
Removing Trust Assumptions
from Advanced Encryption Schemes

David Wu

Functional Encryption (FE)
[SS10, O’N10, BSW11]

master secret key

𝑓1 𝑓2 𝑓3

𝑥

learns 𝑓1(𝑥) learns 𝑓2(𝑥) learns 𝑓3(𝑥)

ciphertext encrypting 𝑥

Functional Encryption (FE)
[SS10, O’N10, BSW11]

master secret key

𝑓2 𝑓3

𝑥

learns 𝑓2(𝑥) learns 𝑓3(𝑥)

ciphertext encrypting 𝑥

Should not learn more
than 𝑓1 𝑥 and 𝑓2 𝑥

Functional Encryption (FE)
[SS10, O’N10, BSW11]

master secret key

𝑓1 𝑓2 𝑓3

𝑥

learns 𝑓1(𝑥) learns 𝑓2(𝑥) learns 𝑓3(𝑥)

ciphertext encrypting 𝑥

What if the key-issuer is
compromised?

Functional Encryption (FE)
[SS10, O’N10, BSW11]

master secret key

𝑓1 𝑓2 𝑓3

learns 𝑓1(𝑥) learns 𝑓2(𝑥) learns 𝑓3(𝑥)

What if the key-issuer is
compromised?

Central point of failure

Key issuer can decrypt all
ciphertexts

Users do not have control over keys

Functional Encryption vs. Public-Key Encryption

Public-key encryption is decentralized

Functional encryption is centralized

Every user generates their own key (no coordination or trust needed)

Does not support fine-grained decryption

Central (trusted) authority generates
individual keys

Supports fine-grained decryption capabilities

Can we get the best of
both worlds?

Registration-Based Encryption (RBE)

(Alice, pk1)

sk1

[GHMR18]

(Bob, pk2)
sk2 sk3

(Carol, pk3)

Special case of
identity-based encryption (IBE)

Decryption keys are
associated with identities

Key issuer replaced
with key curator

Users chooses their own public/secret key and
register their public key with the curator

Registration-Based Encryption (RBE)

(Alice, pk1)

sk1

[GHMR18]

Users chooses their own public/secret key and
register their public key with the curator

(Bob, pk2)
sk2 sk3

(Carol, pk3)

mpk

Aggregate public
keys together

Key issuer replaced
with key curator

Aggregated key is short: for 𝐿
users, mpk = poly(𝜆, log 𝐿)

Key curator is
deterministic and

transparent (no secrets)

Registration-Based Encryption (RBE)

(Alice, pk1)

sk1

[GHMR18]

(Bob, pk2)
sk2 sk3

(Carol, pk3)

mpk

Aggregate public
keys together

Key issuer replaced
with key curator

message

id: Carol

Encrypt mpk, Carol, message

Master public key functions as the public key for
an identity-based encryption scheme

Registration-Based Encryption (RBE)

sk

[GHMR18]

mpk

Aggregate public
keys together

Key issuer replaced
with key curator

To decrypt, users periodically
retrieve a helper decryption key hsk

(function of mpk and user’s public key pk1)

hsk hsk = poly(𝜆, log 𝐿)

key updates per user = poly 𝜆, log 𝐿

Note: As users join, the master public key is updated, so users occasionally need to retrieve
a new helper decryption key

(Alice, pk)

Registration-Based Encryption (RBE)
[GHMR18]

mpk

Aggregate public
keys together

Key issuer replaced
with key curator

• Initial constructions based on indistinguishability obfuscation or hash garbling
(based on CDH, QR, LWE) – all require non-black-box use of cryptography

• High concrete efficiency costs: ciphertext is 4.5 TB for supporting 2 billion
users [CES21]

Can we construct RBE schemes that only need black-box use of cryptography?

Can we construct support more general policies (beyond identity-based encryption)?

