Lecture 1: Introduction to randomized algorithms; min-cut
Prof. Eric Price
Scribe: Tongzheng Ren, Garrett Bingham
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Randomized Algorithms

Examples of Randomized Algorithms:

- Primality Testing
- Quick Sort
- Factoring
- Hash tables

Benefits of randomized algorithms:

- Speed
- Simplicity
- Some things only possible with randomization

Keep in mind that randomness is over the choices of algorithms, not the choices of input.

Key techniques of randomized algorithms:

- Avoiding adversarial inputs
- For example, how should one choose the pivot in quicksort? One way is to always choose the first element, but in the adversarial case, this results in $O\left(n^{2}\right)$ time.
- In the case of hashing, we might use some modulo function. While it may work well in some cases, for structured input there will likely be many collisions.
- Fingerprinting: compare short, random description of items
- Random sampling
- Load balancing
- Symmetry breaking
- Probabilistic existence proofs

Types of randomized algorithms:

- Las Vegas: always correct, but the running time is random
- Monte Carlo: running time is fixed, but the algorithm is only correct with high probability

Las Vegas style algorithms can be converted to Monte Carlo algorithms by designating a fixed stopping time T. Monte Carlo algorithms cannot in general be made into Las Vegas algorithms.

2 Quick Sort

```
Algorithm 1 QuickSort( \(X\) )
    Input: List \(X\)
    Choose random pivot \(t \in\) range (len \((X)\) )
    return QuickSort \(\left(\left[X_{i} \mid X_{i}<X_{t}\right]\right)+\left[X_{t}\right]+\) QuickSort \(\left(\left[X_{i} \mid X_{i}>X_{t}\right]\right)\)
```


Expected running time

Define $Z_{i j}:=$ number of times the i th smallest element and j th smallest element are compared \in $\{0,1\}$.

$$
\text { Time }=O(\text { total comparisons })=O\left(\sum_{i<j} Z_{i, j}\right)
$$

Notice that:

$$
\mathbb{P}\left[Z_{i, j}=1\right]=\frac{2}{j-i+1}
$$

This is because the probability the i th and j th elements are compared is equal to the probability that either the i th or j th element is chosen as a pivot before any of the $i+1, \ldots, j-1$ elements are.

Next, we have

$$
\mathbb{E}[\text { Time }] \lesssim \mathbb{E}\left[\sum_{i<j} Z_{i, j}\right]=\sum_{i<j} \frac{2}{j-i+1}=2 \sum_{i<j} \frac{1}{j-i+1}=2 \sum_{i} \frac{1}{n+1-i} \leq 2 n \sum_{i=2}^{n} \frac{1}{i} \leq 2 n \log n
$$

where $f \lesssim g$ means $\exists C$ constant that $f \leq C g$. Notice that $\sum_{i=2}^{n} \frac{1}{i}$ is the harmonic series.

3 Karger's min-cut algorithm [Kar93]

Min-cut definition: Given some graph $G=(V, E)$ with n vertices and m edges, a global min-cut is a set $S \subset V: 1 \leq|S| \leq n-1$ that minimizes the number of edges going from S to \bar{S} (the vertices not in S). We define the cut-value of S as the number of edges from S to \bar{S}, denoted $\mathbb{E}(S, \bar{S})$

Possible approaches include some traditional deterministic algorithms like the Ford-Fulkerson method with the max-flow min-cut theorem, etc. We will discuss faster algorithms.

```
Algorithm 2 Karger's min-cut algorithm
    Input: Graph \(G=(V, E)\) with \(n\) vertices and \(m\) edges
    while \(n>2\) do
        Contract a random edge \(e(u, v)\) : merge the vertices and remove self-loops
    end while
    return Preimage of the two remaining vertices
```

Here we allow for multiplicity (there can be multiple edges between one pair of vertices). See here for a single run of Karger's min-cut algorithm.
Lemma 1. Algorithm 2 succeeds with probability larger than $\frac{2}{n^{2}}$.
Proof. Let $d(u)$ denote the degree of vertex u.

