribute components for slots that do not contain the attribute

pk1 = 𝑔𝑟1

𝑆1 = 1
pk2 = 𝑔𝑟2

𝑆2 = 2

aggregation



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components:  𝐴𝑖 = 𝑔𝑡𝑖 ,  𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

pk1 = 𝑔𝑟2

𝑆1 = 2

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1  

Ciphertext:

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

Suppose we encrypt 𝜇 to the policy “has attribute 1”

𝑠 ← ℤ𝑝, ℎ1, ℎ2 ← 𝔾 such that ℎ1ℎ2 = ℎ



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components:  𝐴𝑖 = 𝑔𝑡𝑖 ,  𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1  

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

Goal: recover 𝜇

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡𝑖

Need to cancel out this component

Observe: ciphertext contains a secret share of ℎ𝑠 = ℎ1ℎ2
𝑠, but blinded by

 slot component ෠𝑇 and attribute component ෡𝑈



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components:  𝐴𝑖 = 𝑔𝑡𝑖 ,  𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1  

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

Goal: recover 𝜇

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡1

Step 2 (Slot Check): Compute 𝑒 𝐴1, ℎ1
𝑠 ෠𝑇𝑠 = 𝑒 𝑔𝑡1 , ℎ1

𝑠 ෠𝑇𝑠 = 𝑒 𝑔, ℎ1
𝑠𝑡1𝑒 𝑔, 𝑔 𝑠𝑟1𝑡1𝑒 𝑔, 𝑔 𝑠𝑟2𝑡1

Share of 𝑒 𝑔, ℎ 𝑠𝑡1

Can compute using 
secret key 𝑟1

Cross term from 
Party 2

Given cross-term 𝑒 𝑔, 𝑔 𝑟2𝑡1, can recover 𝑒 𝑔, ℎ1
𝑠𝑡1



Constructing Slotted Registered ABE
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General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾
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𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

Goal: recover 𝜇

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡1

Step 2 (Slot Check): Compute 𝑒 𝐴1, ℎ1
𝑠 ෠𝑇𝑠 = 𝑒 𝑔𝑡1 , ℎ1

𝑠 ෠𝑇𝑠 = 𝑒 𝑔, ℎ1
𝑠𝑡1𝑒 𝑔, 𝑔 𝑠𝑟1𝑡1𝑒 𝑔, 𝑔 𝑠𝑟2𝑡1

Share of 𝑒 𝑔, ℎ 𝑠𝑡1

Can compute using 
secret key 𝑟1

Cross term from 
Party 2

Given cross-term 𝑒 𝑔, 𝑔 𝑟2𝑡1, can recover 𝑒 𝑔, ℎ1
𝑠𝑡1

Concretely: User in slot 𝑗 would 

compute 𝐴
𝑖

𝑟𝑗 = 𝑔𝑡𝑖𝑟𝑗  for all 𝑖 ≠ 𝑗



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components:  𝐴𝑖 = 𝑔𝑡𝑖 ,  𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖
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pk1 = 𝑔𝑟1
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Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1  

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

Goal: recover 𝜇

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡1

Step 2 (Slot Check): Using cross-terms and secret key 𝑟1, compute 𝑒 𝑔, ℎ1
𝑠𝑡1



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components:  𝐴𝑖 = 𝑔𝑡𝑖 ,  𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1  

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡1

Step 2 (Slot Check): Using cross-terms and secret key 𝑟1, compute 𝑒 𝑔, ℎ1
𝑠𝑡1

Step 3 (Policy Check): Compute 𝑒 𝐴1, ℎ2
𝑠 ෡𝑈1

𝑠 = 𝑒 𝑔𝑡1 , ℎ2
𝑠 ෡𝑈1

𝑠 = 𝑒 𝑔, ℎ2
𝑠𝑡1𝑒 𝑔, 𝑔 𝑠𝑡1𝑢2

Share of 𝑒 𝑔, ℎ 𝑠𝑡1

Cross-term between slot 
and attribute components 
(available only if user has 

attribute)

Goal: recover 𝜇



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components:  𝐴𝑖 = 𝑔𝑡𝑖 ,  𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1  

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡1

Step 2 (Slot Check): Using cross-terms and secret key 𝑟1, compute 𝑒 𝑔, ℎ1
𝑠𝑡1

Step 3 (Policy Check): Using cross-terms, compute 𝑒 𝑔, ℎ2
𝑠𝑡1



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components:  𝐴𝑖 = 𝑔𝑡𝑖 ,  𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1  

