Fall 2016

Lecture 5 — September 8, 2016

Prof. Eric Price

Scribe: Garrett Goble, Ziyang Tang

1 Overview

In the last lecture we took a more in depth look at Chernoff Bounds and introduced subgaussian and subexponential variables.

In this lecture we will continue talking about subgaussian variables and related random variables – subexponential and subgamma, and finally we will give a proof of famous Johnson-Lindenstrauss lemma using property of subgaussian/subgamma variables.

2 Review of Subgaussian

Definition 1. A random variable X is subgaussian with $\mu = E(X)$ and parameter σ if it satisfies any of the following 3 properties:

1. MGF:

$$E[e^{\lambda(X-\mu)}] \le e^{\frac{\lambda^2 \sigma^2}{2}}, \qquad \forall \lambda$$

2. Tail:

$$Pr[|X - \mu| > t] \le 2e^{-\frac{t^2}{2\sigma^2}}, \qquad \forall t > 0$$

3. Moments:

$$E[|X - \mu|^k] \le \sigma^k k^{k/2}, \qquad \forall k > 0$$

The above 3 properties are equivalent with constant factor.

3 Example of Coin flip

Here is an example of coin flip, we would like to use the example of its tail behavior to argue that coin flip is not a subgaussian. After that we will introduce subexponential and subgamma.

Example of Coin Flip : Let Y_i be the number of times to flip a coin until the head is up. We could see that

$$Pr[Y_i = j] = \frac{1}{2^j}, \forall j \ge 1$$

Let Z be the number of times we flip a coin until we meet with K heads. Or we could think Z as the sum of individual Y_i i.e.

$$Z = \sum_{i=1}^{K} Y_i$$

We can easily calculate that $E[Y_i] = 2$, and E[Z] = 2K, but we are interested in what Z look like.

Question: If $K = 10^6$, what will Z look like?

According to the law of large numbers, if we let K to be large, let say $K = 10^6$, Z would converge like a Gaussian with high probability to take a value from

$$2 \cdot 10^6 \pm O(10^3)$$

Suppose Z is (sub)Gaussian :

Using the tail bound we have:

$$\Pr[Z \ge 2K + t\sqrt{K}] \le e^{-\Omega(t^2)}$$

If we set $t = \sqrt{K}$, then we have:

$$Pr[Z \ge 3K] \le e^{-\Omega(K)}$$

If we set $t = K\sqrt{K}$, then we have:

$$\Pr[Z \ge K^2 + 2K] \le e^{-\Omega(K^3)}$$

But back to the definition of Z, we have:

$$\Pr[Z \geq t] \geq \Pr[Y_1 \geq t] = \frac{2}{2^t} = e^{-\Omega(t)}$$

The above two inequality would cast a contradiction! Thus we can see that Z is not subgaussian, we need a new kinds of random variable to define it.

4 Subexponential and Subgamma

We would give two new definition to random variable X if it satisfies any of the following properties.

Definition 2. A random variable X is subexponential with $\mu = E(X)$ and parameter σ if it satisfies any of the following 3 properties:

1. MGF:
$$E[e^{\lambda(X-\mu)}] \le e^{\frac{\lambda^2 \sigma^2}{2}}, \qquad \forall |\lambda| < \frac{1}{\sigma}$$
 2. Tail:

$$Pr[|X - \mu| > t] \le 2e^{-\frac{\iota}{2\sigma}}, \qquad \forall t > 0$$

3. Moments:

$$E[|X - \mu|^k] \le \sigma^k k^k, \qquad \forall k > 0$$

The above 3 properties are equivalent with constant factor.

Example :

Let $p(z) = e^{-z}, \forall z \ge 0, E(z) = 1.$ For the MGF $E[e^{\lambda(z-1)}]$, we have:

$$\begin{split} E[e^{\lambda(z-1)}] &= \int e^{-z} e^{\lambda(z-1)} dz \\ &= e^{-\lambda} \int e^{(\lambda-1)z} dz \\ &= \frac{e^{-\lambda}}{1-\lambda} \\ &= \frac{1-\lambda+\frac{\lambda^2}{2}-\frac{\lambda^3}{3!}+\dots}{1-\lambda} \\ &= 1+\frac{\lambda^2}{2}+\lambda^3(\frac{1}{2}-\frac{1}{3})+\dots \\ &\leq e^{\frac{\lambda^2}{2}}, \lambda < \frac{1}{2} \end{split}$$

We can see that z here is subexponential.

Now we introduce a more general distribution – subgamma, which has a subgaussian center and a subexponential tail. Here's the definition.

Definition 3. A random variable X is subgamma with $\mu = E(X)$ and parameter (σ, c) if it satisfies any of the following 2 properties:

- 1. MGF: $E[e^{\lambda(X-\mu)}] \le e^{\frac{\lambda^2 \sigma^2}{2}}, \qquad \forall |\lambda| < \frac{1}{c}$
- 2. Tail:

$$Pr[|X - \mu| > t] \le 2max(e^{-\frac{t^2}{2\sigma^2}, -\frac{t}{2c}}), \quad \forall t > 0$$

The above 2 properties are equivalent with constant factor and we will give a short proof here.

