Removing Trust Assumptions
 from Advanced Encryption Schemes

David Wu

Functional Encryption (FE)

Functional Encryption (FE)

Functional Encryption (FE)

Functional Encryption (FE)

Key issuer can decrypt all ciphertexts

Central point of failure

Users do not have control over keys

Functional Encryption vs. Public-Key Encryption

Public-key encryption is decentralized

Can we get the best of both worlds?

Every user generates their own key (no coordination or trust needed) Does not support fine-grained decryption

Functional encryption is centralized

Central (trusted) authority generates individual keys
Supports fine-grained decryption capabilities

Registration-Based Encryption (RBE)

Users chooses their own public/secret key and register their public key with the curator

Registration-Based Encryption (RBE)

Users chooses their own public/secret key and register their public key with the curator

Registration-Based Encryption (RBE)

Registration-Based Encryption (RBE)

Note: As users join, the master public key is updated, so users occasionally need to retrieve a new helper decryption key

Registration-Based Encryption (RBE)

- Initial constructions based on indistinguishability obfuscation or hash garbling (based on CDH, QR, LWE) - all require non-black-box use of cryptography
- High concrete efficiency costs: ciphertext is 4.5 TB for supporting 2 billion users [CES21]

Can we construct RBE schemes that only need black-box use of cryptography?
Can we construct support more general policies (beyond identity-based encryption)?

Removing Trust from Functional Encryption

Users chooses their own key and register the public key (together with function f) with the curator Note: f could also be chosen by the key curator

Removing Trust from Functional Encryption

Registration-Based Cryptography

Can we construct RBE schemes that only need black-box use of cryptography?
Can we construct support more general policies (beyond identity-based encryption)?
Registration-based encryption [GHMR18, GHMMRS19, GV20, CES21, DKLLMR23, GKMR23, ZZGQ23, FKP23]
Registered attribute-based encryption (ABE)

- Monotone Boolean formulas [HLWW23, ZZGQ23, GLWW24]
- Inner products [FFMMRV23, ZZGQ23]
- Arithmetic branching program [ZZGQ23]
- Boolean circuits [HLWW23, FWW23]

This talk

Lots of progress in this past year!

Distributed/flexible broadcast [BZ14, KMW23, FWW23, GLWW23, GKPW24, CW24]

Registered traitor tracing [BLMMRW24]
Registered functional encryption

- Linear functions [DPY23]
- Quadratic functions [ZLZGQ24]
- Boolean circuits [FFMMRV23, DPY23]

Underlined schemes only need black-box use of cryptography

Attribute-Based Encryption

policy: CS and faculty

Attribute-Based Encryption

policy: CS and faculty

Attribute-Based Encryption

policy: CS and faculty

Can decrypt

Cannot decrypt
Cannot decrypt

Attribute-Based Encryption

Users cannot collude to decrypt

Registered Attribute-Based Encryption

Registered Attribute-Based Encryption

Users chooses their own public/secret key

Users join the system by registering their public key along with a set of attributes

A Template for Building Registered ABE

Simplification: assume that all of the users register at the same time (rather than in an online fashion)

Slotted registered ABE:

Let L be the number of users

hsk $_{1}, \ldots$, hsk $_{L}$
Each slot associated with a public key pk and a set of attributes S

$$
\begin{aligned}
&|\operatorname{mpk}|=\operatorname{poly}(\lambda,|\mathcal{U}|, \log L) \\
&\left|\operatorname{hsk}_{i}\right|=\operatorname{poly}(\lambda,|\mathcal{U}|, \log L) \\
& \mathcal{U}: \text { universe of attributes }
\end{aligned}
$$

A Template for Building Registered ABE

Simplification: assume that all of the users register at the same time (rather than in an online fashion)

Slotted registered ABE:

Let L be the number of users

mpk
hsk $_{1}, \ldots$, hsk $_{L}$

Each slot associated with a public key pk and a set of attributes S

Encrypt $(\mathrm{mpk}, P, m) \rightarrow \mathrm{ct}$
$\operatorname{Decrypt}\left(\mathrm{sk}_{i}, \mathrm{hsk}_{i}, \mathrm{ct}\right) \rightarrow m$

