
CS 388R: Randomized Algorithms Fall 2015

Lecture 6 — Sep 16, 2015

Prof. Eric Price Scribe: Rishab Goyal

1 Overview

In the last lecture we introduced subgaussian, subexponential and subgamma distributions, and
also discussed few equivalent sufficient conditions for each of them.

In this lecture we first recall those definitions. Then we discuss Johnson-Lindenstrauss (JL) lemma
and provide a proof for the same. After that we revisit the problem of coupon collector, and finally
we provide a Bernstein-type inequality for a bounded range random variable.

2 Preliminaries

Definition 1. (Subexponential random variable) A random variable X is said to be subexponential
with parameter σ iff X − E[X] satisfies any of the following three properties:

P [|X| ≥ t] ≤ 2e−t/(2σ) ∀ t > 0, or

E
[
eλX

]
≤ eλ2σ2/2 ∀ |λ| < 1/σ, or

E
[
|X|k

]1/k
≤ σ · k.

If properties (1) and (3) hold for X, then they also hold for X − E[X], so X is subexponential.

Definition 2. (Subgamma random variable) A random variable X is said to be subgamma with
parameters σ and B if X − E[X] satisfies the following:

E
[
eλX

]
≤ eλ2σ2/2 ∀ |λ| < B.

This additionally implies that:

P [|X| ≥ t] ≤ 2 ·max
(
e−t

2/(2σ2), e−Bt/2
)
.

Lemma 3. If X1, X2, . . . , Xn are independently distributed subgamma variables with parameters

(σi, Bi) for i ∈ [n], then X =
∑n

i=1Xi is also subgamma with parameters (
√∑n

i=1 σ
2
i ,mini∈[n]Bi).

Lemma 4. If X1, X2, . . . , Xn are independent standard normal variables (∼ N(0, 1)), then X2 is
subgamma with parameters (

√
n, 1), where X2 =

∑n
i=1X

2
i .
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Proof. Since Xi ∼ N(0, 1), we know that P
[
|Xi| ≥ t

]
≤ e−t

2/2 (for all t > 0). This implies

that P
[
X2
i ≥ t

]
≤ e−t/2 (for all t > 0). Therefore, each X2

i is a subexponential with parameter
1 (= O(1)), and X2

i is subgamma with parameters (1, 1) (as per Defintion 2).

Now, using Lemma 3, we can conclude that X2 is subgamma with parameters (
√
n, 1).

3 Johnson-Lindenstrauss Lemma

During lecture, the following question was posed which captures the essence of JL lemma.

Question. Let X1, X2, . . . , Xn ∈ Rd. Find Y1, Y2, . . . , Yn ∈ Rm such that for all i, j:

(1− ε)‖xi − xj‖2 ≤ ‖yi − yj‖2 ≤ (1 + ε)‖xi − xj‖2.

How large should m be?

For completeness, we state the formal statement of the JL lemma:

Theorem 5. (JL Lemma) If X ⊆ Rd such that |X| = n, then for every 0 < ε < 1/2, there exists
a linear map A : Rd → Rm such that for all xi, xj ∈ X:

(1− ε)‖xi − xj‖2 ≤ ‖Axi −Axj‖2 ≤ (1 + ε)‖xi − xj‖2

and m = Θ

(
log n

ε2

)
.

Proof. Consider the following linear map A such that Ai,j ∼ N(0, 1/m).

Let x ∈ Rd and y = Ax. Observe that (Ax)i =
∑d

j=1Ai,jx
(j). This is a sum of independent

gaussians, and since the sum of gaussians is itself a gaussian with variance equal to the sum of

individual variances, we have that (Ax)i ∼ N
(

0,
∑d

j=1(x
(j))2

)
. Therefore, (Ax)i ∼ N(0, ‖x‖2/m).

Next, observe that ‖Ax‖2 =
∑m

i=1(Ax)2i . Therefore, E
[
‖Ax‖2

]
=
∑m

i=1 E
[
(Ax)2i

]
, using linearity

of expectation. Since, (Ax)i ∼ N(0, ‖x‖2/m), this implies that E
[
(Ax)2i

]
= V ar((Ax)i) = ‖x‖2/m.

