
CS 388R: Randomized Algorithms, Fall 2019 November 26, 2019

Lecture 26: Computational Geometry
Prof. Eric Price Scribes: Anna Yesypenko, Yijun Dong
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Convex Hull

Problem setting We are given a set of n points in the plane, and we are looking for
the convex hull of the points, i.e. the smallest convex polygon that contains all the points
(in its interior and on its edges). For this algorithm, we will assume that no three points
are colinear.

Deterministic algorithms A deterministic algorithm is known as the ”gift-wrapping
algorithm”. The algorithm starts by selecting the point p0 of minimal y-coordinate as
a vertex of the convex hull. Then the algorithm scans in a counterclockwise fashion to
find a point pi+1 of minimal angle from the half-plane formed by pi−1pi. This algorithm
takes O(nk) time for k points in the interior of the convex hull, or O(n2) in the worst
case. There is another deterministic algorithm known as the Graham scan which achieves
O(n log n) time.

Randomized algorithm We present a randomized incremental algorithm that achieves
O(n log n) runtime.

1. Start with three points as your convex hull.

2. When you get a previously unseen point p, check whether it is in your convex hull.
If not, update the convex hull by removing all edges that are ”visible” to the new
point and replacing with two new edges. Formally, a point q is visible to p if the
line segment pq does not intersect the convex hull. All of the visible edges will be
adjacent to each other, as shown in Figure 1(a). The updated convex hull is shown
in Figure 1(b).

Runtime At each step, we must find a visible edge (if any). The other visible edges,
if any, are adjacent, and visibility of adjacent edges can be checked in O(1) time. We
remove the visible edges and add two new edges.

Since at most two new edges are added to the convex hull at each step, edge removal
takes O(n) total time over all steps. What remains to discuss is how quickly we can find
a visible edge at each step of the algorithm.

We will pick some point c inside the initial triangle. At all times, we keep track of
the points x such that xc intersects the convex hull and the edge that xc intersects. To
maintain this data structure, when an edge is removed from the convex hull, we must
update all pointers to this edge, which takes O(1) time per point that referred to this
edge. Therefore, the runtime is O(n) + O(# updates to pointers).

1

Figure 1: An update to the convex hull, after adding point p

Figure 2: An unlucky sequence of random points, where with large probability, a randomly
chosen green point will cause many pointer updates to the data structure

Backwards Analysis We would like to say that the expected number of updates to
pointers is small if the points are added in a random order. In particular, we would like
to say that the expected number of updates in step i is n/i, but that may not happen if
we add points to the convex hull in some unlucky sequence, as shown in Figure 2.

We instead use a different technique called backwards analysis. At step i, we have
seen points S = {p1, . . . , pi} and generated a convex hull H. For any set S,

Ex∈S
[
updates to turn S \ {x} into S

]
= O

(
n

i

)
.

When x ∈ S is removed from the convex hull, we update a point y if yc intersects one
of the two edges that involve x. Let l(e) for e ∈ H be the number of pointers associated
with an edge in the convex hull, i.e. the number of points y such that yc intersects e ∈ H.
The point x ∈ S is chosen with equal probability. Therefore, the expected number of
updates is

Ex∈S
[
updates to turn S \ {x} into S

]
=

1

i

∑
e∈H

2l(e) ≤ 2n

i
,

since the total number of pointers in our data structure is at most n.
We conclude that the total expected runtime of the algorithm is

E[runtime] = O(n) + 2n
n∑

i=1

1

i
= O(n log n).

2

2 Point Location

Problem setting For the 2D point location problem, consider n lines, V = {li}i∈[n] in
a plane. We want to build a data structure such that given a query point x ∈ R2, one
can find its enclosing region out of the O(n2) possible regions cut by the n lines in V ,
and more generally, find the enclosing triangle in the triangulation of the plane based on
V .

A randomized method: overview We build a tree structure via the recursive trian-
gulation of plane using the idea of divide-and-conquer as following:

1. picking a set R ⊂ V of |R| = r = O(1) lines randomly and build the triangulation
of R, denoted as T (R);

2. triangulate each region (i.e., triangle) A ∈ T (R) recursively: find all lines in V
that intersect in A, denoted as V ′; randomly pick R′ ⊂ V ′ with |R′| = O(1) and
triangulate A with respect to R′.

