
CS 302 Computer Fluency 

Elaine Rich 

 

Introduction, Bits and Encodings 

 

1. The Brown University Standard Corpus of Present-Day American English, compiled 

in the 1960s, to support research in computational linguistics, had just over 1,000,000 

words.  I’m going to estimate an average of 4 characters per word.  That means that 

there were about 4,000,000 characters.  At one byte each, the size of the Corpus was 

about 4 MB.  Go to the Project Gutenberg website:  

 

http://www.gutenberg.org/wiki/Main_Page  

 

Choose a favorite book.  What did you pick?  How does the size of that one book (out 

of the thousands available on just that one website), compare to the size of the Brown 

Corpus? 

 

2. Memory gets smaller and cheaper every year.  One way to see how that has happened 

over the last decade or so is to look at the history of the iPod.  Plot the amount of 

memory available on the highest end (for purposes of this discussion, the one with the 

largest memory) model iPod for each year since it came out in 2001.  You should be 

able to get all the data you need at this site, but if some values are missing you can 

track them down if you know the model names that were available that year: 

 

http://www.ipodhistory.com/  

 

3. We talked in class about chess.  We compared the number of steps required to search 

a complete game board to the number of seconds since the Big Bang.  Pick another 

two person game.  How many branches are there in its search tree?  To answer this 

question, you need to know approximately how many choices there are at each move 

and how many moves there are in a typical game.  It’s fine to give your answer in 

exponent notation. 

 

4. In class, we went through several sets of instructions (recipes, shampoo, etc.) and 

asked what a robot would have to know in order to implement the instructions 

effectively.  In other words, what the robot would have to know if we want to 

consider the instructions to be an algorithm.  Go find another set of instructions that 

makes sense to people.  Include those instructions as part of your answer to this 

question.  Then list at least five things that an implementing robot would have to 

know. 

 

5. 10,000 = 10
x
 for what value of x? 

 

  

http://www.gutenberg.org/wiki/Main_Page
http://www.ipodhistory.com/


6. Convert each of the following decimal numbers to binary: 

a. 46     

b. 83     

c. 467    

 

7. Convert each of the following binary numbers to decimal: 

a. 11101    

b. 110111    

 

8. Convert each of the following decimal numbers to hex (Hint: Convert to binary first.): 

a. 159    

b. 234    

 

9. Convert each of the following hex numbers to decimal: 

a. B8     

b. 2E     

 

10. Show the result of each of the following binary arithmetic operations: 

a. 111101 + 111 =    

b. 1101 – 11 =   

c. 10101 * 111 =    

 

11. In this problem, we’ll consider what happens when you try to use very large numbers 

in a Python program.  Computers have to make decisions about how to represent 

numbers.  In Python, integers can get arbitrarily large until all of the machine's 

memory is used. But for nonintegers (think fractions), a different representation 

(called floating point) is used. A fixed number of bits are allocated to each number. 

Some of the bits store the significant digits. The rest store the exponent (the power of 

10 by which you multiply to get the real number).   So, for example, 2.3e2 

corresponds to 2.3 * 10
2
 = 230. 

 

If a number gets too large, there aren't enough bits to represent its exponent.  In that 

case, the machine must do something. Our goal, in designing programs, is to prevent 

the raising of errors (the things that show up in red).  To this end, what is supposed to 

happen, if the real answer cannot be represented, is that the special value "inf", which 

stands for infinity, is supposed to be created. When you compute with just the 

standard "arithmetic" operators, namely +, - , * and /, this will happen.  But the 

Python implementation of exponentiation (raising to a power) happens not to do this.  

If it generates a number that is too large, it raises the error condition.  

 

Create a situation where you generate a number that is too large to be represented.  

We know that this won't happen with integers.  So you need to start with a floating 

point number. You can do this by any use of a decimal point (e.g., 5.2) or by using 

floating point notation (e.g., 5e2 for 500). Now do operations to make larger and 

larger numbers until you get either inf or an error.  (Go ahead, try things until you 

find one.)  What operations did you perform and what result did you get? 



 

By the way, if you get inf, you might experiment to see what happens if you try to 

compute with the special “value” inf. If you want to do that, you can grab it using _. 

What you can't do is just type inf.  But you can produce the value any time you want 

by typing float(“inf”).  (Go ahead, try things until you find one.)  

 

12. The following string corresponds to the hex description of the ASCII encoding of an 

English sentence.  What is the sentence?  (You can find the ASCII equivalence table 

here: http://www.asciitable.com/ or in my Encodings slides.)               

 
4465657020426C756520776F6E20696E20313939372E 

 

13. Take a look at the Unicode character code chart shown here: 

 

      http://www.unicode.org/charts/  

 

Pick at least two alphabets you’ve never heard of.  Look to see how they are 

represented.  Show at least two symbols from each (it’s fine to draw them as best you 

can) and indicate their Unicode index number. 

 

14. Describe Texas burnt orange using the hex codes for RGB.  There are various applets 

that you can use to figure this out.  Which ones work for you may depend on the 

security settings on your computer.  Here are some you can try.  (You may have to 

click to allow Java to run.) 

 

http://lectureonline.cl.msu.edu/~mmp/applist/RGBColor/c.htm 

http://www.cbu.edu/~jvarrian/applets/color1/colors_g.htm   

http://easycalculation.com/color-coder.php  

 

15. This is a binary clock:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Watch this video to see how it works: 

 

 http://www.youtube.com/watch?v=1fFiVjNUjB8.  What time is it displaying? 

http://www.asciitable.com/
http://www.unicode.org/charts/
http://lectureonline.cl.msu.edu/~mmp/applist/RGBColor/c.htm
http://www.cbu.edu/~jvarrian/applets/color1/colors_g.htm
http://easycalculation.com/color-coder.php
http://www.youtube.com/watch?v=1fFiVjNUjB8

