
CS 388R: Randomized Algorithms, Fall 2019 October 17th

Lecture 15: K-Hamiltonian Path; Sampling; median finding;

Prof. Eric Price Scribe: Devvrit, Feichi Hu

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 K-Hamiltonian Path

Question: Randomized algorithm for finding a Hamiltonian path of length k in a given graph G.

1. Randomly k-color the graph.

2. Run deterministic algorithm to find the shortest path that visits k distinct colors. Using
dynamic programming. [STATE = where you end up & Which colors have seen so far.] Can
be done in n2 · 2k time, for n steps and 2k states.

3. Repeat log(1δ )ek times.

Analysis: We only care about coloring true path/set of k nodes. The chance of having a correct
Hamiltonian path of length k(correct coloring) is

# of valid coloring of the set

# of total coloring
=
k!

kk
≈ 1

ek

If we repeat log(1δ )ek times, we’ll get the correct result with high probability (1− δ) The total time
taken is:

O(n2 · 2O(k))

2 Sampling

Question: There is some S ⊆ SPACE(U). We have an oracle to query if x ∈ S for ∀x. Goal:
estimate V ol(S).

Simple algorithm: Pick x1, x2, · · · , xm ∈ U uniformly, and query if xi ∈ S. Let Zi be the indicator
event whether xi ∈ S. Then,

# lie in S

# picked
≈ Vol(S)

Vol(U)
= p

There are many factors that p can depend upon. For example, it’ll depend on how large S and
U are. One could imagine the above process of sampling and estimating in 2-dimension. In high
dimensional space, it’ll look as estimating the volume of some d−dimensional polytope.
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Question How many samples are needed to learn p with estimator satisfying p̃ ∈ (1 ± ε)p with
probability 1− δ. That is, an (ε, δ) approximation.

One could recollect that we’re dealing with a similar event we have studied before - of tossing a
coin and estimating probability of getting a head. Just for the sake of completeness, we’ll derive
the result here again. Let’s assume we sample n points x1, x2, · · · , xn. Then, we know that the
expected number of points lying in S will be np. That is,

E[

∑
Zi
n

] = p

Then,

P
[∣∣∣∣∑n

i=1 Zi
n

− p
∣∣∣∣ > pε

]
= P[|

n∑
i=1

Zi − np| > npε]

≤ 2e−
ε2

3
np

Thus, in order for this probability to be less than δ, we get n ≥ 3
pε2

log(2δ ).

One might be tempted to sample n̂ elements such that
∑n̂

i=1 Zi = 3
pε2

log(2δ ), and estimate the

probability p as p̃ =
∑n̂
i=1 Zi
n̂ . But we can’t be sure that this is indeed a correct estimation.

Consider the following picture.

Where µ̂ = 3
ε2

log(2δ ), and the red line represents the actual
∑
Zi vs n curve. For

∑
Zi = µ̂, the

actual n value is n = µ̂/p, whereas we get the number of samples where
∑
Zi = µ̂ as n̂. Hence, we

estimate

p̃ =
µ̂

n̂

=⇒ n̂ =
µ̂

p̃

=⇒ n̂ ∈ µ̂
p

[
1

1 + ε
,

1

1− ε

]
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The previous result tell us about the accuracy of
∑
Zi, that is, the value of

∑
Zi will be within

(1± ε) actual mean µ̂ (w.h.p.). What we moreover need is that the number of samples n̂ is within
the range as specified above. We’ll prove that it’s indeed in this range with high probability.

Consider the number of samples n′ = µ̂
p(1−ε) . For this, the actual mean is µ = µ̂

(1−ε) . We need to

show that P
[∑n′

i=1 Zi < µ̂
]
< δ.

P

[
n′∑
i=1

Zi <
µ̂

1− ε
(1− ε)

]
≤ e−

ε2

3
n′p

= e
− 1

(1−ε) log(
2
δ
)

≤ δ

Thus, with very high probability n̂ will be less than n′ = µ̂
p(1−ε) . Similarly, we can prove for µ̂

p(1+ε)

and hence with high probability n̂ ∈ µ̂
p

[
1

1+ε ,
1

1−ε

]
. Thus, we guarantee that sampling n̂ elements

such that
∑n̂

i=1 Zi = 3
ε2

log(2δ ) elements gives a probability estimation p̃ =
∑n̂
i=1 Zi
n̂ satisfying p̃ ∈

p(1± ε) with high probability.

3 Median Finding

Question: Given x1, ..., xn, find the median xi.

1. Sort & output median → O(n log n).

2. Quick select, modified quick sort T (n) = O(n) + T (3n4 ) → O(n) time and # of comparisons
in expectation. Still has ( 1k )k chance of Θ(nk) work.

3. Fancy deterministic algorithm: split n
5 sets of 5 elements each, apply the same divide and

conquer method. Take the median of medians.

T (n) = O(n) + T (
n

5
) + T (

7n

10
)→ O(n)

Randomized Algorithm in O(n) w.h.p.:

Sample y1, y2, ..., ys from X[yi = xj for j ∈ [n] uniformly at random]. Sort in O(s log s). We want
to say

y s
2
−k ≤ median x ≤ y s

2
+k

w.h.p for k = O(
√
S logn).

Pr[y s
2
−k > median x]=Pr[at least s

2 + k elements choices of y ≤ median x]
Using indicator Zi = (yi ≤ median X)

Pr[Zi] =
1

2

E[
∑

Zi] =
s

2
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Pr[
∑

Zi ≥
s

2
+ k] ≤ e

−2k2

s

Using the value k = O(
√
S log n), we get the above probability being very low.

Question: How do we use this algorithm?

Option1: Use y s
2

for quick select. Rank of y s
2

is n
2 ±O(n

√
logn
2 ) w.h.p.

Option2: Scan through x, and put them in one of the following groups: (x < yL), (x ∈ [yL, yH ]),
or (x > yH)) for (L,H) = ( s2−k,

s
2 +k). Sort x ∈ [yL, yH ] and output the (y2−|[x < yL]|)th element.

# of comparisons ≤ O(s log s)← sort y

+ ≤ 2n← partition

+O(m logm)

where m = |(x|x ∈ [yL, yH ])|. Notice that the 2n term is actually 1.5n as for almost half of the
elements, we only compare with yL.
Consider the following equation, which holds true for any fraction f ∈ [0, 1]

yf ·s−k ≤ x(f ·n) ≤ yf ·s+k ∀fractions f

What we want are the number of such x such that

(x|x ∈ [y s
2
−k, y s

2
+k])

This only happens for xfn with f · s ≥ 1
2s− 2k

=⇒ f =
1

2
− 2k

s
to

1

2
+

2k

s

Therefore, (mlog(m)) ≤ 4k
s · n = O(4n

√
logn
s ) = O(n

√
logn
s )

Pick log n << s << n
logn . =⇒ # of comparisons is 1.5n+O(n)

s = n
2
3 =⇒ 1.5n+O(n

2
3
logn)
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