Problem Set 11

CS 331

Due Friday, May 6

1. Show NP-completeness for each of the following problems. Both are simple, direct reductions from one of the problems we have shown to be NP-complete in class.
(a) Minimum set cover. You are given a set S, a collection of subsets $S_{1}, \ldots, S_{n} \subseteq S$, and an integer k. Do there exist a set of k subsets $T \subseteq[n]$ such that

$$
\bigcup_{i \in T} S_{i}=S ?
$$

Hint, encoded as ROT-13: iregrk pbire.
(b) Subgraph Isomorphism. You are given two graphs, G and H. Does $G=\left(V_{G}, E_{G}\right)$ contain a subgraph isomorphic to $H=$ $\left(V_{H}, E_{H}\right)$? That is, is there an injection $f: V_{H} \rightarrow V_{G}$ such that for every $u, v \in V_{H},(u, v) \in E_{H}$ if, and only if, $(f(u), f(v)) \in E_{G}$? Hint, encoded as ROT-13: znk pyvdhr be vaqrcraqrag frg.
2. The problem AllOrNothingSat asks, given a 3CNF boolean formula, whether there is an assignment to the variables such that each clause either has three True literals or has three False literals.

Describe a polynomial time algorithm for AllOrNothingSat.

