Lecture 23: Randomized Numerical Algebra I

Prof. Eric Price
Scribe: Rojin Rezvan
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In last lecture we discussed Network Coding, which solves the problem of transmitting a message from a source vertex s to a target vertex t in some graph G.
In this lecture we will discuss the problem of solving the linear equation $A x=b$, or more accurately approximately solving it. Solving this equation exactly can be specially hard when A is a tall matrix. We can think of it as a $n \times d$ matrix describing data for a learning algorithm in which d is the number of features and n is the number of users.

2 Problem Definition

Given a matrix $A_{n \times d}$ and a vector $b_{n \times 1}$, the goal is to find $x_{d \times 1}^{*}$ such that $x^{*}=\arg \min _{x}\|A x-b\|_{2}$. Note that if A is a full column rank matrix, then $x^{*}=A^{T} b=\left(A^{T} A\right)^{-1} A^{T} b$. In order to find x^{*} exactly, we need to compute:

1. $A^{T} A$: a $d \times d$ matrix, takes $O\left(d^{2} n\right)$ time, or $\left(d^{1.38} n\right)$ time with some improvements.
2. $\left(A^{T} A\right)^{-1}$: takes $O\left(d^{3}\right)$, or $O\left(d^{2.38}\right)$ with improvements.
3. $\left(A^{T} A\right)^{-1}\left(A^{T} b\right)$: takes $O(n d)$ time.

This results in $O\left(n d^{2}\right)$ time for computation. In the case where $n \gg d$, this is a long time. We are interested in finding a randomized algorithm that works in time $\tilde{O}(n d+\operatorname{poly}(d))$. To this end, we will compromise on x^{*}, in that we will change our goal to finding: \hat{x} such that

$$
\|A \hat{x}-b\|_{2} \leq(1+\epsilon)\left\|A x^{*}-b\right\|_{2}
$$

One idea is to use conjugate gradients. This solution depends on A and its condition number, or $\kappa\left(A^{T} A\right)$ and will give run time of $O\left(n d \log \frac{n}{\epsilon}\right) \cdot \sqrt{\kappa\left(A^{T} A\right)}$.

3 Algorithm: Sketch and solve framework

We will achieve a run time of $\tilde{O}\left(\operatorname{ndpoly}\left(\frac{1}{\epsilon}\right)+d^{3} \operatorname{poly}\left(\frac{1}{\epsilon}\right)\right)$. The idea is that we do not want to deal with huge number of rows. Rather than solving $\min _{x}\|A x-b\|_{2}$, pick "sketch" matrix $S \in \mathbb{R}^{m \times n}$
with $m \sim \frac{d}{\epsilon^{2}}$, and solve $\hat{x}=\arg \min _{x}\|S A x-S b\|_{2}$. Then we solve exactly. Ideally, we would want to have:

1. $\|S A \hat{x}-S b\|=(1 \pm \epsilon)\|A \hat{x}-b\|_{2}$
2. $\left\|S A x^{*}-S b\right\|_{2}=(1 \pm \epsilon)\left\|A x^{*}-b\right\|_{2}$

With these two, we get:

$$
\|A \hat{x}-b\|_{2} \leq \frac{1}{1-\epsilon}\|S A \hat{x}-S b\|_{2} \leq \frac{1}{1-\epsilon}\left\|S A x^{8}-S b\right\|_{2} \leq \frac{1+\epsilon}{1-\epsilon}\left\|A x^{*}-b\right\|_{2}
$$

3.1 Finding S

Suppose S is an iid Gaussian matrix: $S_{i j} \sim N\left(0, \frac{1}{m}\right)$. Then we have $(S x) \sim N\left(0, I_{m} \cdot \frac{\|x\|_{2}^{2}}{m}\right)$. Since $\mathbb{E}\left[\|S x\|_{2}^{2}\right]=\|x\|_{2}^{2}$, using a concentration inequality we get:

$$
\operatorname{Pr}\left[\left|\frac{\|S x\|_{2}^{2}}{\|x\|_{2}^{2}}-1\right| \geq \epsilon\right] \leq \exp \left\{-\Omega\left(\epsilon^{2} m\right)\right\}
$$

Then it suffices to set $m=O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ for ϵ-approximation with probability $1-\delta$

Problem? We cannot just double this number, because \hat{x} depends on the whole subspace, unlike x^{*}. In other words, m cannot be less than d, because then \hat{x} will have many answers and it will be a null space which we don't have any information from. In next section, we will address this issue.