Removing Trust from Functional Encryption

(pk1, 𝑓1)

sk1

(pk2, 𝑓2)
sk2 sk3

(pk3, 𝑓3)

mpk

Aggregate public
keys together

Key issuer replaced
with key curator

Users chooses their own key and register the public key
(together with function 𝒇) with the curator

Note: 𝑓 could also be chosen by the key curator

mpk = poly(𝜆, log 𝐿)

Removing Trust from Functional Encryption

sk1 sk2 sk3

Aggregate public
keys together

𝑥Encrypt mpk, 𝑥

𝑓1 𝑥 𝑓2 𝑥 𝑓3 𝑥

mpk is essentially a key for a
functional encryption scheme

mpk

mpk = poly(𝜆, log 𝐿)

(pk1, 𝑓1)
(pk2, 𝑓2)

(pk3, 𝑓3)

Registration-based encryption [GHMR18, GHMMRS19, GV20, CES21, DKLLMR23, GKMR23, ZZGQ23, FKP23]

Registered attribute-based encryption (ABE)
• Monotone Boolean formulas [HLWW23, ZZGQ23, GLWW24]

• Inner products [FFMMRV23, ZZGQ23]

• Arithmetic branching program [ZZGQ23]

• Boolean circuits [HLWW23, FWW23]

Distributed/flexible broadcast [BZ14, KMW23, FWW23, GLWW23, GKPW24, CW24]

Registered traitor tracing [BLMMRW24]

Registered functional encryption
• Linear functions [DPY23]

• Quadratic functions [ZLZGQ24]

• Boolean circuits [FFMMRV23, DPY23]

This talk

Registration-Based Cryptography

Can we construct RBE schemes that only need black-box use of cryptography?

Can we construct support more general policies (beyond identity-based encryption)?

YES!

YES!

Underlined schemes only need
black-box use of cryptography

Lots of progress in
this past year!

Attribute-Based Encryption
[SW05, GPSW06]

master secret key

“faculty”

“CS”

“faculty”

“math”

“student”

“CS”

message

policy: CS and faculty

Attribute-Based Encryption
[SW05, GPSW06]

master secret key

“faculty”

“CS”

“faculty”

“math”

“student”

“CS”

message

policy: CS and faculty

Can decrypt

Attribute-Based Encryption
[SW05, GPSW06]

master secret key

“faculty”

“CS”

message

policy: CS and faculty

Can decrypt Cannot decrypt Cannot decrypt

Attribute-Based Encryption
[SW05, GPSW06]

master secret key

“faculty”

“math”

“student”

“CS”

message

policy: CS and faculty

Users cannot collude to decrypt

Registered Attribute-Based Encryption
[HLWW23]

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

mpk

aggregated public key

sk2

“student”

“CS”

“faculty”

“math”

pk2

pk3

sk3

Users join the system by
registering their public key

along with a set of attributes

message
ciphertexts associated

with policy

transparent key curator

Registered Attribute-Based Encryption
[HLWW23]

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

mpk

aggregated public key

Users join the system by
registering their public key

along with a set of attributes

message

policy: CS and faculty

ciphertexts associated
with policy

transparent key curator

A Template for Building Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

mpk = poly 𝜆, 𝒰 , log 𝐿

hsk𝑖 = poly 𝜆, 𝒰 , log 𝐿

𝜆: security parameter

𝒰: universe of attributes

[HLWW23]

Simplification: assume that all of the users register at the same time (rather than in an
online fashion)

Slotted registered ABE:

A Template for Building Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

[HLWW23]

Simplification: assume that all of the users register at the same time (rather than in an
online fashion)

Slotted registered ABE:

Encrypt mpk, 𝑃, 𝑚 → ct

Decrypt sk𝑖 , hsk𝑖 , ct → 𝑚

Encryption takes master public key and policy 𝑃 (no slot)

Decryption takes secret key sk𝑖 for some slot and the
helper key hsk𝑖 for that slot

A Template for Building Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Each slot associated with a public key pk and a set of attributes 𝑆

Aggregate
mpk

hsk1, … , hsk𝐿

[HLWW23]

Simplification: assume that all of the users register at the same time (rather than in an
online fashion)

Slotted registered ABE:

Encrypt mpk, 𝑃, 𝑚 → ct

Decrypt sk𝑖 , hsk𝑖 , ct → 𝑚

Encryption takes master public key and policy 𝑃 (no slot)

Decryption takes secret key sk𝑖 for some slot and the
helper key hsk𝑖 for that slot

Main difference with registered ABE:
Aggregate takes all 𝐿 keys simultaneously

Slotted Registered ABE to Registered ABE

Let 𝐿 be the number of users

pk1, 𝑆1 pk2, 𝑆2 pk3, 𝑆3 pk4, 𝑆4 ⋯ pk𝐿 , 𝑆𝐿

Aggregate
mpk

hsk1, … , hsk𝐿

Slotted scheme does not support online registration

Solution: use “powers-of-two” approach (like [GHMR18])

[HLWW23]

