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Logistics

“Raise hand” will hopefully not crash my connection now.

I So you can try that, as well as chat, for questions.

We’re going to try using Zoom breakout rooms for problems, later
today.

I Inside, you can “Ask for help” and it pops up a notification for me.
I You stop being able to see my screen, so be sure to record the exercises

before joining the breakout room.
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Bottleneck Shortest Paths

Mentioned before spring break: network of roads, each has bridges of
various heights on it. How high of a truck can go from s to t, or
anywhere else?

I Max bandwidth path from s to t
I We’ll use it for network flows

On undirected graph:

is maximum spanning tree

On directed graph: Dijkstra/Prim variant solves in O(E + V logV ).
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Dijkstra’s Algorithm

1: function Dijkstra(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(0, s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop min()
6: if u ∈ pred then
7: continue
8: pred[u] ← parent
9: dist[u] ← d

10: for u → v ∈ E do
11: q.push( (dist[u] + w(u → v), v , u) )

12: return dist, pred
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Dijkstra’s Prim’s Algorithm

1: function Prim(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(−∞, s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop min()
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Shortest s − t path with Dijkstra

This is the wrong
direction. Why
waste our timing
exploring it?
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A∗ search

Dijkstra explores outward from s.

I Can stop if it reaches t, but doesn’t bias search toward t.

Consider Dijkstra from Austin to San Francisco:

I Austin→ New York = 1740 miles.
I Austin→ San Francisco = 1760 miles.

Dijkstra will visit NYC before SF.

I Once it visits SF, it stops searching
I So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
I ...with a portal or something?
I Fact: you cannot get from NYC to SF in 20 miles.

A∗: uses a heuristic h(u), estimating d(u, t).

I Dijkstra: visit node of smallest dist[u]
I A∗: visit node of smallest dist[u] + h(u)

Example: h(NYC) is Euclidean distance from NYC to SF.

I Any path through NYC will take at least 3700 miles.
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Dijkstra’s Algorithm

1: function Dijkstra(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(0 , s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop min()
6: if d ≥ dist[u] then
7: continue
8: pred[u] ← parent
9: dist[u] ← d

10: for u → v ∈ E do
11: q.push( (dist[u] + w(u → v), v , u) )

12: return dist, pred
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Dijkstra’s A* Search Algorithm

1: function A*(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(0 + h(s), s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop min()
6: if d−h(u) ≥ dist[u] then
7: continue
8: pred[u] ← parent
9: dist[u] ← d - h(u)

10: for u → v ∈ E do
11: q.push( (dist[u] + w(u → v)+ h(v), v , u) )

12: return dist, pred
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Heuristics/potential functions
A∗: uses a heuristic h(u), estimating d(u, t).

I A∗: visit node of smallest dist[u] + h(u)
I Paths equivalent to Dijkstra on a reweighted graph:

w ′(u → v) = w(u → v)− h(u) + h(v).

[h(u) is height of a hill: easy to go down, hard to go up.]
I Every s  t path P on w ′ has length∑

e∈P

w ′(e) = h(t)− h(s) +
∑
e∈P

w(e)

I So which path is shortest is same under w or w ′.

Heuristics:

I Heuristic “admissible:” h(u) ≤ d(u, t)

F Admissible =⇒ first visit to t gives optimal path, so correct.

I Heuristic “consistent:” h(t) = 0 and h(u) ≤ w(u, v) + h(v).

F Equivalent: h(t) = 0 and w ′(u, v) ≥ 0 for all u, v .
F w ′ ≥ 0 =⇒ Dijkstra is fast/correct (depending on implementation).
F And consistent =⇒ admissible.
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Shortest s − t path with Dijkstra

Eric Price (UT Austin) Dijkstra Variants: A* and Potentials
CS 331, Spring 2020 Coronavirus Edition 13

/ 16



Shortest s − t path with Dijkstra

Eric Price (UT Austin) Dijkstra Variants: A* and Potentials
CS 331, Spring 2020 Coronavirus Edition 13

/ 16



Shortest s − t path with Dijkstra

Eric Price (UT Austin) Dijkstra Variants: A* and Potentials
CS 331, Spring 2020 Coronavirus Edition 13

/ 16



Shortest s − t path with Dijkstra

Eric Price (UT Austin) Dijkstra Variants: A* and Potentials
CS 331, Spring 2020 Coronavirus Edition 13

/ 16



Summary of Dijkstra variants

Bottleneck shortest paths

I How do they relate to MSTs?

Dijkstra with potentials:

w ′(u → v) = w(u → v)− h(u) + h(v).

I Can adjust the graph to have nonnegative weights
I Can adjust the graph to bias toward goal t (A∗ search).
I Admissible =⇒ correct
I Consistent =⇒ correct and O(E + V logV )
I Can be faster in many cases.
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Talk Outline

1 Bottleneck Shortest Paths

2 A* search

3 Problems
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Shortest Path Problems

http://jeffe.cs.illinois.edu/teaching/algorithms/book/

08-sssp.pdf

Problem 2: Dijkstra with k negative edges.

Problem 3: vertices, not edges, have weight.

Problem 5: edge reinsertion

Problem 4: Replacement paths on directed graphs

Problem 12: Smallest shortest path

Problem 16, 17: Remember reductions?

Problem 1 of https://www.cs.utexas.edu/~ecprice/courses/
331h/psets/331h-ps6.pdf
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