
CS 388R: Randomized Algorithms, Fall 2019 August 29th, 2019

Lecture 1: Introduction to randomized algorithms; min-cut

Prof. Eric Price Scribe: Tongzheng Ren, Garrett Bingham

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Randomized Algorithms

Examples of Randomized Algorithms:

• Primality Testing

• Quick Sort

• Factoring

• Hash tables

Benefits of randomized algorithms:

• Speed

• Simplicity

• Some things only possible with randomization

Keep in mind that randomness is over the choices of algorithms, not the choices of input.

Key techniques of randomized algorithms:

• Avoiding adversarial inputs

– For example, how should one choose the pivot in quicksort? One way is to always choose
the first element, but in the adversarial case, this results in O(n2) time.

– In the case of hashing, we might use some modulo function. While it may work well in
some cases, for structured input there will likely be many collisions.

• Fingerprinting: compare short, random description of items

• Random sampling

• Load balancing

• Symmetry breaking

• Probabilistic existence proofs

1

Types of randomized algorithms:

• Las Vegas: always correct, but the running time is random

• Monte Carlo: running time is fixed, but the algorithm is only correct with high probability

Las Vegas style algorithms can be converted to Monte Carlo algorithms by designating a fixed
stopping time T . Monte Carlo algorithms cannot in general be made into Las Vegas algorithms.

2 Quick Sort

Algorithm 1 QuickSort(X)

Input: List X
Choose random pivot t ∈ range(len(X))

return QuickSort([Xi|Xi < Xt]) + [Xt] + QuickSort([Xi|Xi > Xt])

Expected running time

Define Zij := number of times the ith smallest element and jth smallest element are compared ∈
{0, 1}.

Time = O(total comparisons) = O

∑
i<j

Zi,j

Notice that:

P[Zi,j = 1] =
2

j − i+ 1

This is because the probability the ith and jth elements are compared is equal to the probability
that either the ith or jth element is chosen as a pivot before any of the i + 1, . . . , j − 1 elements
are.

Next, we have

E[Time] > E

∑
i<j

Zi,j

 =
∑
i<j

2

j − i+ 1
= 2

∑
i<j

1

j − i+ 1
= 2

∑
i

1

n+ 1− i
≤ 2n

n∑
i=2

1

i
≤ 2n log n

where f > g means ∃C constant that f ≤ Cg. Notice that
∑n

i=2
1
i is the harmonic series.

3 Karger’s min-cut algorithm [Kar93]

Min-cut definition: Given some graph G = (V,E) with n vertices and m edges, a global min-cut
is a set S ⊂ V : 1 ≤ |S| ≤ n−1 that minimizes the number of edges going from S to S (the vertices
not in S). We define the cut-value of S as the number of edges from S to S, denoted E(S, S)

2

Possible approaches include some traditional deterministic algorithms like the Ford–Fulkerson
method with the max-flow min-cut theorem, etc. We will discuss faster algorithms.

Algorithm 2 Karger’s min-cut algorithm

Input: Graph G = (V,E) with n vertices and m edges
while n > 2 do

Contract a random edge e(u, v): merge the vertices and remove self-loops
end while
return Preimage of the two remaining vertices

Here we allow for multiplicity (there can be multiple edges between one pair of vertices). See here
for a single run of Karger’s min-cut algorithm.

Lemma 1. Algorithm 2 succeeds with probability larger than 2
n2 .

Proof. Let d(u) denote the degree of vertex u.

P[fail in the first step] =
E(S, S)

n
≤ min d(u)

m
≤

1
n

∑
d(u)

m
=

2

n

Similarly,

P[fail in the i-th step|succeed in the i− 1-th step] ≤ 2

n− i

Thus:

P[succeed in the all of steps] ≥
n−2∏
i=1

(
1− 2

n+ 1− i

)
=
n− 2

n
· n− 3

n− 1
· · · 2

4
· 1

3
=

2

n(n− 1)
≥ 2

n2

When n is large, this guarantee is poor. However, if we repeat n2 times and return the best result,
then the failure probability becomes (

1− 2

n2

)n2

≈ 1

e2
>

2

3

The time complexity is n2mα(n) = n2(m logm/n n) by Union-Find/Disjoint-set data structure
whose time complexity is O(α(n)).

4 Karger-Stein faster min-cut algorithm [KS96]

Intuition Most of the work is done at the beginning when there is a low chance of failure.

The running time is:

T (n) = 2

(
T

(
n√
2

)
+O

(
n2
))

= O(n2 log n)

3

https://en.wikipedia.org/wiki/Karger's_algorithm#/media/File:Single_run_of_Karger\OT1\textquoteright s_Mincut_algorithm.svg

Algorithm 3 Karger-Stein min-cut algorithm

Input: Graph G = (V,E) with n vertices and m edges
for i=1, 2 do

Run Algorithm 2 for n√
2

steps

Recursively run Algorithm 3
end for
return Better of the two results

since the depth of the search is O(log n) and each step takes O(n2) time.

Let P(n) denote the success probability, then

P(n) =1− (1− chance one branch succeeds)2 i.e. P
(
n√
2

)
by definition

=1−
(

1− 1

2
P
(
n√
2

))2

=P
(
n√
2

)
− 1

4
P
(
n√
2

)2

We can find that P(n) = Θ(1
logn). To show this, let x = log√2 n and f(x) = P(2

x
2). Then

f(x) = f(x− 1)− 1

4
f(x− 1)2

We can find the solution f(x) = 4
x , thus P(n) = Θ(1

logn). Also see [KS96] for another approach.

If we repeat Algorithm 3 O(log n) times, we get O(n2 log2 n) time with constant probability of
success. To see this, we consider the success probability:

1− (1− P(n))logn = Θ(1) +O

(
1

log n

)
is some constant. This method outperforms the O(mn2 log n) time complexity approach mentioned
earlier, as in practice m can be on the order of O(n2).

References

[Kar93] David R Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut
algorithm. In SODA, volume 93, pages 21–30, 1993.

[KS96] David R Karger and Clifford Stein. A new approach to the minimum cut problem. Journal
of the ACM (JACM), 43(4):601–640, 1996.

4

	Randomized Algorithms
	Quick Sort
	Karger's min-cut algorithm karger1993global
	Karger-Stein faster min-cut algorithm karger1996new

