
Problem Set 7

CS 331

Due Wednesday, March 30

1. Recall that BFS computes shortest paths in O(E) time on an un-
weighted graph, while Dijkstra takesO(E+V log V ) for weighted graphs
with nonnegative edge weights. In this problem, we consider how to
speed this up for “small” edge weights, where 1 ≤ w(u → v) < C for
some integer C.

(a) First, suppose all edge weights w(u → v) are in {1, 2}. Give an
O(E) algorithm to find the shortest path distances from a source
s.

(b) Dijkstra’s algorithm normally visits vertices in order of increasing
c(u), and relaxes every edge out of the vertices it visits. Consider a
variant of Dijkstra’s algorithm that instead visits vertices in order
of increasing ⌊c(u)⌋, with ties broken arbitrarily.

Suppose that 1 ≤ w(u → v) for all edges u → v. Show that, on
any shortest path s = u1 → u2 → u3 → · · · → uk, this “rounded”
variant of Dijkstra will visit uk−1 before uk.

Conclude that, by our lemma in class (namely: after the edges of
a shortest s ⇝ t path have been relaxed in order, c(t) = c∗(t)),
this “rounded” variant of Dijkstra will correctly compute shortest
path distances on graphs with w(u → v) ≥ 1.

(c) Now suppose that 1 ≤ w(u → v) < 2 for all edges u → v. Give
an O(E) algorithm to find the shortest path distances from s.

Hint: Run the “rounded” variant of Dijkstra, but rather than
store vertices in a heap, keep a separate queue for each value of
⌊c(u)⌋.

(d) Extend the above algorithm to O(EC) time when 1 ≤ w(u →
v) < C.

1