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

Summary of approach:
• Aggregated key is the product of each user’s individual public key (one per slot)
• Decryption will produce cross terms between slot 𝑖 and user 𝑗’s secret key
• Each user includes a cross-term to cancel out these effects (part of the user’s helper 

decryption key); CRS will contain cross-terms for attribute-slot components



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components:  𝐴𝑖 = 𝑔𝑡𝑖 ,  𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1  

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

To decrypt a ciphertext, two properties should hold:
• User should have the secret key for slot 𝑖
• Attributes associated with slot 𝑖 should satisfy the challenge policy

Enforced by the slot components

Enforced by the attribute components



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components:  𝐴𝑖 = 𝑔𝑡𝑖 ,  𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1  

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

Key technical approach: cancelling out cross-terms
• Technique leveraged in many pairing-based constructions of registration-based primitives
• Recently: lattice-based instantiation (in the setting of broadcast encryption) [CW24]
• But… seems to require a long and structured common reference string



Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼      ℎ ← 𝔾

Slot components:  𝐴𝑖 = 𝑔𝑡𝑖 ,  𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1  

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2 
𝑠 ෡𝑈1

𝑠

Key technical approach: cancelling out cross-terms
• Technique leveraged in many pairing-based constructions of registration-based primitives
• Recently: lattice-based instantiation (in the setting of broadcast encryption) [CW24]
• But… seems to require a long and structured common reference string

Replace attribute components with linear secret sharing of 𝑠 
to support policies with a linear secret sharing scheme



Reducing the CRS Size
[GLWW24]

As described, size of CRS is quadratic in number of slots

Reason: Each slot is associated with a slot exponent 𝑡𝑖  and an attribute exponent 𝑢𝑖

Policy checking mechanism produces extraneous terms of the form 𝑔𝑠𝑡𝑖𝑢𝑗  for 𝑖 ≠ 𝑗 and 
where 𝑔𝑠 is from the challenge ciphertext

CRS will need to contain 𝑔𝑡𝑖𝑢𝑗 for each 𝑖 ≠ 𝑗 for correctness

Can we publish fewer cross terms and still have correctness?

Approach: Choose 𝑡𝑖 , 𝑢𝑖  to be structured so there is redundancy in cross terms



Reducing the CRS Size
[GLWW24]

Given   𝑔𝑡1 , … , 𝑔𝑡𝐿     and    𝑔𝑢1 , … , 𝑔𝑢𝐿

Goal: give out 𝑔𝑡𝑖𝑢𝑗  for all 𝑖 ≠ 𝑗, but without ability to compute 𝑔𝑡𝑖𝑢𝑖

Set 𝑡𝑖 = 𝛼𝑑𝑖 for some 𝛼 ← ℤ𝑝

Set 𝑢𝑖 = 𝛽 ⋅ 𝛼𝑑𝑖 where 𝛽 ← ℤ𝑝

𝑡𝑖𝑢𝑗 = 𝛼𝑑𝑖 ⋅ 𝛽𝛼𝑑𝑗 = 𝛽𝛼𝑑𝑖+𝑑𝑗

for some choice of 𝑑1, … , 𝑑𝐿 ∈ ℕ

Observe: if many pairs 𝑖, 𝑗 share a common value 𝑑𝑖 + 𝑑𝑗, then all such pairs 

can share a single cross term 𝑔𝛽𝛼
𝑑𝑖+𝑑𝑗



Reducing the CRS Size
[GLWW24]

Observe: if many pairs 𝑖, 𝑗 share a common value 𝑑𝑖 + 𝑑𝑗, then all such pairs 

can share a single cross term 𝑔𝛽𝛼
𝑑𝑖+𝑑𝑗

How to choose 𝑑1, … , 𝑑𝐿?

Requirement: For all 𝑘, there should not exist 𝑖 ≠ 𝑗 where 𝑑𝑖 + 𝑑𝑗 = 𝑑𝑘 + 𝑑𝑘

Cross-term for 𝑖, 𝑗  must not collide with non-cross-term for 𝑘

If 𝑑𝑖 + 𝑑𝑗 = 2𝑑𝑘 (with 𝑑𝑖 < 𝑑𝑗), then 𝑑𝑖 , 𝑑𝑘 , 𝑑𝑗  form an arithmetic progression

Suffices to come up with a progression-free set of integers 𝒟 ⊂ ℕ of size 𝐿 and 
set 𝑑1, … , 𝑑𝐿 = 𝒟; number of cross terms is then at most 2 max 𝒟



Reducing the CRS Size
[GLWW24]

Observe: if many pairs 𝑖, 𝑗 share a common value 𝑑𝑖 + 𝑑𝑗, then all such pairs 

can share a single cross term 𝑔𝛽𝛼
𝑑𝑖+𝑑𝑗

How to choose 𝑑1, … , 𝑑𝐿?