Definition 1. We say that a region A ∈ T (R) is ”good” if the number of intersecting
lines in A is small,

|intersecting lines in A| = O
(n
r

ln r
)

Definition 2. We say that a random selection of lines, R, is good if all triangles A ∈
T (R) are good.

Lemma 3. If r lines are selected randomly from n lines in V to form R, then with
probability 3

4
, R is good, i.e., each of the O(r2) triangular regions A ∈ T (R) encloses

O
(

n
r

log r
)
intersections.

Proof. Given V , R with |V | = n, |R| = r = O(1), denote S as all intersections of R such
that |S| = O(r2), and denote ∆ as a triplet in S, (s1, s2, s3) where si ∈ S. The idea is
to show that if many lines in V intersects in the region defined by a given ∆, then the
probability that ∆ forms a triangle in T (R) is small. To show this, we consider the case
where at least k lines intersect in the region enclosed by ∆,

Pr[∆ forms a triangle in T (R)]

= Pr[end points of ∆ lie in R]·
Pr[none of the lines intersecting in ∆ is in R | end points of ∆ lie in R]

where for a fixed triplet ∆ in S, each of the three end points is formed by two lines
selected by R. Thus, the probability that none of the k lines intersecting in ∆ is in R for
a fixed ∆ is the probability that all selections of lines in R, except for those forming the
end points (at most 6 lines), avoid the k intersecting lines in ∆. That is,

Pr[none of the lines intersecting in ∆ is in R | end points of ∆ lie in R]

≤

(
1− k

n

)r−6

≤ exp

(
−k(r − 6)

n

)
≤ exp

(
−kr

2n

)
∀ r ≥ 12.

3

Therefore, by the union bound

Pr[R is not ”good”]

= Pr[∃ ∆ with at lest k lines intersecting in the enclosed region forms a triangle in T (R)]

≤ exp

(
−kr

2n

)
·
∑

∆∈S3

E[end points of ∆ lie in R]

= exp

(
−kr

2n

)
· E[number of triplets in S]

= exp

(
−kr

2n

)
·
((r

2

)
3

)
(

Each intersection in S is formed by 2 out of r lines in R
)

(
Each triplet is formed by 3 intersection points

)
.r6 · exp

(
−kr

2n

)
≤ 1

r
<

1

4

when we take r ≥ 12 as required before, and

k =
2n

r
· (7 ln r) = O(

n

r
ln r)

Run time analysis Assuming that all R’s selected by the algorithm are ”good” (which
can be achieved with good probability as Lemma 3 indicates), then a query will take

Q(n) = r2 + Q

(
O
(n
r

ln r
))

= O(1) + Q

(
O
(n

2

))
= O(lnn)

time. That is, on each level of triangulation formed by R, one needs to check up to r2

possible regions to find an enclosing region for the query point. Each level of triangulation
decreases the number of lines from |V | = n to |V ′| = n · ln r

r
.

Meanwhile, building the data structure requires

T (n) =r2n + r2T

(
O
(
n

ln r

r

))

time, where r2n time is required to check the intersections of the n lines in V within
the r2 regions cut by R. Then the algorithm recurs on the r2 regions cut by R where

|V ′| = O
(
n ln r

r

)
for each region. To express T (n) explicitly in terms of n, we first expand

4

the recursion term,

T (n) =r2n + r2

[
r2 · n ln r

r
+ r2 · T

(
O
(
n

ln r

r

))]

=n ·

[
r2 + r3 ln r + · · ·+ r2d+1 ln2d−1 r

]
(
T (n) is dominated by the leaf term: d = log

O

(
r

ln r

) n)

=n ·O
(
r2d
)

= n ·O

(
r

2 log

O

(
r

ln r

) n)

=n · n
2 log

O

(
r

ln r

) r

=n · n
2

(
1+ log log r

log r
log r

)

=n3+2 log log r
log r−log log r

T (n) =n3+Or(1)

5

	Convex Hull
	Point Location

