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1 Overview

In last lecture we discussed Network Coding, which solves the problem of transmitting a message
from a source vertex s to a target vertex t in some graph G.

In this lecture we will discuss the problem of solving the linear equation Ax = b, or more accurately
approximately solving it. Solving this equation exactly can be specially hard when A is a tall matrix.
We can think of it as a n × d matrix describing data for a learning algorithm in which d is the
number of features and n is the number of users.

2 Problem Definition

Given a matrix An×d and a vector bn×1, the goal is to find x∗d×1 such that x∗ = argmin
x

||Ax− b||2.

Note that if A is a full column rank matrix, then x∗ = AT b = (ATA)−1AT b. In order to find x∗

exactly, we need to compute:

1. ATA: a d× d matrix, takes O(d2n) time, or (d1.38n) time with some improvements.

2. (ATA)−1: takes O(d3), or O(d2.38) with improvements.

3. (ATA)−1(AT b): takes O(nd) time.

This results in O(nd2) time for computation. In the case where n >> d, this is a long time. We
are interested in finding a randomized algorithm that works in time Õ(nd+ poly(d)). To this end,
we will compromise on x∗, in that we will change our goal to finding: x̂ such that

||Ax̂− b||2 ≤ (1 + ϵ)||Ax∗ − b||2

One idea is to use conjugate gradients. This solution depends on A and its condition number, or
κ(ATA) and will give run time of O(nd log n

ϵ ).
√
κ(ATA).

3 Algorithm: Sketch and solve framework

We will achieve a run time of Õ(ndpoly(1ϵ ) + d3poly(1ϵ )). The idea is that we do not want to deal
with huge number of rows. Rather than solving min

x
||Ax − b||2, pick ”sketch” matrix S ∈ Rm×n
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with m ∼ d
ϵ2

, and solve x̂ = argmin
x

||SAx− Sb||2. Then we solve exactly. Ideally, we would want
to have:

1. ||SAx̂− Sb|| = (1± ϵ)||Ax̂− b||2

2. ||SAx∗ − Sb||2 = (1± ϵ)||Ax∗ − b||2

With these two, we get:

||Ax̂− b||2 ≤
1

1− ϵ
||SAx̂− Sb||2 ≤

1

1− ϵ
||SAx8 − Sb||2 ≤

1 + ϵ

1− ϵ
||Ax∗ − b||2

3.1 Finding S

Suppose S is an iid Gaussian matrix: Sij ∼ N(0, 1
m). Then we have (Sx) ∼ N(0, Im.

||x||22
m ). Since

E[||Sx||22] = ||x||22, using a concentration inequality we get:

Pr[| ||Sx||
2
2

||x||22
− 1| ≥ ϵ] ≤ exp{−Ω(ϵ2m)}

Then it suffices to set m = O( 1
ϵ2
log 1

δ ) for ϵ−approximation with probability 1− δ

Problem? We cannot just double this number, because x̂ depends on the whole subspace, unlike
x∗. In other words, m cannot be less than d, because then x̂ will have many answers and it will be
a null space which we don’t have any information from. In next section, we will address this issue.

4 Embedding

Definition 1. S is a subspace embedding for space X if

||Sx||22 = (1± ϵ)||x||22 for all x ∈ X

Definition 2. S is a (ϵ, d)−dim−d oblivious subspace embedding, or OSE, if for any d−dim
subspace Y = {y ∈ Ax|x ∈ Rd} such that A ∈ Rn×d, S is subspace embedding for Y with probability
1− δ.

Lemma 3. If S is (ϵ, δ) d+ 1−dim OSE, then ”Sketch-and-solve” gives (1± O(ϵ)) accuracy with
probability 1− δ.

Proof. We can think of Ax− b as the multiplication of A|b| and x,−1 where the former is A with b
added as its last column, and the latter is x with −1 added as its last row. (Note that the number
of columns in A|b and the number of rows in x,−1 is both d + 1.) Now note that set of all x, X,
has a dimension of at most d+ 1. If S is OSE, then with probability 1− δ we have:

||S(Ax− b)||2 = (1± ϵ)||Ax− b||2, ∀x ∈ X
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Definition 4. For a space X, say N ⊆ X is a ϵ−net if ∀x ∈ X, there exists y ∈ N such that
||x− y|| ≤ ϵ.

Lemma 5. The d−dimensional unit sphere has ϵ−net of size at most (1 + 2
ϵ )

d.