Encryption takes master public key and policy P (no slot)
Decryption takes secret key sk_{i} for some slot and the helper key hsk_{i} for that slot

A Template for Building Registered ABE

Simplification: assume that all of the users register at the same time (rather than in an online fashion)

Slotted registered ABE:

Let L be the number of users

mpk
hsk $_{1}, \ldots$, hsk $_{L}$

Each slot associated with a public key pk and a set of attributes S
$\operatorname{Encrypt}(\mathrm{mpk}, P, m) \rightarrow \mathrm{ct}$
$\operatorname{Decrypt}\left(\mathrm{sk}_{i}, \mathrm{hsk}_{i}, \mathrm{ct}\right) \rightarrow m$

Main difference with registered $A B E$:
Aggregate takes all L keys simultaneously

Slotted Registered ABE to Registered ABE

Let L be the number of users

Aggregate

mpk
$\mathrm{hsk}_{1}, \ldots, \mathrm{hsk}_{L}$

Slotted scheme does not support online registration

Solution: use "powers-of-two" approach (like [GHMR18])
Maintain $\log L$ slotted schemes, where scheme i supports 2^{i} users

Constructing Slotted Registered ABE

Construction will rely on a prime-order pairing group $\left(\mathbb{G}, \mathbb{G}_{T}\right)$
Pairing is an efficiently-computable bilinear map $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$ from \mathbb{G} to \mathbb{G}_{T} :

$$
e\left(g^{x}, g^{y}\right)=e(g, g)^{x y}
$$

Multiplies exponents in the target group

Constructing Slotted Registered ABE

Will consider a toy scheme with two slots and two attributes w_{1}, w_{2}
Policy will be "has attribute w_{i} "
Scheme will rely on a structured common reference string (CRS)
General components: $Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: each slot $i \in\{1,2\}$ will have a pair of group elements

$$
\begin{array}{|l|l|}
\hline\left(A_{1}, B_{1}\right) & \left(A_{2}, B_{2}\right)
\end{array} A_{i}=g^{t_{i}} \quad B_{i}=g^{\alpha} h^{t_{i}}
$$

Attribute component: for each slot, we have an attribute component $U_{i}=g^{u_{i}}$

t_{i} is a slot exponent u_{i} is an attribute exponent

Constructing Slotted Registered ABE

$$
\begin{array}{ll}
\text { General components: } Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G} & \\
\text { Slot components: }\left(A_{1}, B_{1}\right) \text { and }\left(A_{2}, B_{2}\right) & A_{i}=g^{t_{i}} \quad B_{i}=g^{\alpha} h^{t_{i}} \\
\text { Attribute component: } U_{1}, U_{2} & U_{i}=g^{u_{i}}
\end{array}
$$

To decrypt a ciphertext, two properties should hold:

- User should have the secret key for slot i

Enforced by the slot components

- Attributes associated with slot i should satisfy the challenge policy

Enforced by the attribute components

Constructing Slotted Registered ABE

General components: $Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$

$$
\begin{aligned}
& A_{i}=g^{t_{i}} \quad B_{i}=g^{\alpha} h^{t_{i}} \\
& U_{i}=g^{u_{i}}
\end{aligned}
$$

Attribute component: U_{1}, U_{2}
User's individual public/secret key is an ElGamal key-pair

$$
\mathrm{sk}=r, \mathrm{pk}=g^{r} \quad \text { (and some auxiliary information) }
$$

Aggregating public keys $\left(\mathrm{pk}_{1}, \mathrm{pk}_{2}\right)$ with attribute sets S_{1}, S_{2}

$$
\begin{array}{cc}
\mathrm{pk}_{1}=g^{r_{1}} & \mathrm{pk}_{2}=g^{r_{2}} \\
S_{1}=\{1\} & S_{2}=\{2\}
\end{array}
$$

Aggregated public key: $\widehat{T}=\mathrm{pk}_{1} \cdot \mathrm{pk}_{2}=g^{r_{1}+r_{2}}$ product of public keys
Key for attribute 1: $\widehat{U}_{1}=g^{u_{2}}$
Key for attribute 2: $\widehat{U}_{2}=g^{u_{1}}$

Constructing Slotted Registered ABE

General components: $\quad Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\hat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

