CS 388R: Randomized Algorithms, Fall 2021 21 October, 2021

Lecture 16: Matrix Concentration and Graph Sparsification
Prof. Eric Price Scribe: Aditya Parulekar, Rochan Avlur
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we discussed online matching algorithms.

In this lecture we learn about matrix concentration inequalities, which we will use to eventually
find results on graph sparsification. In particular, we derive the Bernstein concentration inequality
for scalar random variables, extend this result to symmetric matrices, and then prove the Rudelson-
Vershynin (RV) theorem.

2 Introduction

Imagine a setting in which we have a graph G that is possibly quite dense, i.e., G = (|E| >
n? with |V| = n). Densely connected graphs can make certain algorithms inefficient. Rather, it is
beneficial to operate on a sparse graph G’ that captures the structure of G. In particular, we want
to operate on a sparse graph where the size of most cuts are approximately equal to those in the
original dense graph.

For instance, suppose our dense graph consists of two densely connected clusters that share a edge
with a single intermediate vertex. Suppose we generate a sparse graph by randomly sampling a
fixed number of edges from our original graph. With some non-zero probability, we may not sample
the edges connecting the two clusters. This could lead our downstream algorithm to believe that
the original graph was disconnected which is a very significant error. We want our sparse graph to
capture key properties such as these.

To perform graph sparsification, we are going to need concentration inequalities on matrices. But
first, let’s look at the following concentration inequality for real numbers

3 Bernstein’s Concentration Inequality

Theorem 1 (Bernstein’s Concentration Inequalities). Let X1, Xo, ..., X, be independent random
reals satisfying

E[X,]=0, max|X,|<kVi, Y E[X]]<o’



Then, we have for some constant c
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This can be analyzed by showing that ). X; is subgamma with certain parameters. To see how to
do this, see previous year’s Lecture 17 notes. This is equivalent to multiplicative chernoff bound.
However, using multiplicative chernoff would give us a significantly worse bound.

Now, we state a variant of this concentration inequality for matrices.

Theorem 2 (Matrix Bernstein’s Concentration Inequalities). Let X1, Xo, ..., X,, be independent
random symmetric matrices in R™ " satisfying

E[X,]=0  max||X:|' <k H Y E[X7] ] < o

Then, we have for some constant ¢
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4 Approximating Covariance Matrices

Motivation Given a sample of m vectors x1,zs,...,T,, € R™, how well does the empirical

covariance matrix ~ > z;x] concentrate about the true covariance matrix + > E[z;z.] ?

m 1 1 m 3 7

Using the matrix version of Bernstein’s inequality, we prove the following concentration of empirical
covariance matrices

Theorem 3 (Rudelson Vershynin [RV05]). Let x1,x9,...,x, € R™ be independent random real
vectors satisfying

max |z]| < K, K>1, Elg]<1
Then,
1 + 1 T < logn
7 7

for K b%gl

Proof. We will use matrix-Bernstein. Let Y; := z;2] — E[z;2;]. Clearly, E[Y;] = 0. We have

7

max [|Y]| < max||ziz] | + || Elzi, ]|
< K?4+1<2K?
"Here, ||A|| refers to the spectral norm, which is defined as
|A|l = max u A
llullz=[lvll2=1
For symmetric matrices, this is equivalent to the largest eigenvalue of A. For vectors and scalars, ||| defaults to

I?-norm and absolute value respectively.
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and
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using linearity of expectation and the triangle inequality. Now, let

uw=argminv' Elz;z] zz v
v
Since E[z;z; ;2] is symmetric,
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Now, here, since both terms in the expectation are positive, we have that the product of their
expectations is less than the expectation of the products. So,

Ellzil3lla] wl3] <E (23] E [Jlo] ul3]
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Using this and the fact that E[z;z,] = 1, we plug into (1) to get
o? <> K?+1<2mK?
i
So, by Bernstein, with 02 = 2mK?, k = 2K?
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5 Intro to Graph Sparsification

Next time, we will get into the applications of this to graph sparsification. As an example of
how this works, say you have an unweighted, undirected graph G = (E,V). Construct a matrix
U € RIEXIVI If the ith edge in U connects vertices (v1,v2), then U;,, is set to 1 and Uj,, is set
to —1, i.e., ith edge represented by row vector u; has u,, = 1 and w,, = —1 (order in which value
is assigned does not matter). Then, the Laplacian of G is defined as Lg = U U, and can also be
expressed as Lg = D — A, where D is a diagonal matrix with the degrees of the vertices on the
diagonal, and A is the adjacency matrix of G. The graph Laplacian gives us information about the
covariance of distribution of the rows of U.

If we were to simply sample edges from this graph, then Rudelson-Vershynin on the rows of this
matrix gives the edge count to have a good approximation of the covariance matrix, which is U U.
However, this does not work very well for all graphs. Consider the example graph introduced in the
beginning. For such barbell shaped graphs, the sample range term K is bad when we try to apply
Rudelson-Vershynin. Next time, we will see how to get around this by sampling with a different
probability distribution.
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