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Lecture 20 — November 3, 2016

Prof. Eric Price Scribe: Yitao Chen, Shanshan Wu

1 Overview

In this lecture, we are going to talk about Fourier RIP matrices, which includes the following

• Fourier Uncertainty Principle

• Proving RIP

– Symmetrization/Gaussianization

– Chaining/Dudley’s Entropy Integral

– Maurey’s Emprical Method

2 Fourier Uncertainty Principle

For x ∈ Cn, the Discrete Fourier Transform (DFT) x̂ ∈ Cn is x̂ = Fx, where Fij = ωij , ∀i, j and

ω = e2π
√
−1/n, which implies ωn = 1,

F =


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) . . . ω(n−1)2

 .

For F to be RIP matrix, we just need: F ·F ∗ = nIn and |Fij | ≤ 1,∀i, j. Also notice that Hadamard
matrix Hi,j = (−1)<i,j>, where i, j are vectors in {0, 1}logn has this property: HHT = nIn.

Lemma 1. Let x ∈ Cn be k-sparse, then we have supp(x̂) ≥ n/k.

Proof. Let x(l) be a “modulation” of x (x 6= 0), x
(l)
i = xi · ω−li. Take a look at the jth coordinate

of the Fourier transform of the modulated signal x(l), we have

(x̂(l))j = (Fx(l))j =

n−1∑
i=0

ωijx
(l)
i =

n−1∑
i=0

xi · ωi(j−l) = x̂j−l. (1)

Let X = span(x(0), x(1), . . . , x(n−1)), Equation (??) tells us the Fourier transform of X just rotates
the coordinates of X, and modulation does not change the sparseness, so

k ≥ dim(X) = dim(FX). (2)
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Let Tl := ∪lj=0supp(x̂(j)) and S := TD = supp(x̂), we have |Tn| = n and

|Tl \ Tl−1| ≤ |supp(x̂(l))| = |supp(x̂)| = |S|.

We claim

dim(FX) ≥ number of times Tl 6= Tl−1 ≥
n

|S|
. (3)

Combining Equation (??) and (??), we have |S| ≥ n/k.

3 Proving RIP

Let F be unitary and bounded. Let Ω ⊆ [n] be a multiset of m = O( k
ε2

log4 n) i.i.d. uniform indices.
We have the following claim,

Claim 2. FΩ = rows of F corresponding to Ω has (k, ε) RIP “in expectation”. Here “in expectation”
means considering

∆ := E
Ω

[
sup

S⊆[n],|S|≤k
‖I − 1

m
F TΩ×SFΩ×S‖

]
.

Let xTi be rows of F , so ∆ can be written as

∆ := E
Ω

[
sup

S⊆[n],|S|≤k
‖I − 1

m

∑
i∈Ω

xSi x
S
i
T ‖

]
. (4)

3.1 Symmetrization/Gaussianization

Let ‖·‖ be a norm (it has convexity and triangle inequality holds) and xi ∼ X independently for
any i, we claim the following inequality holds,

E
x1,...,xm∼X

[
‖ 1

m

m∑
i=1

xi − E
x∼X

[x]‖

]
≤ 2 E

x1,...,xm∼X,s1,...,sm∼{±1}

[
‖ 1

m

m∑
i=1

sixi‖

]

≤
√

2π E
x1,...,xm∼X,g1,...,gm∼N(0,1)

[
‖ 1

m

m∑
i=1

gixi‖

]
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Proof. Draw x′i ∼ X independently, let s1, . . . , sm ∼ {±1}, and g1, . . . , gm ∼ N(0, 1), we have

LHS = E
x

[
‖ 1

m

m∑
i=1

xi − E
x′

[
1

m

m∑
i=1

x′i‖
]]

≤ E
x,x′

[
‖ 1

m

m∑
i=1

(xi − x′i)‖

]

= E
x,x′,s

[
‖ 1

m

m∑
i=1

si(xi − x′i)‖

]

≤ 2 E
x,s

[
‖ 1

m

m∑
i=1

sixi‖

]

= 2 E
x,s

[
‖ 1

m

m∑
i=1

sixi E[|gi|] ·
√
π

2
‖

]

≤
√

2π E
x,s,g

[
‖ 1

m

m∑
i=1

si|gi|xi‖

]

=
√

2π E
x,g

[
‖ 1

m

m∑
i=1

gixi‖

]
.

This first and the third inequalities follow from the convexity of norm operation. The second
inequality follows from triangle inequality. The last equality is true because si|gi| ∼ N(0, 1).

Next, let Σk:={y ∈ Cn : y is k-sparse and‖y‖2 = 1}, we can use the Symmetrization/Gaussianization
technique to transform (??) as

m∆ . E
Ω,g

sup|S|≤k‖
∑
i∈Ω

gix
S
i x

S
i
T ‖

. E
Ω,g

supy∈Σk
|
∑
i∈Ω

gi 〈xi, y〉2|. (5)

We will now bound the RHS of the (??) for every set Ω via a technique called chaining. Before
introduction to chaining, let us first define a related concept called “Gaussian Process”1.

