CS 388R: Randomized Algorithms, Fall 2021 September 7, 2021

Lecture 4: Game Tree and Complexity Classes
Prof. Eric Price Scribe: Ethan Lao, Tongrui Li

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Deterministic Game Tree

1.1 Problem Formulation
Suppose we have a game where two player, white and black, makes move by turn. At each turn, a
player can make one of two moves, both leading to a subsequent deterministic state.

The state of the game can be represented by a binary tree. The k th layer in the tree represnets
the number of turn. The value in the leaf node is 1 if there is a subsequent move that enable the
current player to force the game into a win state.

Question Given all possible end states of game (in other words, the leaf nodes at k th layer), how
many nodes does do we need to look at before knowing the state of the game at the first k£ = 1th
turn?

1.1.1 Simple Case

Consider a game which ends in two turns. There are 4 possible scenarios:

Figure 1: All possible state of a simple 2 turn deterministic game tree

The below explanation assumes that black starts out the first turn.

1. If both children contain the state of 0, that implies that that black at first turn has the ability
to win the game as all subsequent state will result in white loosing, hence the root node will
have a value of 1

2. If only one children nodes contain the state of 0, that implies that black at first turn can force
the game in to the favorable branch (left child in the second example and right child in the
third example in figure 1), thus resulting 1 in the root node.



3. If both children contain the state of 1, then that means that at the current turn, there is no
way for black to win as all subsequent state will be a loose. Hence, the value at root node
will be 0.

Observation The parent is exactly NAND of the children.

1.2 Deterministic Algorithm

Algorithm 1 Deterministic
Require: n >0
F(x):
if len(z) == 1 then
return x[0]
else if f(z[: §]) == 0 then
return 1 > NAND Short Circuit
else
return 1 - f(x[5 :])
end if

Algorithm 1 performs a DFS search across the binary tree and essentially NAND its child together
from the last leaf layer. The algorithm performs a short circuit when the left child’s value is 0,
as NAND(0,*) = 1.

1.2.1 Run time under adversarial environment
At the worst case scenario, we have a tree whose left value is always 1 at every level, which effectively

disable the short circuit in algorithm 1. Hence, the algorithm will have to look at effectively the
entire tree, resulting in O(n) nodes traversed.

1.3 (Optimal) Non Deterministic Algorithm

Algorithm 2 Non Deterministic with Oracle
Require: n >0
F(x):
L first = g(x)
Tsecond :/g(;(;)
if len(z) == 1 then
return x[0]
else if f(xfirst) == 0 then
return 1 > NAND Short Circuit
else

return 1 - f(-rsecond)
end if




Lets assume an oracle g that outputs the optimal node to look at first. Incorporating this into the
algorithm will maximize the occurrence of short circuit and greatly improve the runtime.

1.3.1 Runtime Analysis
Let:

e k = depth of tree = number of turn
e L(k) = maximum number of nodes to look at if first player loses (root of entire tree = 0)

e W (k) = maximum number of nodes to look at if first player wins (root of entire tree = 1)

We can analyze the runtime by induction
Base Case Trivially, W(0) =1 and L(0) =1

Inductive Case L(k) will require both child’s value to be reviewed (and equal 1) according to
section 1.1.1, hence we would need 2x the computation from the previous layer, which will result
in L(k)=2W(k—1).

W (k) will require only one child’s value to be 0. Under the assumption of an oracle, this implies
that we at most need to look at one child in this instance. Therefore, W (k) = L(k — 1).

We can then make the following statements:
W(k)=L(k—1) =2W(k — 2) (1)
W(k) ~ 2(3) o gloga()/2 v/ (2)
Hence, the runtime is roughly O(y/n)

1.4 Randomized Algorithm

Algorithm 3 Randomized
Require: n >0
F(x):
T first, Tsecond = rand_shuffle(z[5 :], xf:
if len(z) == 1 then
return x[0]
else if f(2first) == 0 then
return 1 > NAND Short Circuit
else

return 1 - f(Zsecond)
end if

2|3
=

It is unrealistic to assume that an oracle described in section 1.3 exists. Hence, instead of optimally
picking the child, we randomly pick the child first to traverse through.



1.4.1 Runtime Analysis

We mostly follow the same format as in section 1.3.1.
Base Case Trivially, W(0) =1 and L(0) =1

Inductive Case L(k) will still require both child’s value to be reviewed (and equal 1)
according to section 1.1.1, hence we would need 2x the computation from the previous layer, which
will result in L(k) = 2W (k —1).

