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Lecture 20 — November 3, 2016
Prof. Eric Price Scribe: Yitao Chen, Shanshan Wu

1 Overview

In this lecture, we are going to talk about Fourier RIP matrices, which includes the following

e Fourier Uncertainty Principle
e Proving RIP

— Symmetrization/Gaussianization
— Chaining/Dudley’s Entropy Integral
— Maurey’s Emprical Method

2 Fourier Uncertainty Principle

For x € C", the Discrete Fourier Transform (DFT) & € C" is & = Fz, where Fj; = w', Vi, j and
w = e2™V-1/ " which implies w" =1,
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For F' to be RIP matrix, we just need: F'-F* = nl, and |Fj;| < 1,Vi,j. Also notice that Hadamard
matrix H; ; = (—1)<%9> where i, j are vectors in {0, 1}!°6™ has this property: HHT = nl,,.

Lemma 1. Let z € C" be k-sparse, then we have supp(z) > n/k.

Proof. Let () be a “modulation” of z (z # 0), :L‘El) = x; -w™ " Take a look at the jth coordinate

of the Fourier transform of the modulated signal (), we have
_ n—1 N n—1 o
(z0); = (Fz0); = Zw”xy) — sz w00 =3, (1)
i=0 i=0
Let X = span(z©, 2™, ... z(=1) Equation (??) tells us the Fourier transform of X just rotates

the coordinates of X, and modulation does not change the sparseness, so

k> dim(X) = dim(FX). 2)



—

Let T; := Ué-zosupp(x(j)) and S := Tp = supp(z), we have |T,,| = n and

Ti\ T4 | < [supp(a®)] = [supp()| = |S].
We claim

dim(FX) > number of times T; # Tj_1 > \S] (3)

Combining Equation (??) and (??), we have |S| > n/k. O

3 Proving RIP

Let F' be unitary and bounded. Let  C [n] be a multiset of m = O(Eﬁ2 log?n) i.i.d. uniform indices.
We have the following claim,

Claim 2. Fq = rows of F' corresponding to §2 has (k,€) RIP “in expectation”. Here “in expectation”
means considering

1
sup HI—EngsFQxSH :
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Let xZT be rows of I, so A can be written as

sup sz ST ] (4)
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3.1 Symmetrization/Gaussianization

Let ||-|| be a norm (it has convexity and triangle inequality holds) and x; ~ X independently for
any 4, we claim the following inequality holds,
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Proof. Draw x} ~ X independently, let s1,..., s, ~ {£1}, and g1,...,gm ~ N(0,1), we have
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This first and the third inequalities follow from the convexity of norm operation. The second
inequality follows from triangle inequality. The last equality is true because s;|g;| ~ N(0,1). O

Next, let ¥:={y € C" : y is k-sparse and|y||, = 1}, we can use the Symmetrization/Gaussianization
technique to transform (?7) as
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We will now bound the RHS of the (??) for every set Q via a technique called chaining. Before
introduction to chaining, let us first define a related concept called “Gaussian Process’ﬂ

4 Gaussian Process

Suppose we are given a bounded (but may be infinite) set of vectors S C R" (e.g., S can be all
k-sparse vectors with ||-||, < 1). For each vector z € S, we associate it with a random (usually
zero-mean) Gaussian variable G,. This is called a Gaussian Process. One property about {G,},es
is that we can derive concentration bounds on G, — Gy in terms of a distance measure d(z,y).
More specifically, define d(z,y) = E[(G — G,)?'/2, then G, — G, is distributed as N(0,d(z,y)?).

!We found this blog post [?] by Jelani Nelson very useful for understanding chaining methods.



As an example, let ¢ € R™ be a random vector with entries drawn i.i.d. from standard normal
distribution. We can define G, := (g, z). Then

d(z,y)* = E[(Gs — Gy)’] = E[({g,x = 9))’] = l|lz — yll3, Vz.y€S.