Ciphertext: $s \leftarrow \mathbb{Z}_{p}, h_{1}, h_{2} \leftarrow \mathbb{G}$ such that $h_{1} h_{2}=h$
$\mathrm{pk}_{1}=g^{r_{1}}$ $S_{1}=\{1\}$

$$
\mathrm{pk}_{1}=g^{r_{2}}
$$

Suppose we encrypt μ to the policy "has attribute 1" General components: $\mu \cdot Z^{s}, g^{s}$ Slot component: $\quad h_{1}^{s} \hat{T}^{s}$

$$
S_{1}=\{2\}
$$

Attribute component: $h_{2}^{s} \widehat{U}_{1}^{s}$

Constructing Slotted Registered ABE

General components: $Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\hat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

General components: $\mu \cdot Z^{s}, g^{s}$

$$
\begin{gathered}
\mathrm{pk}_{1}=g^{r_{1}} \\
S_{1}=\{1\}
\end{gathered}
$$

Goal: recover μ

Attribute component: $h_{2}^{s} \widehat{U}_{1}^{s}$
Step 1: Compute $e\left(g^{s}, B_{1}\right)=e(g, g)^{\alpha s} e(g, h)^{s t_{i}}=Z^{s} \cdot e(g, h)^{s t_{i}}$
Need to cancel out this component
Observe: ciphertext contains a secret share of $h^{s}=\left(h_{1} h_{2}\right)^{s}$, but blinded by slot component \widehat{T} and attribute component \widehat{U}

Constructing Slotted Registered ABE

General components: $\quad Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\hat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

General components: $\mu \cdot Z^{s}, g^{s}$

$$
\begin{gathered}
\mathrm{pk}_{1}=g^{r_{1}} \\
S_{1}=\{1\}
\end{gathered}
$$

Goal: recover μ

Attribute component: $h_{2}^{S} \widehat{U}_{1}^{S}$

Step 1: Compute $e\left(g^{s}, B_{1}\right)=e(g, g)^{\alpha s} e(g, h)^{s t_{i}}=Z^{s} \cdot e(g, h)^{s t_{1}}$ secret key r_{1}

Step 2 (Slot Check): Compute $e\left(A_{1}, h_{1}^{s} \hat{T}^{s}\right)=e\left(g^{t_{1}}, h_{1}^{s} \widehat{T}^{s}\right)=e\left(g, h_{1}\right)^{s t_{1}} e(g, g)^{s r_{1} t_{1}} e(g, g)^{s r_{2} t_{1}}$

Constructing Slotted Registered ABE

General components: $\quad Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\hat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

General components: $\mu \cdot Z^{s}, g^{s}$

$$
\begin{gathered}
\mathrm{pk}_{1}=g^{r_{1}} \\
S_{1}=\{1\}
\end{gathered}
$$

Goal: recover μ
Attribute component: $h_{2}^{s} \widehat{U}_{1}^{s}$

Concretely: User in slot j would $\quad s t_{i}=Z^{s} \cdot e(g, h)^{s t_{1}}$
Can compute using compute $A_{i}^{r_{j}}=g^{t_{i} r_{j}}$ for all $i \neq j$

Given cross-term $e(g, g)^{r_{2} t_{1}}$, can recover $e\left(g, h_{1}\right)^{s t_{1}}$

Constructing Slotted Registered ABE

General components: $\quad Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\widehat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

General components: $\mu \cdot Z^{s}, g^{s}$

$$
\begin{gathered}
\mathrm{pk}_{1}=g^{r_{1}} \\
S_{1}=\{1\}
\end{gathered}
$$

$$
\text { Slot component: } \quad h_{1}^{s} \hat{T}^{s}
$$

Goal: recover μ

$$
\text { Attribute component: } h_{2}^{S} \widehat{U}_{1}^{s}
$$

Step 1: Compute $e\left(g^{s}, B_{1}\right)=e(g, g)^{\alpha s} e(g, h)^{s t_{i}}=Z^{s} \cdot e(g, h)^{s t_{1}}$
Step 2 (Slot Check): Using cross-terms and secret key r_{1}, compute $e\left(g, h_{1}\right)^{s t_{1}}$

Constructing Slotted Registered ABE

General components: $\quad Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\hat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