4 Embedding

Definition 1. S is a subspace embedding for space X if

$$
\|S x\|_{2}^{2}=(1 \pm \epsilon)\|x\|_{2}^{2} \text { for all } x \in X
$$

Definition 2. S is a $(\epsilon, d)-$ dim-d oblivious subspace embedding, or $\boldsymbol{O S E}$, if for any d-dim subspace $Y=\left\{y \in A x \mid x \in \mathbb{R}^{d}\right\}$ such that $A \in \mathbb{R}^{n \times d}, S$ is subspace embedding for Y with probability $1-\delta$.

Lemma 3. If S is $(\epsilon, \delta) d+1-\operatorname{dim}$ OSE, then "Sketch-and-solve" gives $(1 \pm O(\epsilon))$ accuracy with probability $1-\delta$.

Proof. We can think of $A x-b$ as the multiplication of $A|b|$ and $x,-1$ where the former is A with b added as its last column, and the latter is x with -1 added as its last row. (Note that the number of columns in $A \mid b$ and the number of rows in $x,-1$ is both $d+1$.) Now note that set of all x, X, has a dimension of at most $d+1$. If S is OSE, then with probability $1-\delta$ we have:

$$
\|S(A x-b)\|^{2}=(1 \pm \epsilon)\|A x-b\|^{2}, \quad \forall x \in X
$$

Definition 4. For a space X, say $N \subseteq X$ is a ϵ-net if $\forall x \in X$, there exists $y \in N$ such that $\|x-y\| \leq \epsilon$.

Lemma 5. The d-dimensional unit sphere has ϵ-net of size at most $\left(1+\frac{2}{\epsilon}\right)^{d}$.
Proof. Consider a greedy approach: Put a point in N for every point: if its distance is more than ϵ from current members, add it. The greedy net produces N points x_{1}, \ldots, x_{n} with minimum distance $\left\|x_{i}-x_{j}\right\| \geq \epsilon$. Then $B\left(x_{i}, \frac{\epsilon}{2}\right)$ balls are disjoint for $i=1, \ldots, n$. So :

$$
\cup_{i} B\left(x_{i}, \frac{\epsilon}{2}\right) \subseteq B\left(0,1+\frac{\epsilon}{2}\right)
$$

So:

$$
\begin{align*}
& \operatorname{Vol}\left(\cup_{i} B\left(x_{i}, \frac{\epsilon}{2}\right)\right) \leq \operatorname{Vol}\left(B\left(0,1+\frac{\epsilon}{2}\right)\right) \\
& \rightarrow \operatorname{N.Vol}\left(B\left(x_{i}, \frac{\epsilon}{2}\right)\right) \leq \operatorname{Vol}\left(B\left(0,1+\frac{\epsilon}{2}\right)\right) \\
& \rightarrow N \cdot c_{d}\left(\frac{\epsilon}{2}\right)^{d} \leq c_{d}\left(1+\frac{\epsilon}{2}\right)^{d} \tag{1}\\
& \rightarrow N \leq\left(\frac{1+\frac{\epsilon}{2}}{\frac{\epsilon}{2}}\right)^{d}=\left(1+\frac{2}{\epsilon}\right)^{d}
\end{align*}
$$

Corollary: The same holds for $\left\{y=A x\| \| y \|_{2}=1\right\}$ when $A \in \mathbb{R}^{n \times n}$ is full rank.
Definition 6. S is $(\epsilon-\delta)$ distributional Johson-Lindenstrauss if:

$$
\forall x \in \mathbb{R}^{n},\|S x\|_{2}^{2}=(1 \pm \epsilon)_{2}^{2} \text { wp } 1-\delta
$$

Example: If $S \in \mathbb{R}^{m \times n}$ is iid Gaussian, $m=O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$, then:

$$
\forall x, y,\langle S x, S y\rangle=\langle x, y\rangle \pm \epsilon\|x\| \cdot\|y\| \text { wp } 1-2 \delta
$$

Proof.

$$
\begin{align*}
\|x+y\|_{2}^{2}-\|x-y\|_{2}^{2} & =4\langle x, y\rangle \\
& =\|S(x+y)\|_{2}^{2}-\|S(x-y)\|_{2}^{2} \pm \epsilon\|X \pm y\|_{2}^{2} \pm\|x-y\|_{2}^{2} \tag{2}\\
& =4\langle S x, S y\rangle \pm \epsilon\left(\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2}\right)
\end{align*}
$$

If $\|x\|=\|y\|=1$, then $\langle x, y\rangle=\langle S x, S y\rangle \pm \epsilon$. This is true for all norms of x and y because we can scale.

