Fall 2016

Lecture: $16 - L^1$ minimization, Oct 20, 2016

Prof. Eric Price Scribe: David Liau and Ger Yang

1 Overview

In the last lecture: Model-based Compressed Sensing . In this lecture: L^1 minimization.

2 L^1 minimization

Given

$$A \in \mathbb{R}^{m \times n}$$
 with $(O(k), 1) \mathbb{R}IP$

For a k-sparse vector x, define y = Ax + e. The problem is to find \hat{x} with $\|\hat{x} - x\|_2 \leq \|e\|_2$. Now if we pick \hat{x} as the solution to the following optimization problem,

$$\begin{array}{ll} \underset{\hat{x}}{\min \text{minimize}} & \|\hat{x}\|_{1} \\ \text{subject to} & \|A\hat{x} - y\|_{2} \le \epsilon \end{array}$$

We have the theorem which,

Theorem 1. If $\epsilon \geq ||e||_2$ then $||\hat{x} - x||_2 \lesssim \epsilon$.

Proof. Lets set $z = \hat{x} - x$, by definition we have,

$$\begin{aligned} \|Az - e\|_{2}^{2} &= \|A\hat{x} - y\|_{2}^{2} \leq \epsilon^{2} \\ \|Az\|_{2}^{2} - 2(Az)^{T}e + \|e\|_{2}^{2} \leq \epsilon^{2} \\ \|Az\|_{2}^{2} &= 2(Az)^{T}e - \|e\|_{2}^{2} + \epsilon^{2} \\ &\leq 2\|e\|_{2}\|Az\|_{2} + \epsilon^{2} - \|e\|_{2}^{2} \\ &\qquad (\|Az\|_{2} - \|e\|_{2})^{2} \leq \epsilon^{2} \\ &\qquad \|Az\|_{2}\|e\|_{2} + \epsilon \leq 2\epsilon \end{aligned}$$

Now we just need $||z||_2 \leq ||Az||_2$ to complete the proof. Fortunately, the property is known to be true given by the Restricted Eigenvalue property discussed in the following section. Thus we have proved that by utilizing the L^1 minimization vector, it is possible to construct the sparse vector we desired.

2.1 Restricted Eigenvalue (RE)

For $S = \operatorname{supp}(x)$,

$$\begin{aligned} \|x_S\|_1 &= \|x\|_1 \ge \|\hat{x}\|_1 \\ &= \|x + z\|_1 \\ &\ge \|(x + z)_S\|_1 + \|z_{\bar{S}}\|_1 \\ &\ge \|x_S\|_1 + \|z_{\bar{S}}\|_1 - \|z_S\|_1 \end{aligned}$$

Thus we have that

 $||z_S||_1 \ge ||z_{\bar{S}}||_1.$

The last equation states the following important property we would like to introduce in this section.

Definition 1. Uniform Restricted Eigenvalue Condition (RE) We said that the matrix A satisfies the uniform restricted eigenvalue condition if for all S and z which $||z_S||_1 \ge ||z_{\bar{S}}||_1$ holds, $||Az||_2 \ge ||z||_2$.

2.2 RIP \Rightarrow RE via Shelling Argument

In this section, we are going to show that RIP implies RE via a "shelling argument". More precisely, suppose A satisfies the RIP of order k. We would like to show that for any z and $S \subset [n]$ with $|S| \leq k$ such that $||z_S||_1 \geq ||z_{\overline{S}}||_1$, we have $||Az||_2 \gtrsim ||z||_2$.

The shelling argument works as follows. First, we split z into blocks z^1, z^2, \ldots of size k in the order of decreasing magnitude, i.e. $z = z^1 + z^2 + \cdots + z^{n/k}$, and $||z^1||_2 \ge ||z^2||_2 \ge \cdots \ge ||z^{n/k}||_2$. Then, for $i \ge 2$ we have that

$$\frac{\|z^i\|_1}{\sqrt{k}} \le \|z^i\|_2 \le \frac{\|z^{i-1}\|_1}{\sqrt{k}} \tag{1}$$

Also, for $i \geq 3$ we have

$$\|z^{i} + z^{i+1}\|_{2} \le \frac{\|z^{i-1} + z^{i-2}\|_{1}}{\sqrt{2k}}$$
(2)

Next, we look at $||Az||_2$:

$$\|Az\|_{2} = \|A(z^{1} + z^{2} + \dots + z^{n/k})\|_{2}$$

$$\geq \|A(z^{1} + z^{2} + z^{3})\|_{2} - \|A(z^{4} + z^{5})\|_{2} - \|A(z^{6} + z^{7})\|_{2} - \dots$$

$$\geq (1 - \epsilon)\|z^{1} + z^{2} + z^{3}\|_{2} - (1 + \epsilon) \left(\sum_{i=2}^{\frac{n/k-1}{2}} \|z^{2i} + z^{2i+1}\|_{2}\right)$$
(3)

where the first inequality is a result of triangle inequality, and the second one uses the RIP property.