General components: $\mu \cdot Z^{s}, g^{s}$

$$
\begin{gathered}
\mathrm{pk}_{1}=g^{r_{1}} \\
S_{1}=\{1\}
\end{gathered}
$$

Goal: recover μ

Attribute component: $h_{2}^{S} \widehat{U}_{1}^{S}$

Step 1: Compute $e\left(g^{s}, B_{1}\right)=e(g, g)^{\alpha s} e(g, h)^{s t_{i}}=Z^{s} \cdot e(g, h)^{s t_{1}}$
Step 2 (Slot Check): Using cross-terms and secret ke Share of $e(g, h)^{s t_{1}}$

Cross-term between slot and attribute components (available only if user has attribute)

Step 3 (Policy Check): Compute $e\left(A_{1}, h_{2}^{s} \widehat{U}_{1}^{s}\right)=e\left(g^{t_{1}}, h_{2}^{s} \widehat{U}_{1}^{s}\right)=e\left(g, h_{2}\right)^{s t_{1}} e(g, g)^{s t_{1} u_{2}}$

Constructing Slotted Registered ABE

General components: $Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\hat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

General components: $\mu \cdot Z^{s}, g^{s}$

$$
\mathrm{pk}_{1}=g^{r_{1}}
$$

$$
S_{1}=\{1\}
$$

$$
\text { Slot component: } \quad h_{1}^{s} \widehat{T}^{s}
$$

Attribute component: $h_{2}^{S} \widehat{U}_{1}^{S}$

Step 1: Compute $e\left(g^{s}, B_{1}\right)=e(g, g)^{\alpha s} e(g, h)^{s t_{i}}=Z^{s} \cdot e(g, h)^{s t_{1}}$
Step 2 (Slot Check): Using cross-terms and secret key r_{1}, compute $e\left(g, h_{1}\right)^{s t_{1}}$
Step 3 (Policy Check): Using cross-terms, compute $e\left(g, h_{2}\right)^{s t_{1}}$

Constructing Slotted Registered ABE

General components: $\quad Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\widehat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

 General components: $\mu \cdot Z^{s}, g^{s}$

$$
\begin{gathered}
\mathrm{pk}_{1}=g^{r_{1}} \\
S_{1}=\{1\}
\end{gathered}
$$

Slot component: $\quad h_{1}^{s} \hat{T}^{s}$
Attribute component: $h_{2}^{S} \widehat{U}_{1}^{s}$

Summary of approach:

- Aggregated key is the product of each user's individual public key (one per slot)
- Decryption will produce cross terms between slot i and user j 's secret key
- Each user includes a cross-term to cancel out these effects (part of the user's helper decryption key); CRS will contain cross-terms for attribute-slot components

Constructing Slotted Registered ABE

General components: $\quad Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\widehat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

$$
\begin{array}{ll}
\text { General components: } & \mu \cdot Z^{s}, g^{s} \\
\text { Slot component: } & h_{1}^{s} \widehat{T}^{s} \\
\text { Attribute component: } & h_{2}^{s} \widehat{U}_{1}^{s}
\end{array}
$$

To decrypt a ciphertext, two properties should hold:

- User should have the secret key for slot i
- Attributes associated with slot i should satisfy the challenge policy

Constructing Slotted Registered ABE

General components: $\quad Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\widehat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

General components: $\mu \cdot Z^{s}, g^{s}$

$$
\begin{gathered}
\mathrm{pk}_{1}=g^{r_{1}} \\
S_{1}=\{1\}
\end{gathered}
$$

Slot component: $\quad h_{1}^{s} \hat{T}^{s}$
Attribute component: $h_{2}^{s} \widehat{U}_{1}^{s}$

Key technical approach: cancelling out cross-terms

- Technique leveraged in many pairing-based constructions of registration-based primitives
- Recently: lattice-based instantiation (in the setting of broadcast encryption) [CW24]
- But... seems to require a long and structured common reference string

Constructing Slotted Registered ABE

General components: $Z=e(g, g)^{\alpha} \quad h \leftarrow \mathbb{G}$
Slot components: $A_{i}=g^{t_{i}}, B_{i}=g^{\alpha} h^{t_{i}}$
Attribute component: $U_{1}=g^{u_{1}}, U_{2}=g^{u_{2}}$