So, E
[
‖Ax‖2

]
= ‖x‖2.

Let zi =

√
m

‖x‖
· (Ax)i for i ∈ [m], and ‖z‖2 =

∑m
i=1 z

2
i =

m

‖x‖2
· ‖Ax‖2. It is straightforward to

verify that zi ∼ N(0, 1), and zi’s are all independent. Therefore, using Lemma 4, we can claim that
‖z‖2 is subgamma with parameters (

√
m, 1). Since ‖z‖2 is subgamma, we could write the following

(as implied by Definition 2):

P
[∣∣‖z‖2 −m∣∣ ≥ t] ≤ 2 ·max(e−t

2/(2m), e−t/2).

Substituting t with 2εm, we get

P
[
‖z‖2 ≥ (1 + 2ε)m ∨ ‖z‖2 ≤ (1− 2ε)m

]
≤ 2 ·max(e−2ε

2m, e−εm).
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Since 0 < ε < 1/2, we can write that max(e−2ε
2m, e−εm) = e−2ε

2m. Also, (1 + 2ε)1/2 ≥ (1 + ε) and
(1− 2ε)1/2 ≤ (1− ε), so we could rewrite the above inequality as:

P
[
‖z‖ ≥ (1 + ε)

√
m ∨ ‖z‖ ≤ (1− ε)

√
m
]
≤ 2e−2ε

2m.

Substituting ‖z‖ with

√
m

‖x‖
· ‖Ax‖, we get

P
[
‖Ax‖ ≥ (1 + ε)‖x‖ ∨ ‖Ax‖ ≤ (1− ε)‖x‖

]
≤ 2e−2ε

2m.

Note that above inequality holds for all x ∈ Rd, therefore substituting x with xi− xj , and Ax with
A(xi − xj) = yi − yj , we get for all xi, xj

P
[
‖yi − yj‖ /∈

(
(1− ε)‖xi − xj‖, (1 + ε)‖xi − xj‖

)]
≤ 2e−2ε

2m.

Therefore, using union bound, we can say that

P
[
A preserves distance between all pairs

]
≥ 1− n2e−2ε2m.

So, for m = c
log n

ε2
,

P
[
A preserves distance between all pairs

]
≥ 1− 1

n2c−2
≥ 0.

This concludes the proof as we have proved that there exists a linear map A which reduces the
dimensionality of data and preserves its structure (distances) with high probability.

4 Coupon Collector Problem

In the n coupon collector problem, Ti denoted the number of draws to get the ith new coupon, and
T =

∑n
i=1 Ti denoted the total number of draws made to draw each coupon at least once.

Recall that Ti’s are all independent of each other, and Ti ∼ Geom
(n+ 1− i

n

)
, E[T ] = nHn, and

V ar(T ) = O(n2). Using Markov’s inequality for concentration, we get

P
[
T ≥ nHn

δ

]
≤ δ.

Similarly, Chebyshev gives

P
[
T ≥ nHn +

O(n)√
δ

]
≤ δ.

Now, we will try to get similar bounds using results from subgamma distributions. First, note that

P[Ti ≥ t] ≤
(

1− n+ 1− i
n

)t
≤ e−(

n+1−i
n

)t.
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Therefore, Ti is subexponential with parameter σi =
n

n+ 1− i
. Hence, T is subgamma with mean

µ = nHn and parameters (n

√∑n
i=1

( 1

n+ 1− i
)2
,mini σ

−1
i ) = (O(n),

1

n
). Since T is subgamma,

we could write the following:

P[T ≥ µ+ t] ≤ 2 ·max
(
e−t

2/(2n2), e−t/(2n)
)
≤ 2e−t/(2n).

Substituting t with O(n log(1/δ)), we get

P
[
T ≥ nHn +O(n log(1/δ))

]
≤ δ.

Note that all the above analysis was done using different concentration inequalities. Below we
discuss how to obtain the same bound as obtained with subgamma analysis of T using only union
bound.

Let Fi,T denote the event that coupon i is not found after T steps. Therefore, we can say that

P[Fi,T ] =
(

1− 1

n

)T
≤ e−T/n.

Substituting T with n log(n/δ), we get (for all i ∈ [n])

P[Fi,n log(n/δ)] ≤
δ

n
.