Maintain log 𝐿 slotted schemes, where scheme 𝑖 supports 2𝑖 users

Constructing Slotted Registered ABE

Construction will rely on a prime-order pairing group 𝔾, 𝔾𝑇

Pairing is an efficiently-computable bilinear map 𝑒: 𝔾 × 𝔾 → 𝔾𝑇 from 𝔾 to 𝔾𝑇:

𝑒 𝑔𝑥 , 𝑔𝑦 = 𝑒 𝑔, 𝑔 𝑥𝑦

Multiplies exponents in the target group

[GLWW24]

Constructing Slotted Registered ABE

Will consider a toy scheme with two slots and two attributes 𝑤1, 𝑤2

Policy will be “has attribute 𝑤𝑖”

[GLWW24]

Scheme will rely on a structured common reference string (CRS)

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Attribute component: for each slot, we have an attribute component 𝑈𝑖 = 𝑔𝑢𝑖

Slot components: each slot 𝑖 ∈ 1,2 will have a pair of group elements

𝐴𝑖 = 𝑔𝑡𝑖 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖𝐴1, 𝐵1 𝐴2, 𝐵2

𝑈1 𝑈2
𝑡𝑖 is a slot exponent
𝑢𝑖 is an attribute exponent

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴1, 𝐵1 and 𝐴2, 𝐵2 𝐴𝑖 = 𝑔𝑡𝑖 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1, 𝑈2 𝑈𝑖 = 𝑔𝑢𝑖

To decrypt a ciphertext, two properties should hold:
• User should have the secret key for slot 𝑖
• Attributes associated with slot 𝑖 should satisfy the challenge policy

Enforced by the slot components

Enforced by the attribute components

Constructing Slotted Registered ABE
[GLWW24]

User’s individual public/secret key is an ElGamal key-pair

sk = 𝑟, pk = 𝑔𝑟

Aggregating public keys pk1, pk2 with attribute sets 𝑆1, 𝑆2

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴1, 𝐵1 and 𝐴2, 𝐵2 𝐴𝑖 = 𝑔𝑡𝑖 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1, 𝑈2 𝑈𝑖 = 𝑔𝑢𝑖

(and some auxiliary information)

Aggregated public key: ෠𝑇 = pk1 ⋅ pk2 = 𝑔𝑟1+𝑟2

Key for attribute 1: ෡𝑈1 = 𝑔𝑢2

Key for attribute 2: ෡𝑈2 = 𝑔𝑢1

product of public keys

product of attribute components for slots that do not contain the attribute

pk1 = 𝑔𝑟1

𝑆1 = 1
pk2 = 𝑔𝑟2

𝑆2 = 2

aggregation

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

pk1 = 𝑔𝑟2

𝑆1 = 2

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

Ciphertext:

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

Suppose we encrypt 𝜇 to the policy “has attribute 1”

