CS 388R: Randomized Algorithms, Fall 2021
 September 9th, 2021
 Lecture 5: Coupon Collector; Balls and Bins
 Prof. Eric Price
 Scribe: Georgios Smyrnis and Ryan Chhong
 NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In this lecture we examined two problems:

- Coupon Collector: We are given a set of n different items, and in each timestep we collect a random item from this set. We want to analyze the number of timesteps needed in order to collect all items at least once.
- Balls and Bins: We are given n balls and n bins, and we randomly (uniformly) pick a bin to place each of the balls in. Our goal is to analyze certain values of interest for this problem, namely the maximum number of balls in a bin, the concentration of balls among bins and the fraction of bins which are empty, after the balls are distributed.

These problems serve as a starting point for hashing problems.

2 Coupon Collector

Problem Definition: We are given a set of n items, and in each timestep we are given a random item from this set. We define T as the number of timesteps required to collect every different item.

Expected value of T : We define T_{i} as the number of timesteps required to collect the $(i+1)$-th new item, after we have collected i different items. If we have already collected i items, then the probability that the next item we collect is a new one is $p_{i}=\frac{n-i}{n}$. This means that the random variables T_{i} each follow a geometric distribution $T_{i} \sim \operatorname{Geom}\left(\frac{n-i}{n}\right)$. Thus, we have:

- $\mathrm{E}\left[T_{i}\right]=\frac{1-p_{i}}{p_{i}}=\frac{n}{n-i}$
- $\operatorname{Var}\left[T_{i}\right]=\frac{1-p_{i}}{p_{i}^{2}}=\frac{n i}{(n-i)^{2}}$

We know that $T=\sum_{i=0}^{n-1} T_{i}$, and that the random variables T_{i} are independent. Thus, we can derive the following:

$$
\begin{equation*}
\mathrm{E}[T]=\sum_{i=0}^{n-1} \mathrm{E}\left[T_{i}\right]=\sum_{i=0}^{n-1} \frac{n}{n-i}=n \sum_{j=1}^{n} \frac{1}{n}=n H_{n}=\Theta(n \log n) \tag{1}
\end{equation*}
$$

where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\Theta(\log n)$ is the harmonic number.

Variance of T : Similarly, given that the T_{i} are independent, we have:

$$
\begin{equation*}
\operatorname{Var}[T]=\sum_{i=0}^{n-1} \operatorname{Var}\left[T_{i}\right]=\sum_{i=0}^{n-1} \frac{n^{2}}{(n-i)^{2}}=n^{2} \sum_{j=1}^{n} \frac{1}{j^{2}} \leq n^{2} \sum_{j=1}^{\infty} \frac{1}{j^{2}}=n^{2} \frac{\pi^{2}}{6} \tag{2}
\end{equation*}
$$

We also have that $\operatorname{Var}[T] \geq \operatorname{Var}\left[T_{n-1}\right]=\frac{n(n-1)}{1}=n^{2}-n$. From the above, we have that $\operatorname{Var}[T]=$ $\Theta\left(n^{2}\right)$.

High probability bounds: Using Chebyshev's inequality, we can derive the following, for a given a, and setting $\mu=\mathrm{E}[T], \sigma^{2}=\operatorname{Var}[T]$:

$$
\begin{equation*}
\operatorname{Pr}(|T-\mu| \geq a \sigma) \leq \frac{\mathrm{E}\left[(T-\mu)^{2}\right]}{a^{2} \sigma^{2}}=\frac{1}{a^{2}} \tag{3}
\end{equation*}
$$

However, this is not a high probability bound $\left(1-n^{-c}\right.$, for some constant $\left.c\right)$.
Instead, we can examine the following:

$$
\begin{equation*}
\operatorname{Pr}(\text { coupon i is missing after } T \text { steps })=\left(1-\frac{1}{n}\right)^{T} \leq e^{-\frac{T}{n}} \tag{4}
\end{equation*}
$$

We can then use the following union bound:

$$
\begin{equation*}
\operatorname{Pr}(\text { any coupon is missing after } T \text { steps }) \leq \sum_{i=1}^{n} \operatorname{Pr}(\text { coupon i is missing after } T \text { steps }) \leq n e^{-\frac{T}{n}} \tag{5}
\end{equation*}
$$

By setting the above failure probability to be at most δ, we get:

$$
\begin{equation*}
n e^{-\frac{T}{n}} \leq \delta \Rightarrow-\frac{T}{n} \leq \log \frac{\delta}{n} \Rightarrow T \geq n \log \frac{n}{\delta}=\Theta(n \log n) \tag{6}
\end{equation*}
$$

Thus, if T is above a value scaling as $n \log n$, then all coupons will be collected after T timesteps, with high probability.

