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1 Explaination of HW 2 Problem 1

• Decision problems (is min-cut ≤ k?) v.s. Optimization problems (what is min-cut?)

• If the answer to optimization problem ∈ [B] and decision problem takes T (n) time for 3
4

success probability,

⇒ binary search gives optimization in time T (n) logB with
3

4
success probability.

• If ans to optimization problem ∈ [B] and decision problem takes T (n) time for 1 − 1
4 logB

success probability,

⇒ P[optimization problem fails] ≤
∑

P[decision problem fails]

≤ logB ·maxP[decision problem fails]

• By amplification, we can solve optimization problem with 3
4 prob. in T logB log logB time.

That means, at each level we repeat the decision problem O(log logB) times to amplify the
probability of getting a correct answer. Proof can be obtained using union bound.

• To construct a T logB time algorithm, one can consider how to recover from getting to the
wrong branch in binary search (go back to the parent node when something happens).

2 Fun Probability Exercise

Q1: Given a standard die, roll it until we see a 6. How many rolls do we need in expectation?

1. Consider it as a geometry distribution with p = 1
6 .

E[#rolls] =

∞∑
i=1

(
5

6

)i−1 1

6
· i = 6

2. Define a recursive relationship. Let X = E[#rolls].

X =
5

6
· (X + 1) +

1

6
· 1

By solving this equation, we can get X = 6.
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Q2: As the previous problem, what is E[#rolls until find 6 | all outcomes are even]? In other
words, we will start over with the process if we ever roll an odd number.

1. Suppose that we throw away all the runs with odd outcomes. The intuition is that as the run
becomes longer, it’s more likely to be thrown away. Hence, it’s biased toward short sequence
of rolls. We know that we will stop as soon as we see 1, 3, 5, and 6. Using the same logic as
the previous problem, we can use property geometry distribution with p = 4

6 to show that

E[#rolls] =
1

p
=

6

4
= 1.5

Note that the distribution of #rolls ending at 1, 3, 5, 6 are the same (They are symmetric).
Let R be the number of rolls until stops. Then

E[#rolls until we meet 6 | all outcomes are even] = E[R | find roll in 6] = E[R] = 1.5

2. Could we have defined a recursive relationship like before? Using that method, we have

X =
3

6
X +

2

6
(X + 1) +

1

6
· 1

That is, we have 3
6 probability to reset (if we roll an odd number), 2

6 probability to proceed
(if we roll a 2 or 4), and 1

6 probability to stop (if we roll a 6). The answer is no, this method
won’t work. The problem is that in the second term, it should be (X + P[this roll count])
instead of (X + 1), since there is still a non-zero probability to be reset. However, what is
P[this roll counts]? Actually,

P[this roll counts] = P[we never see a 1,3, or 5] =

∞∑
i=1

(
2

6

)i−1 1

6
=

1/6

1− 2/6
=

1

4

Hence, we can define X = E[#rolls] and

X =
3

6
X +

2

6

(
X +

1

4

)
+

1

6
· 1

We can now solve for X, giving us X = 1.5 as expected.

3 Von Neumann’s Theorem

Suppose that Alice and Bob are playing a game where there’s a payoff matrix V . Alice can choose
a row of V and Bob can choose a column of V . Alice wants to minimize the payoff but Bob
wants to maximize it. This is a zero-sum game. Suppose that Alice can use a mixed strategy with
distribution p over the rows and Bob can use a mixed strategy with distribution q over the columns.
The expected payoff can be described as

pTV q

Actually, according to Von Neumann’s theorem,

min
p

max
ei

pTV ei = min
p

max
q

pTV q = max
q

min
p

pTV q = max
q

min
ej

eTj V q

No matter who goes first, the expected payoff are the same. Also, the second people can always
choose his(her) best strategy deterministically.
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3.1 Recall

• Deterministic alg. needs Ω(n) queries in game tree evaluation.

• Non-deterministic alg. needs Θ(
√
n) queries in game tree evaluation.

Suppose we put all the run time information to a cost matrix V , where each column represents an
game tree instance and each row represents a deterministic algorithm. Note that there’s at least
one n on each row.

min
alg A

max
instance I

V (A, I) = n

There’s some Θ(
√
n) on each column.

max
instance I

min
alg A

V (A, I) = Θ(
√
n)

According to previous lecture, we know that the expected number of queries for randomized algo-
rithm is bounded by

min
p:distr.
over algs

max
instance I

pTV eI ≤ n0.793

By Von Neumann’s theorem, we have

max
q:distr.

over instances

min
A:det. alg

eTAV q = min
p:distr.
over algs

max
instance I

pTV eI ≤ n0.793

This is known as “Yao’s principle.” Suppose we want to know the perfomance of the optimal ran-
domized algorithm, when performed on its worst-case input for that algorithm. Yao’s principle says
that it suffices to consider the worst-case fixed distribution on inputs, and analyze the performance
of the best deterministic algorithm for that input.

That is to say, suppose we can show for a particular distribution on inputs that no deterministic
algorithm can perform better than X. Then any randomized algorithm, being just a mixture of
deterministic algorithms, also performs no better than X. Yao’s principle says that this is without
loss of generality: there exists such a distribution on inputs so that the lower bound for randomized
algorithms derived from this approach is optimal.

Goal: pick some distr. q s.t. no det. alg. does well on it. Consider a NAND tree where every
node is active with probability p. In this case,

1− p = P[not active] = P[both child active] = p2

By solving p2 + p− 1 = 0, we’ll have p =
√
5−1
2 . In this distribution, the expected number of leafs

that our randomized game tree algorithm from previous lecture needs to explore is

T (h) ≤ T (h− 1)(1− p) + 2T (h− 1)p

= T (h− 1)(1 + p)

≤ (1 + p)h

= (2log2(1+p))h

= (2h)log2(1+p)

= nlog2(1+p) ≤ n0.6943
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