So, using union bound, we can conclude that

P[Any coupon not found in n log(n/δ) steps] = P
[ ∨
i∈[n]

Fi,n log(n/δ)

]
≤ δ.

The above analysis gives an upper bound on the probability that all coupons are not found after
T steps. It should be interesting to find whether this bound is tight, or if we could do better. For
that purpose, we start with lower bounding the probability of event Fi,T as

P[Fi,T ] =
(

1− 1

n

)T
≥ e−

T
n
(1−O( 1

n
)) ≥ δ

n

(
1−O

( δ
n

))
,

where we substituted T with n log(n/δ). If we assume that the events ¬Fi,T (coupon i is found
after T steps) are independent, then using the above inequality we could write the following

P[Any coupon not found in n log(n/δ) steps] = 1− P[All coupons found after n log(n/δ) steps]

= 1− P
[ ∧
i∈[n]

¬Fi,n log(n/δ)

]
≥ 1−

(
1− δ

n

(
1−O

( δ
n

)))n
≈ δ

This would suggest that our bound is tight. But it assumes independence of events ¬Fi,T which is
incorrect, so we could only consider the above lower bound as a mild indicator of tightness. However,
despite lack of independence, we can expect much better concentration because intuitively if some
subset I ⊂ [n] is drawn within first T draws, then the event that some coupon j /∈ I is also drawn in
first T draws is less likely. Looking ahead, the key fact will be that ¬Fi,T are negatively correlated.
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Next class. First, observe that E[Number of coupons not found after n steps] = n
(

1 − 1

n

)n
≈

n/e. In the next lecture, we will try to bound the probability that more than n/2 coupons not
found after n draws (P[Number of coupons not found after n steps ≥ n/2]).

5 Bernstein-Type Inequality

Recall that while discussing Chernoff bound, we observed that its main limitation is that it does
not depend on the variance of each individual Xi. In the same vein, we try to improve the con-
centration bound for bounded range random variables. Below we prove that each bounded range
variable is also subgamma. Since, sum of subgamma variables is also subgamma (from Lemma 3),
therefore it has interesting concentration properties. Formally, we state the theorem below.

Theorem 6. If X is a random variable with range [0, 1] and variance s2, then it is also subgamma
with parameters (

√
2s, 1/2).

Proof. Let Y = X − E[X]. This implies that E[Y 2] = V ar(X) = s2 and |Y | ≤ 1. Since |Y | ≤ 1,
we can also conclude that E

[
|Y |k

]
≤ s2 for all k > 2. Next we will try to bound the moment

generating function of Y .

E[eλY ] = E

[ ∞∑
k=0

λkY k

k!

]

≤ 1 +
∞∑
k=2

λk

k!
s2

≤ 1 +

( ∞∑
k=0

λk

)
λ2s2

2

Note that the geometric series on the right converges only if λ < 1. So, for λ < 1, we could write

E[eλY ] ≤ 1 +
λ2s2

2(1− λ)
≤ e(λ2s2)/(2(1−λ)).

Now if we choose λ such that
λ2

(1− λ)
≤ 2λ2, then the exponent in the previous bound would

agree with that of a subgamma variable. Concretely, if we keep λ ≤ 1/2, then we could write the
following

E[eλY ] ≤ e(2λ2s2)/2 = eλ
2(
√
2s)2/2.

Therefore, X is subgamma with parameters (
√

2s, 1/2). This concludes the proof of Theorem 6.

Biased coin toss. Let X1, . . . , Xn be n i.i.d. Bernoulli random variables (Xi ∼ Ber(p)), and
X =

∑n
i=1Xi (∼ Bin(n, p)). Applying Theorem 6, we get that each Xi is subgamma with
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parameters (≤
√

2p, 1/2). Applying Lemma 3, we get that X is also subgamma with parameters
(
√

2pn, 1/2). Therefore,

P[X ≥ np+ t] ≤ 2 ·max(e−t
2/(4np), e−t/4).

If t ≤ np, then the controlling term would be e−t
2/(4np), else it would be e−t/4. Therefore, P[X ≥

2np] ≤ e−np/4 and P[X ≥ np+ t] ≤ e−t2/(4np) for t ∈ [0, np].
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