Lecture: $16 - L^1$ minimization, Oct 20, 2016

Prof. Eric Price Scribe: David Liau and Ger Yang

1 Overview

In the last lecture: Model-based Compressed Sensing . In this lecture: L^1 minimization.

$2 \quad L^1$ minimization

Given

$$
A \in R^{m \times n} \quad with \quad (O(k), 1) RIP
$$

For a k-sparse vector x, define $y = Ax + e$. The problem is to find \hat{x} with $\|\hat{x} - x\|_2 \lesssim \|e\|_2$. Now if we pick \hat{x} as the solution to the following optimization problem,

$$
\begin{aligned}\n\text{minimize} & \quad \|\hat{x}\|_1\\ \n\text{subject to} & \quad \|A\hat{x} - y\|_2 \le \epsilon.\n\end{aligned}
$$

We have the theorem which,

Theorem 1. If $\epsilon \ge ||e||_2$ then $||\hat{x} - x||_2 \lesssim \epsilon$.

Proof. Lets set $z = \hat{x} - x$, by definition we have,

$$
||Az - e||_2^2 = ||A\hat{x} - y||_2^2 \le \epsilon^2
$$

\n
$$
||Az||_2^2 - 2(Az)^T e + ||e||_2^2 \le \epsilon^2
$$

\n
$$
||Az||_2^2 = 2(Az)^T e - ||e||_2^2 + \epsilon^2
$$

\n
$$
\le 2||e||_2||Az||_2 + \epsilon^2 - ||e||_2^2
$$

\n
$$
(||Az||_2 - ||e||_2)^2 \le \epsilon^2
$$

\n
$$
||Az||_2||e||_2 + \epsilon \le 2\epsilon
$$

Now we just need $||z||_2 \leq ||Az||_2$ to complete the proof. Fortunately, the property is known to be true given by the Restricted Eigenvalue property discussed in the following section. Thus we have proved that by utilizing the L^1 minimization vector, it is possible to construct the sparse vector we desired. \Box

2.1 Restricted Eigenvalue (RE)

For $S = \text{supp}(x)$,

$$
||x_S||_1 = ||x||_1 \ge ||\hat{x}||_1
$$

= $||x + z||_1$
 $\ge ||(x + z)_{S}||_1 + ||z_{\bar{S}}||_1$
 $\ge ||x_{S}||_1 + ||z_{\bar{S}}||_1 - ||z_{S}||_1$

Thus we have that

 $||z_S||_1 \geq ||z_{\bar{S}}||_1.$

The last equation states the following important property we would like to introduce in this section.

Definition 1. Uniform Restricted Eigenvalue Condition (RE) We said that the matrix A satisfies the uniform restricted eigenvalue condition if for all S and z which $||z_S||_1 \geq ||z_{\bar{S}}||_1$ holds, $||Az||_2 \gtrsim ||z||_2$.

2.2 RIP \Rightarrow RE via Shelling Argument

In this section, we are going to show that RIP implies RE via a "shelling argument". More precisely, suppose A satisfies the RIP of order k. We would like to show that for any z and $S \subset [n]$ with $|S| \leq k$ such that $||z_S||_1 \geq ||z_{\overline{S}}||_1$, we have $||Az||_2 \gtrsim ||z||_2$.

The shelling argument works as follows. First, we split z into blocks z^1, z^2, \ldots of size k in the order of decreasing magnitude, i.e. $z = z^1 + z^2 + \cdots + z^{n/k}$, and $||z^1||_2 \ge ||z^2||_2 \ge \cdots \ge ||z^{n/k}||_2$. Then, for $i \geq 2$ we have that

$$
\frac{\|z^i\|_1}{\sqrt{k}} \le \|z^i\|_2 \le \frac{\|z^{i-1}\|_1}{\sqrt{k}}\tag{1}
$$

Also, for $i \geq 3$ we have

$$
||z^{i} + z^{i+1}||_2 \le \frac{||z^{i-1} + z^{i-2}||_1}{\sqrt{2k}}\tag{2}
$$

Next, we look at $||Az||_2$:

$$
||Az||_2 = ||A(z^1 + z^2 + \dots + z^{n/k})||_2
$$

\n
$$
\ge ||A(z^1 + z^2 + z^3)||_2 - ||A(z^4 + z^5)||_2 - ||A(z^6 + z^7)||_2 - \dots
$$

\n
$$
\ge (1 - \epsilon) ||z^1 + z^2 + z^3||_2 - (1 + \epsilon) \left(\sum_{i=2}^{\frac{n/k-1}{2}} ||z^{2i} + z^{2i+1}||_2 \right)
$$
 (3)

where the first inequality is a result of triangle inequality, and the second one uses the RIP property.

