# Problem Set 7 

CS 331

## Due Wednesday, March 30

1. Recall that BFS computes shortest paths in $O(E)$ time on an unweighted graph, while Dijkstra takes $O(E+V \log V)$ for weighted graphs with nonnegative edge weights. In this problem, we consider how to speed this up for "small" edge weights, where $1 \leq w(u \rightarrow v)<C$ for some integer $C$.
(a) First, suppose all edge weights $w(u \rightarrow v)$ are in $\{1,2\}$. Give an $O(E)$ algorithm to find the shortest path distances from a source $s$.
(b) Dijkstra's algorithm normally visits vertices in order of increasing $c(u)$, and relaxes every edge out of the vertices it visits. Consider a variant of Dijkstra's algorithm that instead visits vertices in order of increasing $\lfloor c(u)\rfloor$, with ties broken arbitrarily.
Suppose that $1 \leq w(u \rightarrow v)$ for all edges $u \rightarrow v$. Show that, on any shortest path $s=u_{1} \rightarrow u_{2} \rightarrow u_{3} \rightarrow \cdots \rightarrow u_{k}$, this "rounded" variant of Dijkstra will visit $u_{k-1}$ before $u_{k}$.
Conclude that, by our lemma in class (namely: after the edges of a shortest $s \rightsquigarrow t$ path have been relaxed in order, $\left.c(t)=c^{*}(t)\right)$, this "rounded" variant of Dijkstra will correctly compute shortest path distances on graphs with $w(u \rightarrow v) \geq 1$.
(c) Now suppose that $1 \leq w(u \rightarrow v)<2$ for all edges $u \rightarrow v$. Give an $O(E)$ algorithm to find the shortest path distances from $s$.
Hint: Run the "rounded" variant of Dijkstra, but rather than store vertices in a heap, keep a separate queue for each value of $\lfloor c(u)\rfloor$.
(d) Extend the above algorithm to $O(E C)$ time when $1 \leq w(u \rightarrow$ $v)<C$.