Since G — Gy, is distributed as N(0,d(x,y)?), we can bound it as

+2

PGy — Gyl > 1) Se e,

One nice property about Gaussian Process is that we can use chaining technique (which we will
show in the next section) to bound

Efsup Gal. (6)

zeS
Many problems can be transformed into this form of (??). For example, consider the problem of
computing E[||A||,] for a random matrix A € R™*" with entries being i.i.d. N(0,1). This problem
can be formulated as
E[  sup  y' Az,
zeSn—1, yesm-1

where S"~! = {z € R" : ||z, = 1} is the n-dimensional unit sphere. In this case, we define a
Gaussian Process on the set S = {(x,y) : x € S"~1, y € S®" 1}, with distance metric given by

d((z,y), (2',y))* = EBl(y" Az — y'T Aa')?] = E[(tr(y" Az) — tr(y'" Az'))?]
E[(tr(Azy”) — tr(Az'y™))?] = E[(tr(Azy”) — tr(Aa'y™"))?]
E

[(br(Alzy” —2'y™))% = llay” — 'y II7,

where the last equality follows from the fact each entry of A is i.i.d. standard Gaussian.

5 Chaining

Given a set S and a Gaussian process {G,}zcs, we are interested in bounding Efsup,cq Gz]. We
show how chaining techniques can be used to obtain a non-trivial bound.

5.1 Naive bound

In Homework 1, we have shown that the maximum value of n i.i.d. N(0,1) random variables scales
as v/logn. The same technique (for upper bound) can be used here to derive a bound when S is a
finite set. Suppose 0 € S, Gy = 0, then we haveE|

Elsup Gs] S maxd(z,0)v/log|S], (7)

€S

where d(z,0) = E[G2]"/? captures the radius of S under the given Gaussian process. The above
bound depends on |S|, and hence is not applicable if S is a infinite set.

2A detailed proof can be found in [?].



5.2 An e-cover

Consider an e-cover of S under the distance metric d, i.e., for every = € S, there exists a vector ¢(x)
such that d(x,c(z)) < e. Let N(S,d,¢) be the covering number. Since G, = Gy — Ge(z) + G,
we have

E[sup G| < E[sup Gz — Gezy)] + E[sup G(y))
z€S zes zes

S ev/log |5 + maxd(c(x), 0)v/1og N (S, d, €), (8)

where the last inequality follows from (??) and d(z — ¢(z),0) = d(z,c(z)) < e. The above bound
is better than (?7), however, it still depends on |S|. To remove this dependence, we can use the
same idea repeatedly by constructing a sequence of e-covers, a technique called chaining.

5.3 Chaining

The idea of chaining is to partition S into a sequence of covers at different resolutions, and then
use (??) to bound their difference. Let R = max,eg d(x,0) be the radius S under distance metric
d. Let S; C S be a R/2i-cover of S. For every z € S, let x; € S; be the closest point to x, then
d(z,r;) < R/2'. Suppose Sy = {0}, then x¢g = 0. We have

Gx = G:po + Gml - G:po + ng - G:pl +---= ZGZT - G:ET,1 = Zer—mr,l-
r=1 r=1

Let N(S,d, R/2") be the corresponding covering number, and suppose that |S;| = N (S, d, R/2?).
Then

E[sup G| < ZE[sup Gapur 1] S Z }E\/log/\/'(S, d, §)2 < /OOO log N'(S, d,u)du, (9)

z€S 1 z€S

where the second inequality uses (?7), with triangle inequality

d(zp,xpr—1) < d(z,zp) + d(z,27-1) < ?Rr + Q’”i—l — 327?7

being used to bound max,cg d(x,, z,—1). Note that |{z, — z,—1 : 2 € S} < N(S,d, %)2.

The bound given in (??) is called Dudley’s Entropy Integral. How good is this bound? It can lose
a log factor. An even tighter bound can be obtained using the generic chaining method [?, ?].
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