Then, we can further bound the second term in (??) by

$$
(1+\epsilon)\left(\sum_{i=2}^{\frac{n/k-1}{2}} \|z^{2i} + z^{2i+1}\|_2\right) \le \frac{(1+\epsilon)}{\sqrt{2k}} \left(\sum_{i=2}^{\frac{n/k-1}{2}} \|z^{2i-1} + z^{2i-2}\|_1\right)
$$

$$
= \frac{(1+\epsilon)}{\sqrt{2k}} \sum_{i=2}^{\frac{n/k-1}{2}} (\|z^{2i-1}\|_1 + \|z^{2i-2}\|_1)
$$

$$
\le \frac{(1+\epsilon)}{\sqrt{2k}} \left\|\sum_{i=2}^{n/k} z^i\right\|_1 \le \frac{(1+\epsilon)}{\sqrt{2k}} \|z^1\|_1
$$

where the first inequality uses (??). The equality in the second line and the first inequality in the third line follows the fact that each z^i has distinct support. The last inequality is a result of the assumption that for any $|S| \leq k$ such that $||z_S||_1 \geq ||z_{\overline{S}}||_1$, we have $||Az||_2 \gtrsim ||z||_2$. Then, we are able to get a bound of (??).

$$
||Az||_2 \ge (1 - \epsilon) ||z^1 + z^2 + z^3||_2 - (1 + \epsilon) \left(\sum_{i=2}^{\frac{n}{2}} ||z^{2i} + z^{2i+1}||_2 \right)
$$

\n
$$
\ge (1 - \epsilon) ||z^1||_2 - \frac{(1 + \epsilon)}{\sqrt{2k}} ||z^1||_1 \ge (1 - \epsilon) ||z^1||_2 - \frac{(1 + \epsilon)}{\sqrt{2}} ||z^1||_2
$$

\n
$$
\ge 0.1 ||z^1||_2
$$

for small enough ϵ . Next, note that

$$
||z^1||_2 \ge \frac{||z^1||_1}{\sqrt{k}} \ge \frac{||z^2 + \dots + z^{n/k}||_1}{\sqrt{k}} = \frac{\sum_{i=2}^{n/k} ||z^i||_1}{\sqrt{k}} \ge \sum_{i=3}^{n/k} ||z^i||_2 \ge \left\| \sum_{i=3}^{n/k} z^i \right\|_2
$$

Hence we have $3||z^1||_2 \ge ||z||_2$, and finally we have $||Az||_2 \gtrsim ||z||_2$.

2.3 Recover a non-Sparse Vector

In Theorem ??, we have shown how to recover a sparse x. Now, what if x is not sparse? It turns out that we may use the similar technique. Denote x_a as the vector that zero out all but a largest items from x. We leave it as an exercise that showing the following property that suggests, essentially, we can solve the problem assuming that x is a sparse vector:

Exercise 1. If A is a RIP matrix, then

$$
||A(x - x_{2k})||_2 \le \frac{||x - x_k||_1}{\sqrt{k}}(1 + \epsilon)
$$

This property suggests that we may use the technique is the previous lectures to get \hat{x} from $y = Ax$ with $l2/l1$ guarantee

$$
\|\hat{x} - x\|_2 \lesssim \frac{1}{\sqrt{k}} \|x - x_k\|_1
$$

And after further sparsifying, we can get a solution \hat{x}^* that satisfies the $l1/l1$ guarantee:

$$
\|\hat{x}^* - x\|_1 \lesssim \|x - x_k\|_1
$$

3 Comparison

In this section we provide a quick reference to the comparison between different recovery methods and their properties within the following table. The Count-min and Count-sketch results are based on the previous lectures.

Table 1: table of comparison

In class we also discussed a related theorem without a detailed proof. The theorem is stated as below and the proof will be given in the next lecture if possible.

Theorem 2. We cannot get an algorithm with deterministic l_2/l_2 guarantee with $m = o(n)$.