Aggregated master public key

$$
\begin{gathered}
\hat{T}=g^{r_{1}+r_{2}} \\
\widehat{U}_{1}=g^{u_{2}}, \widehat{U}_{2}=g^{u_{1}}
\end{gathered}
$$

$$
\begin{array}{ll}
\text { General components: } & \mu \cdot Z^{s}, g^{s} \\
\text { Slot component: } & h_{1}^{s} \widehat{T}^{s} \\
\text { Attribute component: } & h_{2}^{s} \widehat{U}_{1}^{s}
\end{array}
$$

Key technical app

- Technique leve

Replace attribute components with linear secret sharing of s to support policies with a linear secret sharing scheme

- Recently: lattic
- But... seems to

Reducing the CRS Size

As described, size of CRS is quadratic in number of slots
Reason: Each slot is associated with a slot exponent t_{i} and an attribute exponent u_{i}
Policy checking mechanism produces extraneous terms of the form $g^{s t_{i} u_{j}}$ for $i \neq j$ and where g^{s} is from the challenge ciphertext

CRS will need to contain $g^{t_{i} u_{j}}$ for each $i \neq j$ for correctness

Can we publish fewer cross terms and still have correctness?
Approach: Choose t_{i}, u_{i} to be structured so there is redundancy in cross terms

Reducing the CRS Size

Given $g^{t_{1}}, \ldots, g^{t_{L}}$ and $g^{u_{1}}, \ldots, g^{u_{L}}$
Goal: give out $g^{t_{i} u_{j}}$ for all $i \neq j$, but without ability to compute $g^{t_{i} u_{i}}$

$$
\text { Set } t_{i}=\alpha^{d_{i}} \text { for some } \alpha \leftarrow \mathbb{Z}_{p}
$$

$$
\text { Set } u_{i}=\beta \cdot \alpha^{d_{i}} \text { where } \beta \leftarrow \mathbb{Z}_{p}
$$

for some choice of $d_{1}, \ldots, d_{L} \in \mathbb{N}$

Observe: if many pairs i, j share a common value $d_{i}+d_{j}$, then all such pairs can share a single cross term $g^{\beta \alpha^{d_{i}+d_{j}}}$

Reducing the CRS Size

Observe: if many pairs i, j share a common value $d_{i}+d_{j}$, then all such pairs can share a single cross term $g^{\beta \alpha^{d_{i}+d_{j}}}$

$$
\text { How to choose } d_{1}, \ldots, d_{L} \text { ? }
$$

Requirement: For all k, there should not exist $i \neq j$ where $d_{i}+d_{j}=d_{k}+d_{k}$ Cross-term for (i, j) must not collide with non-cross-term for k

If $d_{i}+d_{j}=2 d_{k}$ (with $d_{i}<d_{j}$), then $\left(d_{i}, d_{k}, d_{j}\right)$ form an arithmetic progression
Suffices to come up with a progression-free set of integers $\mathcal{D} \subset \mathbb{N}$ of size L and set $\left\{d_{1}, \ldots, d_{L}\right\}=\mathcal{D}$; number of cross terms is then at most $2 \max \mathcal{D}$

Reducing the CRS Size

Observe: if many pairs i, j share a common value $d_{i}+d_{j}$, then all such pairs can share a single cross term $g^{\beta \alpha^{d_{i}+d_{j}}}$

How to choose d_{1}, \ldots, d_{L} ?

Previously used to reduce the CRS size in the j where $d_{i}+d_{j}=d_{k}+d_{k}$ non-cross-term for k context of pairing-based SNARKs [Lip12]

Suffices to come up with a progression-free set of integers $\mathcal{D} \subset \mathbb{N}$ of size L and set $\left\{d_{1}, \ldots, d_{L}\right\}=\mathcal{D}$; number of cross terms is then at most $2 \max \mathcal{D}$

Progression-Free Sets

Simple construction due to Erdös and Turán [ET36]