𝑠 ← ℤ𝑝, ℎ1, ℎ2 ← 𝔾 such that ℎ1ℎ2 = ℎ

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

Goal: recover 𝜇

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡𝑖

Need to cancel out this component

Observe: ciphertext contains a secret share of ℎ𝑠 = ℎ1ℎ2
𝑠, but blinded by

 slot component ෠𝑇 and attribute component ෡𝑈

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

Goal: recover 𝜇

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡1

Step 2 (Slot Check): Compute 𝑒 𝐴1, ℎ1
𝑠 ෠𝑇𝑠 = 𝑒 𝑔𝑡1 , ℎ1

𝑠 ෠𝑇𝑠 = 𝑒 𝑔, ℎ1
𝑠𝑡1𝑒 𝑔, 𝑔 𝑠𝑟1𝑡1𝑒 𝑔, 𝑔 𝑠𝑟2𝑡1

Share of 𝑒 𝑔, ℎ 𝑠𝑡1

Can compute using
secret key 𝑟1

Cross term from
Party 2

Given cross-term 𝑒 𝑔, 𝑔 𝑟2𝑡1, can recover 𝑒 𝑔, ℎ1
𝑠𝑡1

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

Goal: recover 𝜇

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡1

Step 2 (Slot Check): Compute 𝑒 𝐴1, ℎ1
𝑠 ෠𝑇𝑠 = 𝑒 𝑔𝑡1 , ℎ1

𝑠 ෠𝑇𝑠 = 𝑒 𝑔, ℎ1
𝑠𝑡1𝑒 𝑔, 𝑔 𝑠𝑟1𝑡1𝑒 𝑔, 𝑔 𝑠𝑟2𝑡1

Share of 𝑒 𝑔, ℎ 𝑠𝑡1

Can compute using
secret key 𝑟1

Cross term from
Party 2

Given cross-term 𝑒 𝑔, 𝑔 𝑟2𝑡1, can recover 𝑒 𝑔, ℎ1
𝑠𝑡1

Concretely: User in slot 𝑗 would

compute 𝐴
𝑖

𝑟𝑗 = 𝑔𝑡𝑖𝑟𝑗 for all 𝑖 ≠ 𝑗

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

Goal: recover 𝜇

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡1

Step 2 (Slot Check): Using cross-terms and secret key 𝑟1, compute 𝑒 𝑔, ℎ1
𝑠𝑡1

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡1

Step 2 (Slot Check): Using cross-terms and secret key 𝑟1, compute 𝑒 𝑔, ℎ1
𝑠𝑡1

Step 3 (Policy Check): Compute 𝑒 𝐴1, ℎ2
𝑠 ෡𝑈1

𝑠 = 𝑒 𝑔𝑡1 , ℎ2
𝑠 ෡𝑈1

𝑠 = 𝑒 𝑔, ℎ2
𝑠𝑡1𝑒 𝑔, 𝑔 𝑠𝑡1𝑢2

Share of 𝑒 𝑔, ℎ 𝑠𝑡1

Cross-term between slot
and attribute components
(available only if user has

attribute)

Goal: recover 𝜇

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

Step 1: Compute 𝑒 𝑔𝑠, 𝐵1 = 𝑒 𝑔, 𝑔 𝛼𝑠𝑒 𝑔, ℎ 𝑠𝑡𝑖 = 𝑍𝑠 ⋅ 𝑒 𝑔, ℎ 𝑠𝑡1

Step 2 (Slot Check): Using cross-terms and secret key 𝑟1, compute 𝑒 𝑔, ℎ1
𝑠𝑡1

Step 3 (Policy Check): Using cross-terms, compute 𝑒 𝑔, ℎ2
𝑠𝑡1

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

Summary of approach:
• Aggregated key is the product of each user’s individual public key (one per slot)
• Decryption will produce cross terms between slot 𝑖 and user 𝑗’s secret key
• Each user includes a cross-term to cancel out these effects (part of the user’s helper

decryption key); CRS will contain cross-terms for attribute-slot components

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

To decrypt a ciphertext, two properties should hold:
• User should have the secret key for slot 𝑖
• Attributes associated with slot 𝑖 should satisfy the challenge policy

Enforced by the slot components

Enforced by the attribute components

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

Key technical approach: cancelling out cross-terms
• Technique leveraged in many pairing-based constructions of registration-based primitives
• Recently: lattice-based instantiation (in the setting of broadcast encryption) [CW24]
• But… seems to require a long and structured common reference string

Constructing Slotted Registered ABE
[GLWW24]

General components: 𝑍 = 𝑒 𝑔, 𝑔 𝛼 ℎ ← 𝔾

Slot components: 𝐴𝑖 = 𝑔𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼ℎ𝑡𝑖

Attribute component: 𝑈1 = 𝑔𝑢1 , 𝑈2 = 𝑔𝑢2

pk1 = 𝑔𝑟1

𝑆1 = 1

෠𝑇 = 𝑔𝑟1+𝑟2

Aggregated master public key

෡𝑈1 = 𝑔𝑢2 , ෡𝑈2 = 𝑔𝑢1

General components: 𝜇 ⋅ 𝑍𝑠, 𝑔𝑠

Slot component: ℎ1
𝑠 ෠𝑇𝑠

Attribute component: ℎ2
𝑠 ෡𝑈1

𝑠

Key technical approach: cancelling out cross-terms
• Technique leveraged in many pairing-based constructions of registration-based primitives
• Recently: lattice-based instantiation (in the setting of broadcast encryption) [CW24]
• But… seems to require a long and structured common reference string

Replace attribute components with linear secret sharing of 𝑠
to support policies with a linear secret sharing scheme

Reducing the CRS Size
[GLWW24]

As described, size of CRS is quadratic in number of slots

Reason: Each slot is associated with a slot exponent 𝑡𝑖 and an attribute exponent 𝑢𝑖

Policy checking mechanism produces extraneous terms of the form 𝑔𝑠𝑡𝑖𝑢𝑗 for 𝑖 ≠ 𝑗 and
where 𝑔𝑠 is from the challenge ciphertext

CRS will need to contain 𝑔𝑡𝑖𝑢𝑗 for each 𝑖 ≠ 𝑗 for correctness

Can we publish fewer cross terms and still have correctness?