3 Balls and Bins

Problem Definition: We are given n balls along with n bins, and we randomly assign bins to each ball (note that, in a more general setting, the number of balls and bins may differ - here, we will examine this simple case). We set X_{i} to be the random variable representing the number of balls in bin i. Our goal is to examine the load on each bin, as well as the average time it takes to access this structure (retrieve a particular ball from it).

Maximum value of X_{i} : The first value of interest we shall examine is $\max _{i=1, \ldots, n} X_{i}$, the maximum load across all bins. Note that each of the X_{i} follows a binomial distribution, with probability $p=\frac{1}{n}$, and n trials in total (we have $\frac{1}{n}$ probability when assigning each ball to a bin to pick bin i). Thus, $X_{i} \sim \operatorname{Binom}\left(n, \frac{1}{n}\right)$. We have the following:

$$
\begin{equation*}
\operatorname{Pr}\left(\max _{i=1, \ldots, n} X_{i}\right) \leq n \operatorname{Pr}\left(X_{1} \geq k\right)=n\binom{n}{k} \frac{1}{n^{k}}\left(1-\frac{1}{n}\right)^{n-k} \leq n\binom{n}{k} \frac{1}{n^{k}} \tag{7}
\end{equation*}
$$

Now, we will make use of the inequality $\binom{n}{k} \leq\left(\frac{e n}{k}\right)^{k}$, and thus obtain from the above:

$$
\begin{equation*}
\operatorname{Pr}\left(\max _{i=1, \ldots, n} X_{i}\right) \leq n\left(\frac{e n}{k}\right)^{k} \frac{1}{n^{k}}=n\left(\frac{e}{k}\right)^{k}=\delta \tag{8}
\end{equation*}
$$

Thus, to have probability of failure equal to δ, we need:

$$
\begin{equation*}
n\left(\frac{e}{k}\right)^{k}=\delta \Rightarrow \log n+k \log \frac{e}{k}=\log \delta \Rightarrow k \log \frac{k}{e}=\log \frac{n}{\delta}=m \tag{9}
\end{equation*}
$$

This means that we roughly want $k \log k \approx \log n=m$. This implies that, for $\sqrt{m} \leq k \leq m^{2}$, we have:

$$
\begin{equation*}
\log k=\Theta(\log m) \Rightarrow m=\Theta(k \log m) \Rightarrow k=\Theta\left(\frac{m}{\log m}\right) \Rightarrow k=\Theta\left(\frac{\log n / \delta}{\log \log n / \delta}\right)=\Theta\left(\frac{\log n}{\log \log n}\right) \tag{10}
\end{equation*}
$$

Thus, if we assume $\delta=n^{-c}$, then in the above we indeed have $k \log k \approx \log n$, up to constant factors. Thus, the maximum load is $\Theta\left(\frac{\log n}{\log \log n}\right)$, with high probability.

Average load over balls: The next value of interest is the average load over balls, or in other words the value $\mathrm{E}\left[\sum_{i=1}^{n} X_{i}^{2}\right]$. This value is related to the time we need to retrieve all balls from the bin (to retrieve the balls from bin i, we will need X_{i} time to access each of the X_{i} balls). We have the following:

$$
\begin{align*}
\mathrm{E}\left[\sum_{i=1}^{n} X_{i}^{2}\right] & =\mathrm{E}\left[\sum_{j=1}^{n}(1+\# \text { of balls in the same bin as ball } j)\right] \tag{11}\\
& =n+n(n-1) \operatorname{Pr}(\text { balls } j \text { and } k \text { fall in the same bin }) \geq 2 n-1
\end{align*}
$$

Thus, our average load over balls scales at least as n.

Fraction of empty bins: The final value we examine is the fraction of empty bins, or in other words bins with $X_{i}=0$. We have the following:

$$
\begin{equation*}
\operatorname{Pr}\left(X_{i}=0\right)=\binom{n}{0} \frac{1}{n^{0}}\left(1-\frac{1}{n}\right)^{n}=\left(1-\frac{1}{n}\right)^{n} \approx \frac{1}{e} \approx 0.37 \tag{12}
\end{equation*}
$$

This means that, after the assignment of bins, roughly 37% of the bins are empty. We also note that the same holds for bins with exactly 1 element:

$$
\begin{equation*}
\operatorname{Pr}\left(X_{i}=1\right)=\binom{n}{1} \frac{1}{n^{1}}\left(1-\frac{1}{n}\right)^{n-1}=n \frac{1}{n}\left(1-\frac{1}{n}\right)^{n-1} \approx \frac{1}{e} \approx 0.37 \tag{13}
\end{equation*}
$$

Note: These variables are clearly not independent, but this fact actually helps the concentration bounds to be tighter in our case. Additionally the random variables X_{i} are negatively associated. In other words, if a subset of the X_{i} have a "high value", then all of the other variables must have a "low value". Although there are ways to formalize this notion, these weren't covered in class.

