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NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In last lecture we discussed Network Coding, which solves the problem of transmitting a message
from a source vertex s to a target vertex ¢ in some graph G.

In this lecture we will discuss the problem of solving the linear equation Az = b, or more accurately
approximately solving it. Solving this equation exactly can be specially hard when A is a tall matrix.
We can think of it as a n x d matrix describing data for a learning algorithm in which d is the
number of features and n is the number of users.

2 Problem Definition

Given a matrix A, x4 and a vector b,x1, the goal is to find z}, , such that * = argmin || Az — b||2.
x

Note that if A is a full column rank matrix, then z* = ATb = (AT A)~'ATb. In order to find x*
exactly, we need to compute:

1. ATA: a d x d matrix, takes O(d?n) time, or (d'3®n) time with some improvements.
2. (AT A)~L: takes O(d®), or O(d*?®) with improvements.
3. (ATA)"Y(ATb): takes O(nd) time.
This results in O(nd?) time for computation. In the case where n >> d, this is a long time. We

are interested in finding a randomized algorithm that works in time O(nd + poly(d)). To this end,
we will compromise on z*, in that we will change our goal to finding: # such that

142 = bllz < (1 + )| Az™ — 0|2

One idea is to use conjugate gradients. This solution depends on A and its condition number, or
k(AT A) and will give run time of O(ndlog 2).\/k(AT A).

3 Algorithm: Sketch and solve framework

We will achieve a run time of O(ndpoly(%) + d®poly(1)). The idea is that we do not want to deal
with huge number of rows. Rather than solving min ||Az — b||2, pick "sketch” matrix S € R"™*"™
T
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with m ~ 6%, and solve £ = argmin |[SAz — Sb||2. Then we solve exactly. Ideally, we would want
to have:

1. ||SAz — Sb|| = (1 £ €)||AZ — bl|2

2. ||[SAz* — Sb||2 = (1 £ €)||Az™ — b2

With these two, we get:

1+e€
1—c¢

. 1 ) 1 .
142 = bll2 < 7—[|SAZ — Sbll2 < 7—||SA2" — Sbl|, < [|Az™ — 0|2

3.1 Finding S

(V1)

[l

Suppose S is an iid Gaussian matrix: S;; ~ N(0, 2). Then we have (Sz) ~ N (0, I,."=2). Since
E[||Sz||3] = ||z||3, using a concentration inequality we get:
S 2
P37l g5 g < exp{-(@m)}

[1l13

Then it suffices to set m = O(El2 log %) for e—approximation with probability 1 — ¢

Problem?  We cannot just double this number, because  depends on the whole subspace, unlike
z*. In other words, m cannot be less than d, because then & will have many answers and it will be
a null space which we don’t have any information from. In next section, we will address this issue.

4 Embedding

Definition 1. S is a subspace embedding for space X if
1S3 = (1 % )||z||3 for all z € X

Definition 2. S is a (¢,d)—dim—d oblivious subspace embedding, or OSE, if for any d—dim
subspace Y = {y € Az|x € R} such that A € R4, S is subspace embedding for Y with probability
1-4.

Lemma 3. If S is (¢,0) d + 1—dim OSE, then "Sketch-and-solve” gives (1 + O(e)) accuracy with
probability 1 — .

Proof. We can think of Az — b as the multiplication of A|b| and x, —1 where the former is A with b
added as its last column, and the latter is z with —1 added as its last row. (Note that the number
of columns in A|b and the number of rows in z, —1 is both d 4+ 1.) Now note that set of all =, X,
has a dimension of at most d + 1. If S is OSE, then with probability 1 — § we have:

1S(Az — b)||2 = (1 £ )||Az — b|]2, Vo e X



Definition 4. For a space X, say N C X is a e—net if Vr € X, there exists y € N such that
lz =yl <e.

Lemma 5. The d—dimensional unit sphere has e—net of size at most (1 + %)d

Proof. Consider a greedy approach: Put a point in IV for every point: if its distance is more than
€ from current members, add it. The greedy net produces N points x1,...,z, with minimum
distance ||z; — z|| > €. Then B(w;, §) balls are disjoint for i =1,...,n. So :

U B(as, g) C B(0,1+ %)

So:

Vol(UiB(ai, 5)) < Vol(B(0, 1+ 5))

— N.Vol(B(z;, %)) < Vol(B(0,1 + g))

1
= Nca(5)" < cal+3)" W)
1+ £ 2
SN < () (14 2y
§ €
]

Corollary:  The same holds for {y = Az|||y||]2 = 1} when A € R™*" is full rank.

Definition 6. S is (e — §) distributional Johson-Lindenstrauss if:

Ve e R™ ||Sz|[3=(1+e)2 wpl—9

Example: If S € R™*" is iid Gaussian, m = O(Ei2 log %), then:

vV, y, (Sx, Sy) = (z,y) £ el[]||lyl] wp 1 — 24

Proof.
e+ yll3 — |lz = yl3 = 4z, y)
= 1S+ )3 = 1S(z = y)ll3 £ el X £ yll3 £ ||z — yl13 (2)
= 4(Sz, Sy) £ e(|lx + yll3 + |z — yll3)
If ||z|| = |ly|]| = 1, then (z,y) = (Sz, Sy) £+ €. This is true for all norms of = and y because we can
scale. O

Lemma 7. If S is (¢,025~%)—distributional JL, then S is a (4¢,8) OSE of dimension d.



Proof. Take a 3— net of the space {yly € Y, ||y||2 = 1}. Then:

2 2
N<(1+34=01+-2)4=5¢
Now consider the net y1,...,yn. For each pair y;,y; in the net, we know that”

0
(Syi, Sy;) = (yi,y;) Tewp 1 — 5

We have (g ) such pairs. Since 25¢ = N2, then using union bound, the above holds for every i, j
with probability 1 — §.
Now, for all y € Y we can write

y=y"+r
where ||r!|] < % and y is the point that is closest to y in the e—net. Equivalently, we may assume
that ||7!|| = 1 and write:

1
y=y'+erl, e <
Now we can continue this expansion for 3°,4',.... Then we get:
y:y0+ely1+e2y2+..., yi € N,ei <27t

Now we will use this expansion to figure out ||Sy||3.

1Syll5 = €Sy, > €Sy

7 7
= &llSull® + ) 2eie;(Sy’, Sy)
% 1<J
=Y &2(lyllE£e) + ) 2ae (v, ) £ )
i 1<j
= HyH%:I:Zee?:tZeieje (3)
7 1<J
=yl £} + ) ee)
7 1<j
<yl £ed 27+ 279
i 1<j
< [lylf3 + 4e

So we get OSE with: O(% log(¥)) = O(% +log 154)
O

Problem? We still need to compute AS and this can be inefficient. There are ways to overcome
this. For example, we may write .S in the form S = PH D such that P is a sub-sample matrix that
can be computed in time O(ﬁ) and H is the Fourier matrix. With this format, AS computation

can be done in time O(ndlogn).