Approach: Choose 𝑡𝑖 , 𝑢𝑖 to be structured so there is redundancy in cross terms

Reducing the CRS Size
[GLWW24]

Given 𝑔𝑡1 , … , 𝑔𝑡𝐿 and 𝑔𝑢1 , … , 𝑔𝑢𝐿

Goal: give out 𝑔𝑡𝑖𝑢𝑗 for all 𝑖 ≠ 𝑗, but without ability to compute 𝑔𝑡𝑖𝑢𝑖

Set 𝑡𝑖 = 𝛼𝑑𝑖 for some 𝛼 ← ℤ𝑝

Set 𝑢𝑖 = 𝛽 ⋅ 𝛼𝑑𝑖 where 𝛽 ← ℤ𝑝

𝑡𝑖𝑢𝑗 = 𝛼𝑑𝑖 ⋅ 𝛽𝛼𝑑𝑗 = 𝛽𝛼𝑑𝑖+𝑑𝑗

for some choice of 𝑑1, … , 𝑑𝐿 ∈ ℕ

Observe: if many pairs 𝑖, 𝑗 share a common value 𝑑𝑖 + 𝑑𝑗, then all such pairs

can share a single cross term 𝑔𝛽𝛼
𝑑𝑖+𝑑𝑗

Reducing the CRS Size
[GLWW24]

Observe: if many pairs 𝑖, 𝑗 share a common value 𝑑𝑖 + 𝑑𝑗, then all such pairs

can share a single cross term 𝑔𝛽𝛼
𝑑𝑖+𝑑𝑗

How to choose 𝑑1, … , 𝑑𝐿?

Requirement: For all 𝑘, there should not exist 𝑖 ≠ 𝑗 where 𝑑𝑖 + 𝑑𝑗 = 𝑑𝑘 + 𝑑𝑘

Cross-term for 𝑖, 𝑗 must not collide with non-cross-term for 𝑘

If 𝑑𝑖 + 𝑑𝑗 = 2𝑑𝑘 (with 𝑑𝑖 < 𝑑𝑗), then 𝑑𝑖 , 𝑑𝑘 , 𝑑𝑗 form an arithmetic progression

Suffices to come up with a progression-free set of integers 𝒟 ⊂ ℕ of size 𝐿 and
set 𝑑1, … , 𝑑𝐿 = 𝒟; number of cross terms is then at most 2 max 𝒟

Reducing the CRS Size
[GLWW24]

Observe: if many pairs 𝑖, 𝑗 share a common value 𝑑𝑖 + 𝑑𝑗, then all such pairs

can share a single cross term 𝑔𝛽𝛼
𝑑𝑖+𝑑𝑗

How to choose 𝑑1, … , 𝑑𝐿?

Requirement: For all 𝑘, there should not exist 𝑖 ≠ 𝑗 where 𝑑𝑖 + 𝑑𝑗 = 𝑑𝑘 + 𝑑𝑘

Cross-term for 𝑖, 𝑗 must not collide with non-cross-term for 𝑘

If 𝑑𝑖 + 𝑑𝑗 = 2𝑑𝑘 (with 𝑑𝑖 < 𝑑𝑗), then 𝑑𝑖 , 𝑑𝑘 , 𝑑𝑗 form an arithmetic progression

Suffices to come up with a progression-free set of integers 𝒟 ⊂ ℕ of size 𝐿 and
set 𝑑1, … , 𝑑𝐿 = 𝒟; number of cross terms is then at most 2 max 𝒟

Previously used to reduce the CRS size in the
context of pairing-based SNARKs [Lip12]

Progression-Free Sets
[GLWW24]

Simple construction due to Erdös and Turán [ET36]

Let 𝒟 ⊂ ℕ be the numbers whose ternary representation only use the digits 0 and 1

1 = 001

3 = 010

4 = 011

9 = 100

10 = 101

12 = 110

13 = 111

2𝑑𝑘 is a number that only uses 0 and 2 in ternary

Progression-free:

If 𝑑𝑖 ≠ 𝑑𝑗, then 𝑑𝑖 + 𝑑𝑗 must contain a 1 somewhere in ternary

Thus 𝑑𝑖 + 𝑑𝑗 ≠ 2𝑑𝑘 for all 𝑖 ≠ 𝑗

To get a progression-free set with 𝐿 values, maximum entry has size 𝐿log2 3

Implies registered ABE scheme with CRS of size 𝑂 𝐿log2 3

State-of-the-art [Beh46, Elk10]: For every 𝐿 ∈ ℕ, there exists a progression-free set of 𝐿

integers with maximum value bounded by 𝐿1+𝑜 1 ⟹ registered ABE with CRS size 𝐿1+𝑜 1

Progression-Free Sets
[GLWW24]

Simple construction due to Erdös and Turán [ET36]

Let 𝒟 ⊂ ℕ be the numbers whose ternary representation only use the digits 0 and 1

1 = 001

3 = 010

4 = 011

9 = 100

10 = 101

12 = 110

13 = 111

Progression-free:

Thus 𝑑𝑖 + 𝑑𝑗 ≠ 2𝑑𝑘 for all 𝑖 ≠ 𝑗

To get a progression-free set with 𝐿 values, maximum entry has size 𝐿log2 3

Implies registered ABE scheme with CRS of size 𝑂 𝐿log2 3

State-of-the-art [Beh46, Elk10]: For every 𝐿 ∈ ℕ, there exists a progression-free set of 𝐿

integers with maximum value bounded by 𝐿1+𝑜 1 ⟹ registered ABE with CRS size 𝐿1+𝑜 1

Achieves nearly linear CRS, but this
approach cannot get to linear-size CRS

2𝑑𝑘 is a number that only uses 0 and 2 in ternary

If 𝑑𝑖 ≠ 𝑑𝑗, then 𝑑𝑖 + 𝑑𝑗 must contain a 1 somewhere in ternary

Registered ABE Summary

“faculty”

“CS”

sk1

pk1

Users chooses their own
public/secret key

Key issuer replaced
with key curator

mpk𝐿

Aggregated key

hsk1

• New approach to constructing RBE-type of primitives
• Registered ABE scheme (for Boolean formulas) only

makes black-box use of cryptography

• Construction will need a (trusted) common
reference string (CRS) and supports bounded
number of users

Lots to Explore for Registered ABE!

Pairing-based constructions require a long and structured CRS
• [HLWW23, ZZGQ23]: quadratic-size CRS

• [GLWW24]: nearly-linear size CRS (𝐿1+𝑜 1) using progression-free sets

Pairing-based constructions with linear-size CRS? Sublinear-size CRS? Transparent CRS?
• Possible using indistinguishability obfuscation [HLWW23] or witness encryption [FWW23]

Registered ABE from LWE (or falsifiable lattice assumptions)?

Registered ABE for Boolean circuits?
• Known from indistinguishability obfuscation or witness encryption
• [ZZGQ23]: registered ABE for arithmetic branching programs and inner products

Lower bounds on CRS size for constructions that make black-box use of cryptography?

An Application to Broadcast Encryption
[FWW23]

Registered ABE is a useful building block for other trustless cryptographic systems

public-key directory

pk1

pk2

pk3

pk4

pk5

Independent, user-generated keys

Suppose we want to encrypt a message
to pk1, pk3, pk4

Public-key encryption: ciphertext size grows with
the size of the set

𝑚 𝑚 𝑚

Broadcast encryption: achieve sublinear ciphertext
size, but requires central authority

An Application to Broadcast Encryption
[FWW23]

Distributed broadcast encryption [BZ14]

public-key directory

1, pk1

2, pk2

3, pk3

4, pk4

5, pk5

Each user chooses its own public key, and
each key has a unique index

Encrypt pp, pk𝑖 𝑖∈𝑆, 𝑚 → ct

Decrypt pp, pk𝑖 𝑖∈𝑆, sk, ct → 𝑚

Can encrypt a message 𝑚 to any set of public keys

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Any secret key associated with broadcast set can decrypt

Decryption does requires knowledge of public keys in
broadcast set

Distributed Broadcast from Slotted Registered ABE
[FWW23]

Consider a registered ABE scheme with a single dummy attribute 𝑥

Public key for an index 𝑖 is a key for slot 𝒊 with attribute 𝑥

public-key directory

1, pk1, 𝑥

2, pk2, 𝑥

3, pk3, 𝑥

4, pk4, 𝑥

5, pk5, 𝑥

Suppose we want to encrypt to a set 𝑆 = 2,3,5

mpk

Aggregate

Aggregate public keys using slotted registered ABE scheme

Encrypt mpk, 𝑥, 𝑃

Encrypt with respect to mpk to
policy 𝑃 that accepts 𝑥

Distributed Broadcast from Slotted Registered ABE
[FWW23]