$$
\mathbb{P}[\text { fail in the first step }]=\frac{\mathbb{E}(S, \bar{S})}{n} \leq \frac{\min d(u)}{m} \leq \frac{\frac{1}{n} \sum d(u)}{m}=\frac{2}{n}
$$

Similarly,

$$
\mathbb{P}[\text { fail in the } i \text {-th step } \mid \text { succeed in the } i-1 \text {-th step }] \leq \frac{2}{n-i}
$$

Thus:

$$
\mathbb{P}[\text { succeed in the all of steps }] \geq \prod_{i=1}^{n-2}\left(1-\frac{2}{n+1-i}\right)=\frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdots \frac{2}{4} \cdot \frac{1}{3}=\frac{2}{n(n-1)} \geq \frac{2}{n^{2}}
$$

When n is large, this guarantee is poor. However, if we repeat n^{2} times and return the best result, then the failure probability becomes

$$
\left(1-\frac{2}{n^{2}}\right)^{n^{2}} \approx \frac{1}{e^{2}}>\frac{2}{3}
$$

The time complexity is $n^{2} m \alpha(n)=n^{2}\left(m \log _{m / n} n\right)$ by Union-Find/Disjoint-set data structure whose time complexity is $O(\alpha(n))$.

4 Karger-Stein faster min-cut algorithm [KS96]

Intuition Most of the work is done at the beginning when there is a low chance of failure.
The running time is:

$$
T(n)=2\left(T\left(\frac{n}{\sqrt{2}}\right)+O\left(n^{2}\right)\right)=O\left(n^{2} \log n\right)
$$

```
Algorithm 3 Karger-Stein min-cut algorithm
    Input: Graph \(G=(V, E)\) with \(n\) vertices and \(m\) edges
    for \(\mathrm{i}=1,2\) do
        Run Algorithm 2 for \(\frac{n}{\sqrt{2}}\) steps
        Recursively run Algorithm 3
    end for
    return Better of the two results
```

since the depth of the search is $O(\log n)$ and each step takes $O\left(n^{2}\right)$ time.
Let $\mathbb{P}(n)$ denote the success probability, then

$$
\begin{aligned}
\mathbb{P}(n) & =1-\left(1-{\text { chance one branch succeeds })^{2}} \quad \text { i.e. } \mathbb{P}\left(\frac{n}{\sqrt{2}}\right)\right. \text { by definition } \\
& =1-\left(1-\frac{1}{2} \mathbb{P}\left(\frac{n}{\sqrt{2}}\right)\right)^{2} \\
& =\mathbb{P}\left(\frac{n}{\sqrt{2}}\right)-\frac{1}{4} \mathbb{P}\left(\frac{n}{\sqrt{2}}\right)^{2}
\end{aligned}
$$

We can find that $\mathbb{P}(n)=\Theta\left(\frac{1}{\log n}\right)$. To show this, let $x=\log _{\sqrt{2}} n$ and $f(x)=\mathbb{P}\left(2^{\frac{x}{2}}\right)$. Then

$$
f(x)=f(x-1)-\frac{1}{4} f(x-1)^{2}
$$

We can find the solution $f(x)=\frac{4}{x}$, thus $\mathbb{P}(n)=\Theta\left(\frac{1}{\log n}\right)$. Also see [KS96] for another approach.
If we repeat Algorithm $3 O(\log n)$ times, we get $O\left(n^{2} \log ^{2} n\right)$ time with constant probability of success. To see this, we consider the success probability:

$$
1-(1-\mathbb{P}(n))^{\log n}=\Theta(1)+O\left(\frac{1}{\log n}\right)
$$

is some constant. This method outperforms the $O\left(m n^{2} \log n\right)$ time complexity approach mentioned earlier, as in practice m can be on the order of $O\left(n^{2}\right)$.

References

[Kar93] David R Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm. In SODA, volume 93, pages 21-30, 1993.
[KS96] David R Karger and Clifford Stein. A new approach to the minimum cut problem. Journal of the ACM (JACM), 43(4):601-640, 1996.