Requirement: For all 𝑘, there should not exist 𝑖 ≠ 𝑗 where 𝑑𝑖 + 𝑑𝑗 = 𝑑𝑘 + 𝑑𝑘

Cross-term for 𝑖, 𝑗  must not collide with non-cross-term for 𝑘

If 𝑑𝑖 + 𝑑𝑗 = 2𝑑𝑘 (with 𝑑𝑖 < 𝑑𝑗), then 𝑑𝑖 , 𝑑𝑘 , 𝑑𝑗  form an arithmetic progression

Suffices to come up with a progression-free set of integers 𝒟 ⊂ ℕ of size 𝐿 and 
set 𝑑1, … , 𝑑𝐿 = 𝒟; number of cross terms is then at most 2 max 𝒟

Previously used to reduce the CRS size in the 
context of pairing-based SNARKs [Lip12]



Progression-Free Sets
[GLWW24]

Simple construction due to Erdös and Turán [ET36]

Let 𝒟 ⊂ ℕ be the numbers whose ternary representation only use the digits 0 and 1

1 = 001

3 = 010

4 = 011

9 = 100

10 = 101

12 = 110

13 = 111

2𝑑𝑘 is a number that only uses 0 and 2 in ternary

Progression-free:

If 𝑑𝑖 ≠ 𝑑𝑗, then 𝑑𝑖 + 𝑑𝑗 must contain a 1 somewhere in ternary

Thus 𝑑𝑖 + 𝑑𝑗 ≠ 2𝑑𝑘 for all 𝑖 ≠ 𝑗

To get a progression-free set with 𝐿 values, maximum entry has size 𝐿log2 3

Implies registered ABE scheme with CRS of size 𝑂 𝐿log2 3

State-of-the-art [Beh46, Elk10]: For every 𝐿 ∈ ℕ, there exists a progression-free set of 𝐿 

integers with maximum value bounded by 𝐿1+𝑜 1  ⟹ registered ABE with CRS size 𝐿1+𝑜 1



Progression-Free Sets
[GLWW24]

Simple construction due to Erdös and Turán [ET36]

Let 𝒟 ⊂ ℕ be the numbers whose ternary representation only use the digits 0 and 1

1 = 001

3 = 010

4 = 011

9 = 100

10 = 101

12 = 110

13 = 111

Progression-free:

Thus 𝑑𝑖 + 𝑑𝑗 ≠ 2𝑑𝑘 for all 𝑖 ≠ 𝑗

To get a progression-free set with 𝐿 values, maximum entry has size 𝐿log2 3

Implies registered ABE scheme with CRS of size 𝑂 𝐿log2 3

State-of-the-art [Beh46, Elk10]: For every 𝐿 ∈ ℕ, there exists a progression-free set of 𝐿 

integers with maximum value bounded by 𝐿1+𝑜 1  ⟹ registered ABE with CRS size 𝐿1+𝑜 1

Achieves nearly linear CRS, but this 
approach cannot get to linear-size CRS

2𝑑𝑘 is a number that only uses 0 and 2 in ternary

If 𝑑𝑖 ≠ 𝑑𝑗, then 𝑑𝑖 + 𝑑𝑗 must contain a 1 somewhere in ternary



Registered ABE Summary

“faculty”

“CS”

sk1

pk1

Users chooses their own 
public/secret key

Key issuer replaced 
with key curator

mpk𝐿

Aggregated key

hsk1

• New approach to constructing RBE-type of primitives
• Registered ABE scheme (for Boolean formulas) only 

makes black-box use of cryptography

• Construction will need a (trusted) common 
reference string (CRS) and supports bounded 
number of users



Lots to Explore for Registered ABE!

Pairing-based constructions require a long and structured CRS
• [HLWW23, ZZGQ23]: quadratic-size CRS

• [GLWW24]: nearly-linear size CRS (𝐿1+𝑜 1 ) using progression-free sets

Pairing-based constructions with linear-size CRS? Sublinear-size CRS? Transparent CRS?
• Possible using indistinguishability obfuscation [HLWW23] or witness encryption [FWW23]

Registered ABE from LWE (or falsifiable lattice assumptions)?

Registered ABE for Boolean circuits?
• Known from indistinguishability obfuscation or witness encryption
• [ZZGQ23]: registered ABE for arithmetic branching programs and inner products

Lower bounds on CRS size for constructions that make black-box use of cryptography?