Consider a registered ABE scheme with a single dummy attribute 𝑥

Public key for an index 𝑖 is a key for slot 𝒊 with attribute 𝑥

public-key directory

1, pk1, 𝑥

2, pk2, 𝑥

3, pk3, 𝑥

4, pk4, 𝑥

5, pk5, 𝑥

Suppose we want to encrypt to a set 𝑆 = 2,3,5

mpk

Aggregate

Encrypt mpk, 𝑥, 𝑃

Encrypt with respect to mpk to
policy 𝑃 that accepts 𝑥

Correctness: If 𝑖 ∈ 𝑆, then (𝑖, pk𝑖, 𝑥) was aggregated in mpk so
decryption is possible using sk𝑖

Security: If 𝑖 ∉ 𝑆, then 𝑖, pk𝑖, 𝑥 was not aggregated in mpk so
we can appeal to security of registered ABE

Distributed Broadcast from Slotted Registered ABE

Consider a registered ABE scheme with a single dummy attribute 𝑥

Public key for an index 𝑖 is a key for slot 𝒊 with attribute 𝑥

public-key directory

1, pk1, 𝑥

2, pk2, 𝑥

3, pk3, 𝑥

4, pk4, 𝑥

5, pk5, 𝑥

Suppose we want to encrypt to a set 𝑆 = 2,3,5

mpk

Aggregate

Encrypt mpk, 𝑥, 𝑃

Encrypt with respect to mpk to
policy 𝑃 that accepts 𝑥

Correctness: If 𝑖 ∈ 𝑆, then (𝑖, pk𝑖, 𝑥) was aggregated in mpk so
decryption is possible using sk𝑖

Security: If 𝑖 ∉ 𝑆, then 𝑖, pk𝑖, 𝑥 was not aggregated in mpk so
we can appeal to security of registered ABE

[FWW23]: Registered ABE + compiler ⇒ distributed broadcast
encryption from pairings

[KMW23, GKPW24]: direct constructions of distributed
broadcast encryption (and more) from pairings

[CW24]: distributed broadcast encryption from falsifiable
lattice assumptions (ℓ-succinct LWE)

Removing Trust from Functional Encryption

(Alice, 𝑓1)

sk1

(Bob, 𝑓2)
sk2 sk3

(Carol, 𝑓3)

Aggregate public
keys together

𝑥Encrypt mpk, 𝑥

𝑓1 𝑥 𝑓2 𝑥 𝑓3 𝑥

mpk is essentially a key for a
functional encryption scheme

Goal: Support capabilities of functional encryption without a trusted authority

Open Problems

Schemes with short CRS or unstructured CRS without non-black-box use of cryptography
Existing constructions have long structured CRS (typically quadratic in the number of users)

Lattice-based constructions of registration-based primitives
Registration-based encryption known from LWE [DKLLMR23]

Registered ABE for circuits known from evasive LWE (via witness encryption) [FWW23]

Distributed broadcast encryption from ℓ-succinct LWE [CW24]

Key revocation and verifiability
Defending against possibly malicious adversaries

Thank you!

Improve concrete efficiency for registration-based primitives
Current bottlenecks include large CRS and large public keys

References

[BLMMRW24] Pedro Branco, Russell W. F. Lai, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Ivy K. Y. Woo.
Traitor Tracing without Trusted Authority from Registered Functional Encryption. 2024.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional Encryption: Definitions and Challenges. TCC 2011.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty Key Exchange, Efficient Traitor Tracing, and More from
Indistinguishability Obfuscation. CRYPTO 2014.

[CES21] Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing Registration Based Encryption. IMACC 2021.

[CW24] Jeffrey Champion and David J. Wu. Distributed Broadcast Encryption from Lattices. 2024.

[DKLLMR23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza Rahimi.
Efficient Laconic Cryptography from Learning with Errors. EUROCRYPT 2023.

[DPY23] Pratish Datta, Tapas Pal, and Shota Yamada. Registered FE Beyond Predicates: (Attribute-Based) Linear
Functions and More. 2023.

[FFMMRV23] Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Daniele Venturi.
Registered (Inner-Product) Functional Encryption. ASIACRYPT 2023.

[FKP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo Commitments: Registration-Based Encryption
and Key-Value Map Commitments for Large Spaces. ASIACRYPT 2023.

