Problem Set 7

$\mathrm{CS}~331$

Due Wednesday, March 30

- 1. Recall that BFS computes shortest paths in O(E) time on an unweighted graph, while Dijkstra takes $O(E+V \log V)$ for weighted graphs with nonnegative edge weights. In this problem, we consider how to speed this up for "small" edge weights, where $1 \le w(u \to v) < C$ for some integer C.
 - (a) First, suppose all edge weights $w(u \to v)$ are in $\{1, 2\}$. Give an O(E) algorithm to find the shortest path distances from a source s.
 - (b) Dijkstra's algorithm normally visits vertices in order of increasing c(u), and relaxes every edge out of the vertices it visits. Consider a variant of Dijkstra's algorithm that instead visits vertices in order of increasing |c(u)|, with ties broken arbitrarily.

Suppose that $1 \leq w(u \to v)$ for all edges $u \to v$. Show that, on any shortest path $s = u_1 \to u_2 \to u_3 \to \cdots \to u_k$, this "rounded" variant of Dijkstra will visit u_{k-1} before u_k .

Conclude that, by our lemma in class (namely: after the edges of a shortest $s \rightsquigarrow t$ path have been relaxed in order, $c(t) = c^*(t)$), this "rounded" variant of Dijkstra will correctly compute shortest path distances on graphs with $w(u \rightarrow v) \ge 1$.

- (c) Now suppose that 1 ≤ w(u → v) < 2 for all edges u → v. Give an O(E) algorithm to find the shortest path distances from s.
 Hint: Run the "rounded" variant of Dijkstra, but rather than store vertices in a heap, keep a separate queue for each value of Lc(u).
- (d) Extend the above algorithm to O(EC) time when $1 \le w(u \rightarrow v) < C$.