Lecture 15: K-Hamiltonian Path; Sampling; median finding;

Prof. Eric Price
Scribe: Devvrit, Feichi Hu
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 K-Hamiltonian Path

Question: Randomized algorithm for finding a Hamiltonian path of length k in a given graph G.

1. Randomly k-color the graph.
2. Run deterministic algorithm to find the shortest path that visits k distinct colors. Using dynamic programming. [STATE $=$ where you end up \& Which colors have seen so far.] Can be done in $n^{2} \cdot 2^{k}$ time, for n steps and 2^{k} states.
3. Repeat $\log \left(\frac{1}{\delta}\right) e^{k}$ times.

Analysis: We only care about coloring true path/set of k nodes. The chance of having a correct Hamiltonian path of length k (correct coloring) is

$$
\frac{\# \text { of valid coloring of the set }}{\# \text { of total coloring }}=\frac{k!}{k^{k}} \approx \frac{1}{e^{k}}
$$

If we repeat $\log \left(\frac{1}{\delta}\right) e^{k}$ times, we'll get the correct result with high probability $(1-\delta)$ The total time taken is:

$$
O\left(n^{2} \cdot 2^{O(k)}\right)
$$

2 Sampling

Question: There is some $S \subseteq S P A C E(U)$. We have an oracle to query if $x \in S$ for $\forall x$. Goal: estimate $\operatorname{Vol}(S)$.

Simple algorithm: Pick $x_{1}, x_{2}, \cdots, x_{m} \in U$ uniformly, and query if $x_{i} \in S$. Let Z_{i} be the indicator event whether $x_{i} \in S$. Then,

$$
\frac{\# \text { lie in } \mathrm{S}}{\# \text { picked }} \approx \frac{\operatorname{Vol}(\mathrm{S})}{\operatorname{Vol}(\mathrm{U})}=p
$$

There are many factors that p can depend upon. For example, it'll depend on how large S and U are. One could imagine the above process of sampling and estimating in 2-dimension. In high dimensional space, it'll look as estimating the volume of some d-dimensional polytope.

Question How many samples are needed to learn p with estimator satisfying $\tilde{p} \in(1 \pm \epsilon) p$ with probability $1-\delta$. That is, an (ϵ, δ) approximation.

One could recollect that we're dealing with a similar event we have studied before - of tossing a coin and estimating probability of getting a head. Just for the sake of completeness, we'll derive the result here again. Let's assume we sample n points $x_{1}, x_{2}, \cdots, x_{n}$. Then, we know that the expected number of points lying in S will be $n p$. That is,

$$
\mathbb{E}\left[\frac{\sum Z_{i}}{n}\right]=p
$$

Then,

$$
\begin{aligned}
\mathbb{P}\left[\left|\frac{\sum_{i=1}^{n} Z_{i}}{n}-p\right|>p \epsilon\right] & =\mathbb{P}\left[\left|\sum_{i=1}^{n} Z_{i}-n p\right|>n p \epsilon\right] \\
& \leq 2 e^{-\frac{\epsilon^{2}}{3} n p}
\end{aligned}
$$

Thus, in order for this probability to be less than δ, we get $n \geq \frac{3}{p \epsilon^{2}} \log \left(\frac{2}{\delta}\right)$.
One might be tempted to sample \hat{n} elements such that $\sum_{i=1}^{\hat{n}} Z_{i}=\frac{3}{p \epsilon^{2}} \log \left(\frac{2}{\delta}\right)$, and estimate the probability p as $\tilde{p}=\frac{\sum_{i=1}^{\hat{n}} Z_{i}}{n}$. But we can't be sure that this is indeed a correct estimation. Consider the following picture.

Where $\hat{\mu}=\frac{3}{\epsilon^{2}} \log \left(\frac{2}{\delta}\right)$, and the red line represents the actual $\sum Z_{i}$ vs n curve. For $\sum Z_{i}=\hat{\mu}$, the actual n value is $n=\hat{\mu} / p$, whereas we get the number of samples where $\sum Z_{i}=\hat{\mu}$ as \hat{n}. Hence, we estimate

$$
\begin{aligned}
& \tilde{p}=\frac{\hat{\mu}}{\hat{n}} \\
\Longrightarrow & \hat{n}=\frac{\hat{\mu}}{\tilde{p}} \\
\Longrightarrow & \hat{n} \in \frac{\hat{\mu}}{p}\left[\frac{1}{1+\epsilon}, \frac{1}{1-\epsilon}\right]
\end{aligned}
$$

The previous result tell us about the accuracy of $\sum Z_{i}$, that is, the value of $\sum Z_{i}$ will be within $(1 \pm \epsilon)$ actual mean $\hat{\mu}$ (w.h.p.). What we moreover need is that the number of samples \hat{n} is within the range as specified above. We'll prove that it's indeed in this range with high probability.