4 Gaussian Process

Suppose we are given a bounded (but may be infinite) set of vectors S ⊂ Rn (e.g., S can be all
k-sparse vectors with ‖·‖2 ≤ 1). For each vector x ∈ S, we associate it with a random (usually
zero-mean) Gaussian variable Gx. This is called a Gaussian Process. One property about {Gx}x∈S
is that we can derive concentration bounds on Gx − Gy in terms of a distance measure d(x, y).
More specifically, define d(x, y) = E[(Gx −Gy)2]1/2, then Gx −Gy is distributed as N(0, d(x, y)2).

1We found this blog post [?] by Jelani Nelson very useful for understanding chaining methods.
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As an example, let g ∈ Rn be a random vector with entries drawn i.i.d. from standard normal
distribution. We can define Gx := 〈g, x〉. Then

d(x, y)2 = E[(Gx −Gy)2] = E[(〈g, x− y〉)2] = ‖x− y‖22, ∀x, y ∈ S.

Since Gx −Gy is distributed as N(0, d(x, y)2), we can bound it as

P(|Gx −Gy| ≥ t) . e
− t2

2‖x−y‖22 .

One nice property about Gaussian Process is that we can use chaining technique (which we will
show in the next section) to bound

E[sup
x∈S

Gx]. (6)

Many problems can be transformed into this form of (??). For example, consider the problem of
computing E[‖A‖2] for a random matrix A ∈ Rm×n with entries being i.i.d. N(0, 1). This problem
can be formulated as

E[ sup
x∈Sn−1, y∈Sm−1

yTAx],

where Sn−1 = {x ∈ Rn : ‖x‖2 = 1} is the n-dimensional unit sphere. In this case, we define a
Gaussian Process on the set S = {(x, y) : x ∈ Sn−1, y ∈ Sm−1}, with distance metric given by

d((x, y), (x′, y′))2 = E[(yTAx− y′TAx′)2] = E[(tr(yTAx)− tr(y′TAx′))2]

= E[(tr(AxyT )− tr(Ax′y′T ))2] = E[(tr(AxyT )− tr(Ax′y′T ))2]

= E[(tr(A(xyT − x′y′T ))2] = ‖xyT − x′y′T ‖2F ,

where the last equality follows from the fact each entry of A is i.i.d. standard Gaussian.

5 Chaining

Given a set S and a Gaussian process {Gx}x∈S , we are interested in bounding E[supx∈S Gx]. We
show how chaining techniques can be used to obtain a non-trivial bound.

5.1 Naive bound

In Homework 1, we have shown that the maximum value of n i.i.d. N(0,1) random variables scales
as
√

log n. The same technique (for upper bound) can be used here to derive a bound when S is a
finite set. Suppose 0 ∈ S, G0 = 0, then we have2

E[sup
x∈S

Gx] . max
x∈S

d(x, 0)
√

log |S|, (7)

where d(x, 0) = E[G2
x]1/2 captures the radius of S under the given Gaussian process. The above

bound depends on |S|, and hence is not applicable if S is a infinite set.

2A detailed proof can be found in [?].
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5.2 An ε-cover

Consider an ε-cover of S under the distance metric d, i.e., for every x ∈ S, there exists a vector c(x)
such that d(x, c(x)) ≤ ε. Let N (S, d, ε) be the covering number. Since Gx = Gx − Gc(x) + Gc(x),
we have

E[sup
x∈S

Gx] ≤ E[sup
x∈S

Gx −Gc(x)] + E[sup
x∈S

Gc(x)]

. ε
√

log |S|+ max
x∈S

d(c(x), 0)
√

logN (S, d, ε), (8)

where the last inequality follows from (??) and d(x − c(x), 0) = d(x, c(x)) ≤ ε. The above bound
is better than (??), however, it still depends on |S|. To remove this dependence, we can use the
same idea repeatedly by constructing a sequence of ε-covers, a technique called chaining.

5.3 Chaining

The idea of chaining is to partition S into a sequence of covers at different resolutions, and then
use (??) to bound their difference. Let R = maxx∈S d(x, 0) be the radius S under distance metric
d. Let Si ⊂ S be a R/2i-cover of S. For every x ∈ S, let xi ∈ Si be the closest point to x, then
d(x, xi) ≤ R/2i. Suppose S0 = {0}, then x0 = 0. We have

Gx = Gx0 +Gx1 −Gx0 +Gx2 −Gx1 + · · · =
∞∑
r=1

Gxr −Gxr−1 =

∞∑
r=1

Gxr−xr−1 .

Let N (S, d,R/2i) be the corresponding covering number, and suppose that |Si| = N (S, d,R/2i).
Then

E[sup
x∈S

Gx] ≤
∞∑
r=1

E[sup
x∈S

Gxr−xr−1 ] .
∞∑
r=1

R

2r

√
logN (S, d,

R

2r
)2 .

∫ ∞
0

√
logN (S, d, u)du, (9)

where the second inequality uses (??), with triangle inequality

d(xr, xr−1) ≤ d(x, xr) + d(x, xr−1) ≤ R

2r
+

R

2r−1
=

3R

2r
,

being used to bound maxx∈S d(xr, xr−1). Note that |{xr − xr−1 : x ∈ S}| ≤ N (S, d, R2r )2.

The bound given in (??) is called Dudley’s Entropy Integral. How good is this bound? It can lose
a log factor. An even tighter bound can be obtained using the generic chaining method [?, ?].
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