References

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to Use (Plain) Witness Encryption: Registered ABE, Flexible
Broadcast, and More. CRYPTO 2023.

[GHMMRS19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar.
Registration-Based Encryption from Standard Assumptions. PKC 2019.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-Based
Encryption: Removing Private-Key Generator from IBE. TCC 2018.

[GKMR23] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient Registration-Based
Encryption. ACM CCS 2023.

[GKPW24] Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang. Threshold Encryption with
Silent Setup. CRYPTO 2024.

[GLWW23] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Realizing Flexible Broadcast Encryption: How to
Broadcast to a Public-Key Directory. ACM CCS 2023.

[GLWW24] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Reducing the CRS Size in Registered ABE Systems.
CRYPTO 2024.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-Based Encryption for Fine-Grained
Access Control of Encrypted Data. ACM CCS 2006

References

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable Registration-Based Encryption. CRYPTO 2020.

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered Attribute-Based Encryption.
EUROCRYPT 2023.

[KMW23] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed Broadcast Encryption from Bilinear
Groups. ASIACRYPT 2023.

[O’N10] Adam O’Neill. Definitional Issues in Functional Encryption. 2010.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-Free Encryption: Functional Encryption with Public Keys. ACM CCS
2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. EUROCRYPT 2005.

[ZLZGQ24] Ziqi Zhu, Jiangtao Li, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered Functional Encryptions from
Pairings. EUROCRYPT 2024.

[ZZGQ23] Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via Predicate Encodings. ASIACRYPT
2023.

	Slide 1: Removing Trust Assumptions from Advanced Encryption Schemes
	Slide 2: Functional Encryption (FE)
	Slide 3: Functional Encryption (FE)
	Slide 4: Functional Encryption (FE)
	Slide 5: Functional Encryption (FE)
	Slide 6: Functional Encryption vs. Public-Key Encryption
	Slide 7: Registration-Based Encryption (RBE)
	Slide 8: Registration-Based Encryption (RBE)
	Slide 9: Registration-Based Encryption (RBE)
	Slide 10: Registration-Based Encryption (RBE)
	Slide 11: Registration-Based Encryption (RBE)
	Slide 12: Removing Trust from Functional Encryption
	Slide 13: Removing Trust from Functional Encryption
	Slide 14: Registration-Based Cryptography
	Slide 15: Attribute-Based Encryption
	Slide 16: Attribute-Based Encryption
	Slide 17: Attribute-Based Encryption
	Slide 18: Attribute-Based Encryption
	Slide 19: Registered Attribute-Based Encryption
	Slide 20: Registered Attribute-Based Encryption
	Slide 21: A Template for Building Registered ABE
	Slide 22: A Template for Building Registered ABE
	Slide 23: A Template for Building Registered ABE
	Slide 24: Slotted Registered ABE to Registered ABE
	Slide 25: Constructing Slotted Registered ABE
	Slide 26: Constructing Slotted Registered ABE
	Slide 27: Constructing Slotted Registered ABE
	Slide 28: Constructing Slotted Registered ABE
	Slide 29: Constructing Slotted Registered ABE
	Slide 30: Constructing Slotted Registered ABE
	Slide 31: Constructing Slotted Registered ABE
	Slide 32: Constructing Slotted Registered ABE
	Slide 33: Constructing Slotted Registered ABE
	Slide 34: Constructing Slotted Registered ABE
	Slide 35: Constructing Slotted Registered ABE
	Slide 36: Constructing Slotted Registered ABE
	Slide 37: Constructing Slotted Registered ABE
	Slide 38: Constructing Slotted Registered ABE
	Slide 39: Constructing Slotted Registered ABE
	Slide 40: Reducing the CRS Size
	Slide 41: Reducing the CRS Size
	Slide 42: Reducing the CRS Size
	Slide 43: Reducing the CRS Size
	Slide 44: Progression-Free Sets
	Slide 45: Progression-Free Sets
	Slide 46: Registered ABE Summary
	Slide 47: Lots to Explore for Registered ABE!
	Slide 48: An Application to Broadcast Encryption
	Slide 49: An Application to Broadcast Encryption
	Slide 50: Distributed Broadcast from Slotted Registered ABE
	Slide 51: Distributed Broadcast from Slotted Registered ABE
	Slide 52: Distributed Broadcast from Slotted Registered ABE
	Slide 53: Removing Trust from Functional Encryption
	Slide 54: Open Problems
	Slide 55: References
	Slide 56: References
	Slide 57: References