Lemma 7. If S is $\left(\epsilon, \delta 25^{-d}\right)$-distributional JL, then S is a $(4 \epsilon, \delta)$ OSE of dimension d.

Proof. Take a $\frac{1}{2}-$ net of the space $\left\{y \mid y \in Y,\|y\|_{2}=1\right\}$. Then:

$$
N \leq\left(1+\frac{2}{\epsilon}\right)^{d}=\left(1+\frac{2}{1 / 2}\right)^{d}=5^{d}
$$

Now consider the net y_{1}, \ldots, y_{N}. For each pair y_{i}, y_{j} in the net, we know that"

$$
\left\langle S y_{i}, S y_{j}\right\rangle=\left\langle y_{i}, y_{j}\right\rangle \pm \epsilon \operatorname{wp} 1-\frac{\delta}{25^{d}}
$$

We have $\binom{N}{2}$ such pairs. Since $25^{d}=N^{2}$, then using union bound, the above holds for every i, j with probability $1-\delta$.

Now, for all $y \in Y$ we can write

$$
y=y^{0}+r^{1}
$$

where $\left\|r^{1}\right\| \leq \frac{1}{2}$ and y^{0} is the point that is closest to y in the $\epsilon-$ net. Equivalently, we may assume that $\left\|r^{1}\right\|=1$ and write:

$$
y=y^{0}+\epsilon^{0} r^{1}, \quad \epsilon^{1} \leq \frac{1}{2}
$$

Now we can continue this expansion for y^{0}, y^{1}, \ldots. Then we get:

$$
y=y^{0}+\epsilon^{1} y^{1}+\epsilon^{2} y^{2}+\ldots, \quad y^{i} \in N, \epsilon^{i} \leq 2^{-i}
$$

Now we will use this expansion to figure out $\|S y\|_{2}^{2}$.

$$
\begin{align*}
\|S y\|_{2}^{2} & =\left\langle\sum_{i} \epsilon^{i} S y^{i}, \sum_{i} \epsilon^{i} S y^{i}\right\rangle \\
& =\sum_{i} \epsilon_{i}^{2}\left\|S y_{i}\right\|^{2}+\sum_{i<j} 2 \epsilon_{i} \epsilon_{j}\left\langle S y^{i}, S y^{j}\right\rangle \\
& =\sum_{i} \epsilon_{i}^{2}\left(\left\|y^{i}\right\|_{2}^{2} \pm \epsilon\right)+\sum_{i<j} 2 \epsilon_{i} \epsilon_{j}\left(\left\langle y^{i}, y^{j}\right\rangle \pm \epsilon\right) \\
& =\|y\|_{2}^{2} \pm \sum_{i} \epsilon \epsilon_{i}^{2} \pm \sum_{i<j} \epsilon_{i} \epsilon_{j} \epsilon \tag{3}\\
& =\|y\|_{2}^{2} \pm \epsilon\left(\sum_{i} \epsilon_{i}^{2}+\sum_{i<j} \epsilon_{i} \epsilon_{j}\right) \\
& \leq\|y\|_{2}^{2} \pm \epsilon\left(\sum_{i} 2^{-2 i}+\sum_{i<j} 2^{-i-j}\right) \\
& \leq\|y\|_{2}^{2} \pm 4 \epsilon
\end{align*}
$$

So we get OSE with: $O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{25^{d}}{\delta}\right)\right)=O\left(\frac{d}{\epsilon^{2}}+\log \frac{1 / d}{\epsilon^{2}}\right)$

Problem? We still need to compute $A S$ and this can be inefficient. There are ways to overcome this. For example, we may write S in the form $S=P H D$ such that P is a sub-sample matrix that can be computed in time $O\left(\frac{d}{\epsilon \log ^{2} d}\right)$ and H is the Fourier matrix. With this format, $A S$ computation can be done in time $O(n d \log n)$.