An Application to Broadcast Encryption
[FWW23]

Registered ABE is a useful building block for other trustless cryptographic systems

public-key directory

pk1

pk2

pk3

pk4

pk5

Independent, user-generated keys

Suppose we want to encrypt a message 
to  pk1, pk3, pk4

Public-key encryption: ciphertext size grows with 
the size of the set

𝑚 𝑚 𝑚

Broadcast encryption: achieve sublinear ciphertext 
size, but requires central authority



An Application to Broadcast Encryption
[FWW23]

Distributed broadcast encryption [BZ14]

public-key directory

1, pk1

2, pk2

3, pk3

4, pk4

5, pk5

Each user chooses its own public key, and 
each key has a unique index

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚

Can encrypt a message 𝑚 to any set of public keys

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Any secret key associated with broadcast set can decrypt

Decryption does requires knowledge of public keys in 
broadcast set



Distributed Broadcast from Slotted Registered ABE
[FWW23]

Consider a registered ABE scheme with a single dummy attribute 𝑥

Public key for an index 𝑖 is a key for slot 𝒊 with attribute 𝑥

public-key directory

1, pk1, 𝑥

2, pk2, 𝑥

3, pk3, 𝑥

4, pk4, 𝑥

5, pk5, 𝑥

Suppose we want to encrypt to a set 𝑆 = 2,3,5

mpk

Aggregate

Aggregate public keys using slotted registered ABE scheme

Encrypt mpk, 𝑥, 𝑃

Encrypt with respect to mpk to 
policy 𝑃 that accepts 𝑥



Distributed Broadcast from Slotted Registered ABE
[FWW23]

Consider a registered ABE scheme with a single dummy attribute 𝑥

Public key for an index 𝑖 is a key for slot 𝒊 with attribute 𝑥

public-key directory

1, pk1, 𝑥

2, pk2, 𝑥

3, pk3, 𝑥

4, pk4, 𝑥

5, pk5, 𝑥

Suppose we want to encrypt to a set 𝑆 = 2,3,5

mpk

Aggregate

Encrypt mpk, 𝑥, 𝑃

Encrypt with respect to mpk to 
policy 𝑃 that accepts 𝑥

Correctness: If 𝑖 ∈ 𝑆, then (𝑖, pk𝑖, 𝑥) was aggregated in mpk so 
decryption is possible using sk𝑖

Security: If 𝑖 ∉ 𝑆, then 𝑖, pk𝑖, 𝑥  was not aggregated in mpk so 
we can appeal to security of registered ABE



Distributed Broadcast from Slotted Registered ABE

Consider a registered ABE scheme with a single dummy attribute 𝑥

Public key for an index 𝑖 is a key for slot 𝒊 with attribute 𝑥

public-key directory

1, pk1, 𝑥

2, pk2, 𝑥

3, pk3, 𝑥

4, pk4, 𝑥

5, pk5, 𝑥

Suppose we want to encrypt to a set 𝑆 = 2,3,5

mpk

Aggregate

Encrypt mpk, 𝑥, 𝑃

Encrypt with respect to mpk to 
policy 𝑃 that accepts 𝑥

Correctness: If 𝑖 ∈ 𝑆, then (𝑖, pk𝑖, 𝑥) was aggregated in mpk so 
decryption is possible using sk𝑖

Security: If 𝑖 ∉ 𝑆, then 𝑖, pk𝑖, 𝑥  was not aggregated in mpk so 
we can appeal to security of registered ABE

[FWW23]: Registered ABE + compiler ⇒ distributed broadcast 
encryption from pairings

[KMW23, GKPW24]: direct constructions of distributed 
broadcast encryption (and more) from pairings

[CW24]: distributed broadcast encryption from falsifiable 
lattice assumptions (ℓ-succinct LWE)



Removing Trust from Functional Encryption

(Alice, 𝑓1)

sk1

(Bob, 𝑓2)
sk2 sk3

(Carol, 𝑓3)

Aggregate public 
keys together

𝑥Encrypt mpk, 𝑥

𝑓1 𝑥 𝑓2 𝑥 𝑓3 𝑥

mpk is essentially a key for a 
functional encryption scheme

Goal: Support capabilities of functional encryption without a trusted authority



Open Problems

Schemes with short CRS or unstructured CRS without non-black-box use of cryptography
Existing constructions have long structured CRS (typically quadratic in the number of users)

Lattice-based constructions of registration-based primitives
Registration-based encryption known from LWE [DKLLMR23]

Registered ABE for circuits known from evasive LWE (via witness encryption) [FWW23]

Distributed broadcast encryption from ℓ-succinct LWE [CW24]

Key revocation and verifiability
Defending against possibly malicious adversaries

Thank you!

Improve concrete efficiency for registration-based primitives
Current bottlenecks include large CRS and large public keys
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