Let $\mathcal{D} \subset \mathbb{N}$ be the numbers whose ternary representation only use the digits 0 and 1 $1=001 \quad$ Progression-free:
$3=010$
$4=011$
$9=100$
$10=101$
$12=110$
$13=111$
$2 d_{k}$ is a number that only uses 0 and 2 in ternary
If $d_{i} \neq d_{j}$, then $d_{i}+d_{j}$ must contain a 1 somewhere in ternary
Thus $d_{i}+d_{j} \neq 2 d_{k}$ for all $i \neq j$
To get a progression-free set with L values, maximum entry has size $L^{\log _{2} 3}$ Implies registered ABE scheme with CRS of size $O\left(L^{\log _{2} 3}\right)$

State-of-the-art [Beh46, Elk10]: For every $L \in \mathbb{N}$, there exists a progression-free set of L integers with maximum value bounded by $L^{1+o(1)} \Rightarrow$ registered ABE with CRS size $L^{1+o(1)}$

Progression-Free Sets

Simple construction due to Erdös and Turán [ET36]

Let $\mathcal{D} \subset \mathbb{N}$ be the numbers whose ternary representation only use the digits 0 and 1

$$
1=001 \quad \text { Progression-free: }
$$

$3=010$
$4=011$
$9=100$
$10=101$
$12=110$
$13=111$
$2 d_{k}$ is a number that only uses 0 and 2 in ternary
If $d_{i} \neq d_{j}$, then $d_{i}+d_{j}$ must contain a 1 somewhere in ternary
Thus $d_{i}+d_{j} \neq 2 d_{k}$ for all $i \neq j$
To get a progressior
Implies registered A

Achieves nearly linear CRS, but this approach cannot get to linear-size CRS

State-of-the-art [Beh46, Elk10]: For every $L \in \mathbb{N}$, there exists a progression-froc set of L integers with maximum value bounded by $L^{1+o(1)} \Rightarrow$ registered ABE with CRS size $L^{1+o(1)}$

Registered ABE Summary

Lots to Explore for Registered ABE!

Pairing-based constructions require a long and structured CRS

- [HLWW23, ZZGQ23]: quadratic-size CRS
- [GLWW24]: nearly-linear size CRS $\left(L^{1+o(1)}\right)$ using progression-free sets

Pairing-based constructions with linear-size CRS? Sublinear-size CRS? Transparent CRS?

- Possible using indistinguishability obfuscation [HLwW23] or witness encryption [Fww23]

Lower bounds on CRS size for constructions that make black-box use of cryptography?
Registered ABE from LWE (or falsifiable lattice assumptions)?
Registered ABE for Boolean circuits?

- Known from indistinguishability obfuscation or witness encryption
- [ZZGQ23]: registered ABE for arithmetic branching programs and inner products

An Application to Broadcast Encryption

Registered ABE is a useful building block for other trustless cryptographic systems

Suppose we want to encrypt a message to $\left\{\mathrm{pk}_{1}, \mathrm{pk}_{3}, \mathrm{pk}_{4}\right\}$
Public-key encryption: ciphertext size grows with the size of the set

m

Broadcast encryption: achieve sublinear ciphertext size, but requires central authority

An Application to Broadcast Encryption

Distributed broadcast encryption [Bz14]

Each user chooses its own public key, and each key has a unique index
$\operatorname{Encrypt}\left(\mathrm{pp},\left\{\mathrm{pk}_{i}\right\}_{i \in S}, m\right) \rightarrow \mathrm{ct}$
Can encrypt a message m to any set of public keys
Efficiency: $|c t|=|m|+\operatorname{poly}(\lambda, \log |S|)$
Decrypt(pp, $\left.\left\{\mathrm{pk}_{i}\right\}_{i \in S}, \mathrm{sk}, \mathrm{ct}\right) \rightarrow m$
Any secret key associated with broadcast set can decrypt Decryption does requires knowledge of public keys in broadcast set

Distributed Broadcast from Slotted Registered ABE

Consider a registered ABE scheme with a single dummy attribute x
Public key for an index i is a key for slot i with attribute x

Distributed Broadcast from Slotted Registered ABE

Consider a registered ABE scheme with a single dummy attribute x
Public key for an index i is a key for slot i with attribute x

Distributed Broadcast from Slotted Registered ABE

Consider a registered ABE scheme with a single dummy attribute x Public key for an index i is a key for slot i with attribute x