W (k) will require only one child’s value to be 0. It is possible to have 3 senerios:

1. Under assumption of children = {0,1} or {1,0}, we can look at 0 or 1 first, which means that
about half of the time we can short circuit L(k — 1), and the other half of time we
will be forced to look at both child (W (k — 1)+ L(k—1)). This will result in a runtime
of tL(k— 1)+ S(W(k—1) + L(k — 1))

2. Under assumption of children = {0,0}, we can guarantee a short circuit, which will result in
runtime of L(k — 1)

In practice we take the maximum of the two cases. Note that the first case = %W(k -1+
L(k—1)> L(k —1) = second case. Hence, we can then make the following derivation

W%%ﬂmw%L%—D+%OWk—U+L%—U%Mk—D) (3)
mq@:%uthn+wa1) (@)
va):%qu—n+aqu—m (5)

The above can be viewed as a modified Fibonacci sequence, whose runtime is roughly O(2*). Hence,
lets assume that W (k) = X*. We can then do the following

1

Xk — 5)(/7{:—1 + 2Xk—2 (7)
1

XQ—EX—2:0 (8)
1 1
1y /113
2 4

X=— 9

5 (9)

1++v33

X = (10)

At this point, we take only the positive root. Hence:

14433
==

X ~ 1.68 (11)



We can then go back to deriving the complexity:

k logs(n)
1+v33" 1++33°
wik) = Y2 1 (12)

w(k) = nloga(5Y%) o 0753 (13)

Hence, the runtime of this randomized algorithm is O(n%7®3) It turns out that this bound is
tight - this is the best we can do in this scenario.

2 Complexity Classes

The following may refer to a language L.

2.1 Review of P and NP

1. P (polynomial time): problems that can be solved deterministically in polynomial time

e Outputs 1 Vx € L
e Outputs 0 Vo ¢ L
2. NP (nondeterministic polynomial time): problems where a correct answer can be verified in

polynomial time, or alternatively, problems that can be solved in nondeterministic polynomial
time. We can also check an advice string (an additional input that depends on the length of

lifxe L

the input but not the input itself) in PTIME. If A(x) = _
0 otherwise

e Vz € L, output y s.t. A(z,y) =1
o Vx ¢ L,} output y s.t. A(z,y) =1

2.2 ZPP, RP, and coRP

1. ZPP (zero-error probabilistic polynomial time): problems where an algorithm exists such that

e It always returns the correct answer

e The expected running time is polynomial for every input
2. RP (randomized polynomial time): problems where an algorithm exists such that

e [t always runs in polynomial time
o If x ¢ L, it will always reject
o If x € L, it will accept with probability > %

3. coRP: the complement of RP; problems where an algorithm exists such that

e It always runs in polynomial time

o If x € L, it will always accept



e If z ¢ L, it will reject with probability > 1

To show that ZPP C RP, we can simply run the ZPP algorithm for at least double its expected
running time, and return the answer if the algorithm finds it. If it doesn’t give an answer, reject.
The chance of finding an answer before stopping is at least %, so ZPP C RP. ZPP C coRP for the
same reason.

To show that RP N coRP C ZPP, suppose that A(z) is a RP algorithm and B(z) is a coRP
algorithm. Construct the new algorithm as follows:

e Run A on the input. If it accepts, accept.
e Run B on the input. If it rejects, reject.

e Repeat until the algorithm either accepts or rejects.

Since A and B give the correct answer with probability > %, the probability of this algorithm

reaching the next iteration of running A and B shrinks exponentially. Therefore, the algorithm
will run A and B 2 times each in expectation, resulting in a polynomial running time. Thus, RP
N coRP C ZPP, hence ZPP = RP N coRP.

2.3 PP and BPP

1. PP (probabilistic polynomial time): problems where an algorithm exists such that

o If x € L, it will accept with probability >
o If x ¢ L, it will accept with probability <

N[— D=

Note that NP C PP. To show this, begin with an algorithm A and guess an answer y at
random. If A(z,y) =1 return yes, otherwise accept with a 50% probability. So if the correct
answer is yes, the algorithm will output yes with probability of about % + 2%, showing that

the algorithm is in PP.

2. BPP (bounded-error probabilistic polynomial time): problems where an algorithm exists such
that

o If x € L, it will accept with probability >
o If x ¢ L, it will accept with probability <

Wl wIN

We know that P C RP C NP. But, the following questions are still unknown:

e Is RP = coRP = ZPP?
e Is RP =P?
e Is BPP C NP?

e Is P = BPP?



2.4 Adelman’s Theorem

Let P/poly be the class of languages that have a polynomial time algorithm with a polynomial-
bounded advice function (advice depends on n and the problem statement, but not on the input
itself). Adelman’s theorem states that BPP C P/poly.

To show this, suppose there are 2" inputs of size n and we are given a BPP algorithm A that runs
in T" time and succeeds with probability % This implies that there exists an algorithm A’ that runs
in O(Tn) time and succeeds with probability 1 — 2,1% Since 50% of A’s random seeds work on all

size-n inputs, we can pick one and fix that seed for a deterministic algorithm.



	Deterministic Game Tree
	Problem Formulation
	Simple Case

	Deterministic Algorithm
	Run time under adversarial environment

	(Optimal) Non Deterministic Algorithm
	Runtime Analysis

	Randomized Algorithm
	Runtime Analysis


	Complexity Classes
	Review of P and NP
	ZPP, RP, and coRP
	PP and BPP
	Adelman's Theorem