Proof. Consider a greedy approach: Put a point in N for every point: if its distance is more than
ϵ from current members, add it. The greedy net produces N points x1, . . . , xn with minimum
distance ||xi − xj || ≥ ϵ. Then B(xi,

ϵ
2) balls are disjoint for i = 1, . . . , n. So :

∪iB(xi,
ϵ

2
) ⊆ B(0, 1 +

ϵ

2
)

So:

V ol(∪iB(xi,
ϵ

2
)) ≤ V ol(B(0, 1 +

ϵ

2
))

→ N.V ol(B(xi,
ϵ

2
)) ≤ V ol(B(0, 1 +

ϵ

2
))

→ N.cd(
ϵ

2
)d ≤ cd(1 +

ϵ

2
)d

→ N ≤ (
1 + ϵ

2
ϵ
2

)d = (1 +
2

ϵ
)d

(1)

Corollary: The same holds for {y = Ax|||y||2 = 1} when A ∈ Rn×n is full rank.

Definition 6. S is (ϵ− δ) distributional Johson-Lindenstrauss if:

∀x ∈ Rn, ||Sx||22 = (1± ϵ)22 wp 1− δ

Example: If S ∈ Rm×n is iid Gaussian, m = O( 1
ϵ2
log 1

δ ), then:

∀x, y, ⟨Sx, Sy⟩ = ⟨x, y⟩ ± ϵ||x||.||y|| wp 1− 2δ

Proof.

||x+ y||22 − ||x− y||22 = 4⟨x, y⟩
= ||S(x+ y)||22 − ||S(x− y)||22 ± ϵ||X ± y||22 ± ||x− y||22
= 4⟨Sx, Sy⟩ ± ϵ(||x+ y||22 + ||x− y||22)

(2)

If ||x|| = ||y|| = 1, then ⟨x, y⟩ = ⟨Sx, Sy⟩ ± ϵ. This is true for all norms of x and y because we can
scale.

Lemma 7. If S is (ϵ, δ25−d)−distributional JL, then S is a (4ϵ, δ) OSE of dimension d.
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Proof. Take a 1
2− net of the space {y|y ∈ Y, ||y||2 = 1}. Then:

N ≤ (1 +
2

ϵ
)d = (1 +

2

1/2
)d = 5d

Now consider the net y1, . . . , yN . For each pair yi, yj in the net, we know that”

⟨Syi, Syj⟩ = ⟨yi, yj⟩ ± ϵ wp 1− δ

25d

We have
(
N
2

)
such pairs. Since 25d = N2, then using union bound, the above holds for every i, j

with probability 1− δ.

Now, for all y ∈ Y we can write
y = y0 + r1

where ||r1|| ≤ 1
2 and y0 is the point that is closest to y in the ϵ−net. Equivalently, we may assume

that ||r1|| = 1 and write:
y = y0 + ϵ0r1, ϵ1 ≤ 1

2

Now we can continue this expansion for y0, y1, . . .. Then we get:

y = y0 + ϵ1y1 + ϵ2y2 + . . . , yi ∈ N, ϵi ≤ 2−i

Now we will use this expansion to figure out ||Sy||22.

||Sy||22 = ⟨
∑
i

ϵiSyi,
∑
i

ϵiSyi⟩

=
∑
i

ϵ2i ||Syi||2 +
∑
i<j

2ϵiϵj⟨Syi, Syj⟩

=
∑
i

ϵi
2(||yi||22 ± ϵ) +

∑
i<j

2ϵiϵj(⟨yi, yj⟩ ± ϵ)

= ||y||22 ±
∑
i

ϵϵ2i ±
∑
i<j

ϵiϵjϵ

= ||y||22 ± ϵ(
∑
i

ϵ2i +
∑
i<j

ϵiϵj)

≤ ||y||22 ± ϵ(
∑
i

2−2i +
∑
i<j

2−i−j)

≤ ||y||22 ± 4ϵ

(3)

So we get OSE with: O( 1
ϵ2
log(25

d

δ )) = O( d
ϵ2

+ log 1/d
ϵ2

)

Problem? We still need to compute AS and this can be inefficient. There are ways to overcome
this. For example, we may write S in the form S = PHD such that P is a sub-sample matrix that
can be computed in time O( d

ϵ log2 d
) and H is the Fourier matrix. With this format, AS computation

can be done in time O(nd log n).
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