Suppose we want to encrypt to a set $S=\{2,3,5\}$
[FWW23]: Registered ABE + compiler \Rightarrow distributed broadcast encryption from pairings
[KMW23, GKPW24]: direct constructions of distributed broadcast encryption (and more) from pairings
[CW24]: distributed broadcast encryption from falsifiable lattice assumptions (ℓ-succinct LWE)

Removing Trust from Functional Encryption

Goal: Support capabilities of functional encryption without a trusted authority

Open Problems

Schemes with short CRS or unstructured CRS without non-black-box use of cryptography Existing constructions have long structured CRS (typically quadratic in the number of users)

Lattice-based constructions of registration-based primitives
Registration-based encryption known from LWE [DKLLMR23]
Registered ABE for circuits known from evasive LWE (via witness encryption) [FWW23]
Distributed broadcast encryption from ℓ-succinct LWE [CW24]
Key revocation and verifiability
Defending against possibly malicious adversaries
Improve concrete efficiency for registration-based primitives
Current bottlenecks include large CRS and large public keys

Thank you!

References

[BLMMRW24] Pedro Branco, Russell W. F. Lai, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Ivy K. Y. Woo. Traitor Tracing without Trusted Authority from Registered Functional Encryption. 2024.
[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional Encryption: Definitions and Challenges. TCC 2011.
[BZ14] Dan Boneh and Mark Zhandry. Multiparty Key Exchange, Efficient Traitor Tracing, and More from Indistinguishability Obfuscation. CRYPTO 2014.
[CES21] Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing Registration Based Encryption. IMACC 2021.
[CW24] Jeffrey Champion and David J. Wu. Distributed Broadcast Encryption from Lattices. 2024.
[DKLLMR23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza Rahimi. Efficient Laconic Cryptography from Learning with Errors. EUROCRYPT 2023.
[DPY23] Pratish Datta, Tapas Pal, and Shota Yamada. Registered FE Beyond Predicates: (Attribute-Based) Linear Functions and More. 2023.
[FFMMRV23] Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Daniele Venturi. Registered (Inner-Product) Functional Encryption. ASIACRYPT 2023.
[FKP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo Commitments: Registration-Based Encryption and Key-Value Map Commitments for Large Spaces. ASIACRYPT 2023.

References

[FWW23]	Cody Freitag, Brent Waters, and David J. Wu. How to Use (Plain) Witness Encryption: Registered ABE, Flexible Broadcast, and More. CRYPTO 2023.
[GHMMRS19]Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar. Registration-Based Encryption from Standard Assumptions. PKC 2019.	
[GHMR18]Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-Based Encryption: Removing Private-Key Generator from IBE. TCC 2018.	
[GKMR23]	Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient Registration-Based Encryption. ACM CCS 2023.
[GKPW24]	Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang. Threshold Encryption with Silent Setup. CRYPTO 2024.
[GLWW23]	Rachit Garg, George Lu, Brent Waters, and David J. Wu. Realizing Flexible Broadcast Encryption: How to Broadcast to a Public-Key Directory. ACM CCS 2023.
[GLWW24]	Rachit Garg, George Lu, Brent Waters, and David J. Wu. Reducing the CRS Size in Registered ABE Systems. CRYPTO 2024.
[GPSW06]	Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-Based Encryption for Fine-Grained Access Control of Encrypted Data. ACM CCS 2006

References

[GV20]	Rishab Goyal and Satyanarayana Vusirikala. Verifiable Registration-Based Encryption. CRYPTO 2020.
[HLWW23]	Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered Attribute-Based Encryption. EUROCRYPT 2023.
[KMW23]	Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed Broadcast Encryption from Bilinear Groups. ASIACRYPT 2023.
[O'N10]	Adam O'Neill. Definitional Issues in Functional Encryption. 2010.
[SS10]	Amit Sahai and Hakan Seyalioglu. Worry-Free Encryption: Functional Encryption with Public Keys. ACM CCS 2010.
[SW05]	Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. EUROCRYPT 2005.
[ZLZGQ24]	Ziqi Zhu, Jiangtao Li, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered Functional Encryptions from Pairings. EUROCRYPT 2024.
[ZZGQ23]	Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via Predicate Encodings. ASIACRYPT 2023.