Consider the number of samples $n^{\prime}=\frac{\hat{\mu}}{p(1-\epsilon)}$. For this, the actual mean is $\mu=\frac{\hat{\mu}}{(1-\epsilon)}$. We need to show that $\mathbb{P}\left[\sum_{i=1}^{n^{\prime}} Z_{i}<\hat{\mu}\right]<\delta$.

$$
\begin{aligned}
\mathbb{P}\left[\sum_{i=1}^{n^{\prime}} Z_{i}<\frac{\hat{\mu}}{1-\epsilon}(1-\epsilon)\right] & \leq e^{-\frac{\epsilon^{2}}{3} n^{\prime} p} \\
& =e^{-\frac{1}{(1-\epsilon)} \log \left(\frac{2}{\delta}\right)} \\
& \leq \delta
\end{aligned}
$$

Thus, with very high probability \hat{n} will be less than $n^{\prime}=\frac{\hat{\mu}}{p(1-\epsilon)}$. Similarly, we can prove for $\frac{\hat{\mu}}{p(1+\epsilon)}$ and hence with high probability $\hat{n} \in \frac{\hat{\mu}}{p}\left[\frac{1}{1+\epsilon}, \frac{1}{1-\epsilon}\right]$. Thus, we guarantee that sampling \hat{n} elements such that $\sum_{i=1}^{\hat{n}} Z_{i}=\frac{3}{\epsilon^{2}} \log \left(\frac{2}{\delta}\right)$ elements gives a probability estimation $\tilde{p}=\frac{\sum_{i=1}^{\hat{n}} Z_{i}}{\text { satisfying } \tilde{p} \in, ~}$ $p(1 \pm \epsilon)$ with high probability.

3 Median Finding

Question: Given x_{1}, \ldots, x_{n}, find the median x_{i}.

1. Sort \& output median $\rightarrow O(n \log n)$.
2. Quick select, modified quick sort $T(n)=O(n)+T\left(\frac{3 n}{4}\right) \rightarrow O(n)$ time and \# of comparisons in expectation. Still has $\left(\frac{1}{k}\right)^{k}$ chance of $\Theta(n k)$ work.
3. Fancy deterministic algorithm: split $\frac{n}{5}$ sets of 5 elements each, apply the same divide and conquer method. Take the median of medians.

$$
T(n)=O(n)+T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right) \rightarrow O(n)
$$

Randomized Algorithm in $O(n)$ w.h.p.:
Sample $y_{1}, y_{2}, \ldots, y_{s}$ from $X\left[y_{i}=x_{j}\right.$ for $j \in[n]$ uniformly at random $]$. Sort in $O(s \log s)$. We want to say

$$
y_{\frac{s}{2}-k} \leq \text { median } \mathrm{x} \leq y_{\frac{s}{2}+k}
$$

w.h.p for $k=\boldsymbol{O}(\sqrt{\boldsymbol{S} \log \boldsymbol{n}})$.
$\operatorname{Pr}\left[y_{\frac{s}{2}-k}>\right.$ median x$]=\operatorname{Pr}$ [at least $\frac{s}{2}+k$ elements choices of $\mathrm{y} \leq$ median x$]$
Using indicator $Z_{i}=\left(y_{i} \leq\right.$ median X$)$

$$
\begin{gathered}
\operatorname{Pr}\left[Z_{i}\right]=\frac{1}{2} \\
E\left[\sum Z_{i}\right]=\frac{s}{2}
\end{gathered}
$$

$$
\operatorname{Pr}\left[\sum Z_{i} \geq \frac{s}{2}+k\right] \leq e^{\frac{-2 k^{2}}{s}}
$$

Using the value $k=O(\sqrt{S \log n})$, we get the above probability being very low.

Question: How do we use this algorithm?

Option1: Use $y_{\frac{s}{2}}$ for quick select. Rank of $y_{\frac{s}{2}}$ is $\frac{n}{2} \pm O\left(n \sqrt{\frac{\log n}{2}}\right)$ w.h.p.

Option2: Scan through x, and put them in one of the following groups: $\left(x<y_{L}\right),\left(x \in\left[y_{L}, y_{H}\right]\right)$, or $\left.\left(x>y_{H}\right)\right)$ for $(L, H)=\left(\frac{s}{2}-k, \frac{s}{2}+k\right)$. Sort $x \in\left[y_{L}, y_{H}\right]$ and output the $\left(\frac{y}{2}-\left|\left[x<y_{L}\right]\right|\right)^{t h}$ element.

$$
\begin{aligned}
\# \text { of comparisons } & \leq O(s \log s) \leftarrow \text { sort y } \\
+ & \leq 2 n \leftarrow \text { partition } \\
+ & O(m \log m)
\end{aligned}
$$

where $m=\left|\left(x \mid x \in\left[y_{L}, y_{H}\right]\right)\right|$. Notice that the $2 n$ term is actually $1.5 n$ as for almost half of the elements, we only compare with y_{L}.
Consider the following equation, which holds true for any fraction $f \in[0,1]$

$$
y_{f \cdot s-k} \leq x_{(f \cdot n)} \leq y_{f \cdot s+k} \quad \forall \text { fractions } f
$$

What we want are the number of such x such that

$$
\left(x \left\lvert\, x \in\left[y_{\frac{s}{2}-k}, y_{\frac{s}{2}+k}\right]\right.\right)
$$

This only happens for $x_{f n}$ with $f \cdot s \geq \frac{1}{2} s-2 k$

$$
\Longrightarrow f=\frac{1}{2}-\frac{2 k}{s} \text { to } \frac{1}{2}+\frac{2 k}{s}
$$

Therefore, $(m \log (m)) \leq \frac{4 k}{s} \cdot n=O\left(4 n \frac{\sqrt{\log n}}{s}\right)=O\left(n \frac{\sqrt{\log n}}{s}\right)$

Pick $\log n \ll s \ll \frac{n}{\log n} . \Longrightarrow$ \# of comparisons is $1.5 n+O(n)$ $s=n^{\frac{2}{3}} \Longrightarrow 1.5 n+O\left(n^{\frac{2}{3} \log n}\right)$

