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1 Overview

In the last lecture: Model-based Compressed Sensing .

In this lecture: L1 minimization.

2 L1 minimization

Given
A ∈ Rm×n with

(
O(k), 1

)
RIP

For a k-sparse vector x, define y = Ax+ e. The problem is to find x̂ with ‖x̂− x‖2 . ‖e‖2. Now if
we pick x̂ as the solution to the following optimization problem,

minimize
x̂

‖x̂‖1

subject to ‖Ax̂− y‖2 ≤ ε.

We have the theorem which,

Theorem 1. If ε ≥ ‖e‖2 then ‖x̂− x‖2 . ε.

Proof. Lets set z = x̂− x, by definition we have,

‖Az − e‖22 = ‖Ax̂− y‖22 ≤ ε2

‖Az‖22 − 2(Az)T e+ ‖e‖22 ≤ ε2

‖Az‖22 = 2(Az)T e− ‖e‖22 + ε2

≤ 2‖e‖2‖Az‖2 + ε2 − ‖e‖22(
‖Az‖2 − ‖e‖2

)2 ≤ ε2
‖Az‖2‖e‖2 + ε ≤ 2ε

Now we just need ‖z‖2 ≤ ‖Az‖2 to complete the proof. Fortunately, the property is known to be
true given by the Restricted Eigenvalue property discussed in the following section. Thus we have
proved that by utilizing the L1 minimization vector, it is possible to construct the sparse vector we
desired.
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2.1 Restricted Eigenvalue (RE)

For S = supp(x),

‖xS‖1 = ‖x‖1 ≥ ‖x̂‖1
= ‖x+ z‖1
≥ ‖(x+ z)S‖1 + ‖zS̄‖1
≥ ‖xS‖1 + ‖zS̄‖1 − ‖zS‖1

Thus we have that
‖zS‖1 ≥ ‖zS̄‖1.

The last equation states the following important property we would like to introduce in this section.

Definition 1. Uniform Restricted Eigenvalue Condition (RE)
We said that the matrix A satisfies the uniform restricted eigenvalue condition if for all S and z
which ‖zS‖1 ≥ ‖zS̄‖1 holds, ‖Az‖2 & ‖z‖2.

2.2 RIP ⇒ RE via Shelling Argument

In this section, we are going to show that RIP implies RE via a “shelling argument”. More precisely,
suppose A satisfies the RIP of order k. We would like to show that for any z and S ⊂ [n] with
|S| ≤ k such that ‖zS‖1 ≥ ‖zS‖1, we have ‖Az‖2 & ‖z‖2.

The shelling argument works as follows. First, we split z into blocks z1, z2, . . . of size k in the order
of decreasing magnitude, i.e. z = z1 + z2 + · · · + zn/k, and ‖z1‖2 ≥ ‖z2‖2 ≥ · · · ≥ ‖zn/k‖2. Then,
for i ≥ 2 we have that

‖zi‖1√
k
≤ ‖zi‖2 ≤

‖zi−1‖1√
k

(1)

Also, for i ≥ 3 we have

‖zi + zi+1‖2 ≤
‖zi−1 + zi−2‖1√

2k
(2)

Next, we look at ‖Az‖2:

‖Az‖2 = ‖A(z1 + z2 + · · ·+ zn/k)‖2
≥ ‖A(z1 + z2 + z3)‖2 − ‖A(z4 + z5)‖2 − ‖A(z6 + z7)‖2 − . . .

≥ (1− ε)‖z1 + z2 + z3‖2 − (1 + ε)


n/k−1

2∑
i=2

‖z2i + z2i+1‖2

 (3)

where the first inequality is a result of triangle inequality, and the second one uses the RIP property.
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Then, we can further bound the second term in (??) by

(1 + ε)


n/k−1

2∑
i=2

‖z2i + z2i+1‖2

 ≤ (1 + ε)√
2k


n/k−1

2∑
i=2

‖z2i−1 + z2i−2‖1


=

(1 + ε)√
2k

n/k−1
2∑

i=2

(
‖z2i−1‖1 + ‖z2i−2‖1

)
≤ (1 + ε)√

2k

∥∥∥∥∥∥
n/k∑
i=2

zi

∥∥∥∥∥∥
1

≤ (1 + ε)√
2k

∥∥z1
∥∥

1

where the first inequality uses (??). The equality in the second line and the first inequality in the
third line follows the fact that each zi has distinct support. The last inequality is a result of the
assumption that for any |S| ≤ k such that ‖zS‖1 ≥ ‖zS‖1, we have ‖Az‖2 & ‖z‖2. Then, we are
able to get a bound of (??).

‖Az‖2 ≥ (1− ε)‖z1 + z2 + z3‖2 − (1 + ε)


n/k−1

2∑
i=2

‖z2i + z2i+1‖2


≥ (1− ε)‖z1‖2 −

(1 + ε)√
2k
‖z1‖1 ≥ (1− ε)‖z1‖2 −

(1 + ε)√
2
‖z1‖2

≥ 0.1‖z1‖2
for small enough ε. Next, note that

‖z1‖2 ≥
‖z1‖1√

k
≥ ‖z

2 + · · ·+ zn/k‖1√
k

=

∑n/k
i=2 ‖zi‖1√

k
≥

n/k∑
i=3

‖zi‖2 ≥

∥∥∥∥∥∥
n/k∑
i=3

zi

∥∥∥∥∥∥
2

Hence we have 3‖z1‖2 ≥ ‖z‖2, and finally we have ‖Az‖2 & ‖z‖2.

2.3 Recover a non-Sparse Vector

In Theorem ??, we have shown how to recover a sparse x. Now, what if x is not sparse? It turns out
that we may use the similar technique. Denote xa as the vector that zero out all but a largest items
from x. We leave it as an exercise that showing the following property that suggests, essentially,
we can solve the problem assuming that x is a sparse vector:

Exercise 1. If A is a RIP matrix, then

‖A(x− x2k)‖2 ≤
‖x− xk‖1√

k
(1 + ε)

This property suggests that we may use the technique is the previous lectures to get x̂ from y = Ax
with l2/l1 guarantee

‖x̂− x‖2 .
1√
k
‖x− xk‖1

And after further sparsifying, we can get a solution x̂∗ that satisfies the l1/l1 guarantee:

‖x̂∗ − x‖1 . ‖x− xk‖1
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3 Comparison

In this section we provide a quick reference to the comparison between different recovery methods
and their properties within the following table. The Count-min and Count-sketch results are based
on the previous lectures.

lable L1 minimization Count-min Count Sketch

Recovery time n3 n log n

Space k log n
k k log n

Guarantee l2/l1 l∞/l1 =⇒ l1/l1 l∞/l2 =⇒ l2/l2
Notes If A satisfy RIP, works for all x For each x, A works with high probability

Table 1: table of comparison

In class we also discussed a related theorem without a detailed proof. The theorem is stated as
below and the proof will be given in the next lecture if possible.

Theorem 2. We cannot get an algorithm with deterministic l2/l2 guarantee with m = o(n).
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