Then, we can further bound the second term in (??) by

$$(1+\epsilon) \left(\sum_{i=2}^{\frac{n/k-1}{2}} \|z^{2i} + z^{2i+1}\|_2 \right) \le \frac{(1+\epsilon)}{\sqrt{2k}} \left(\sum_{i=2}^{\frac{n/k-1}{2}} \|z^{2i-1} + z^{2i-2}\|_1 \right)$$
$$= \frac{(1+\epsilon)}{\sqrt{2k}} \sum_{i=2}^{\frac{n/k-1}{2}} \left(\|z^{2i-1}\|_1 + \|z^{2i-2}\|_1 \right)$$
$$\le \frac{(1+\epsilon)}{\sqrt{2k}} \left\| \sum_{i=2}^{n/k} z^i \right\|_1 \le \frac{(1+\epsilon)}{\sqrt{2k}} \|z^1\|_1$$

where the first inequality uses (??). The equality in the second line and the first inequality in the third line follows the fact that each z^i has distinct support. The last inequality is a result of the assumption that for any $|S| \leq k$ such that $||z_S||_1 \geq ||z_{\overline{S}}||_1$, we have $||Az||_2 \gtrsim ||z||_2$. Then, we are able to get a bound of (??).

$$\begin{aligned} \|Az\|_{2} &\geq (1-\epsilon) \|z^{1} + z^{2} + z^{3}\|_{2} - (1+\epsilon) \left(\sum_{i=2}^{\frac{n/k-1}{2}} \|z^{2i} + z^{2i+1}\|_{2}\right) \\ &\geq (1-\epsilon) \|z^{1}\|_{2} - \frac{(1+\epsilon)}{\sqrt{2k}} \|z^{1}\|_{1} \geq (1-\epsilon) \|z^{1}\|_{2} - \frac{(1+\epsilon)}{\sqrt{2}} \|z^{1}\|_{2} \\ &\geq 0.1 \|z^{1}\|_{2} \end{aligned}$$

for small enough ϵ . Next, note that

$$\|z^1\|_2 \ge \frac{\|z^1\|_1}{\sqrt{k}} \ge \frac{\|z^2 + \dots + z^{n/k}\|_1}{\sqrt{k}} = \frac{\sum_{i=2}^{n/k} \|z^i\|_1}{\sqrt{k}} \ge \sum_{i=3}^{n/k} \|z^i\|_2 \ge \left\|\sum_{i=3}^{n/k} z^i\right\|_2$$

Hence we have $3||z^1||_2 \ge ||z||_2$, and finally we have $||Az||_2 \ge ||z||_2$.

2.3 Recover a non-Sparse Vector

In Theorem ??, we have shown how to recover a sparse x. Now, what if x is not sparse? It turns out that we may use the similar technique. Denote x_a as the vector that zero out all but a largest items from x. We leave it as an exercise that showing the following property that suggests, essentially, we can solve the problem assuming that x is a sparse vector:

Exercise 1. If A is a RIP matrix, then

$$\|A(x - x_{2k})\|_2 \le \frac{\|x - x_k\|_1}{\sqrt{k}}(1 + \epsilon)$$

This property suggests that we may use the technique is the previous lectures to get \hat{x} from y = Ax with l2/l1 guarantee

$$\|\hat{x} - x\|_2 \lesssim \frac{1}{\sqrt{k}} \|x - x_k\|_1$$

And after further sparsifying, we can get a solution \hat{x}^* that satisfies the l1/l1 guarantee:

$$\|\hat{x}^* - x\|_1 \lesssim \|x - x_k\|_1$$

3 Comparison

In this section we provide a quick reference to the comparison between different recovery methods and their properties within the following table. The Count-min and Count-sketch results are based on the previous lectures.

lable	L^1 minimization	Count-min	Count Sketch
Recovery time	n^3	$n \log n$	
Space	$k \log \frac{n}{k}$	$k \log n$	
Guarantee	l_2/l_1	$l_{\infty}/l_1 \implies l_1/l_1$	$l_{\infty}/l_2 \implies l_2/l_2$
Notes	If A satisfy RIP, works for all x	For each x , A works with high probability	

Table 1: table of comparison

In class we also discussed a related theorem without a detailed proof. The theorem is stated as below and the proof will be given in the next lecture if possible.

Theorem 2. We cannot get an algorithm with deterministic l_2/l_2 guarantee with m = o(n).