Proof. From 1 to 2.

$$\Pr[X - \mu \ge t] \le \frac{E[e^{\lambda(X - \mu)}]}{e^{\lambda t}} \le e^{\frac{\lambda^2 \sigma^2}{2} - \lambda t}, \forall 0 < \lambda < \frac{1}{c}$$

Since

$$\frac{\lambda^2\sigma^2}{2} - \lambda t = \frac{1}{2}(\lambda\sigma - \frac{t}{\sigma})^2 - \frac{t^2}{2\sigma^2}$$

We can divide into 2 cases and finally get that

$$Pr[X - \mu \ge t] \le e^{\frac{\lambda^2 \sigma^2}{2} - \lambda t} \le \begin{cases} e^{-\frac{t^2}{2\sigma^2}} & if \frac{t}{\sigma^2} < \frac{1}{c} \\ e^{-\frac{t}{2c}} & otherwise \end{cases}$$

Or

$$Pr[X - \mu \ge t] \le max(e^{-\frac{t^2}{2\sigma^2}}, e^{-\frac{t}{2c}})$$

Note:	This	implies	with	probability	1	—	δ
-------	------	---------	------	-------------	---	---	---

$$X \le \mu + \sigma \sqrt{2\log\frac{1}{\delta}} + C\log\frac{1}{\delta}$$

According to the definition of subgamma, we can see that

$$sugexp(\sigma) = subgamma(\sigma^2, \sigma)$$

Another property of subgamma is that any sum of 2 independent subgamma is still a subgamma.

Lemma 4. If $X \in subgamma(\sigma_1^2, c_1), Y \in subgamma(\sigma_2^2, c_2)$ independent, then $X+Y \in subgamma(\sigma_1^2 + \sigma_2^2, max(c_1, c_2))$

Proof. Assume X,Y with 0 mean. Then

$$E[e^{\lambda(X+Y)}] = E[e^{\lambda X}e^{\lambda Y}]$$

= $E[e^{\lambda X}]E[e^{\lambda Y}]$
 $\leq e^{\frac{\lambda^2 \sigma_1^2}{2}}e^{\frac{\lambda^2 \sigma_2^2}{2}}, \lambda < \frac{1}{max(c_1, c_2)}$
= $e^{\frac{\lambda^2(\sigma_1^2 + \sigma_2^2)}{2}}$

5 Back to Coin Flip

Let Y_i be the number of times to flip a coin until the head is up. We have

$$\Pr[Y_i > t] \le \frac{2}{2^t}$$

So $Y_i \in subexp(O(1)) = subgamma(O(1), O(1))$

Since the sum of subgamma is still subgamma, we will have $Z = \sum_{i=1}^{K} Y_i \in subgamma(O(K), O(1))$. Using the tail bound of subgamma, we have:

$$Pr[z \ge 2K+t] \le e^{-\frac{1}{2}min(\frac{t^2}{K},t)}$$

Here we can see that Z is approximately a Gaussian with \sqrt{K} deviations.

6 Distinct element problem

We had $Pr[Y > t] = (1-t)^n \le e^{-tn}$ therefore Y is $subexponential(\Theta(\frac{1}{n})) = subgamma(\frac{1}{n^2}, \frac{1}{n})$.

$$\begin{split} \sum_{i=1}^{m} Y_i &= subgamma(\frac{m}{n^2}, \frac{1}{n}) \\ \hat{Y} &= \frac{1}{m} \sum_{i=1}^{m} Y_i = subgamma(\frac{1}{n^2}, \frac{1}{nm}) \\ Pr[|\hat{Y} - \mu| &\geq \frac{\epsilon}{n}] \leq 2e^{-min(\frac{\epsilon^2 m}{2}, \frac{\epsilon m}{2})} = 2e^{-\frac{\epsilon^2 m}{2}} \end{split}$$

Therefore $m = O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$ for δ failure. Therefore we do not need to split all of our elements into separate buckets.

Remark: If $X \in subgaussian(\sigma^2)$ and $Y = X^2 \in subexponential(O(\sigma^2))$ then

$$Pr[|X| \ge t] \le 2e^{-\frac{t^2}{2}}$$

$$Pr[Y \ge t] \le 2e^{-\frac{t}{2}}$$

$$Pr[|Y - E[Y]| \ge t] \le 2e^{-\frac{t - O(1)}{2}} = 2e^{-\Omega(t)}$$

7 Johnson-Linderstrauss Lemma

Now we move to Johnson-Linderstrauss Lemma(JL-lemma).

At first we would like to see if $X \in subgaussian(\sigma^2)$, how is X^2 behave.

Let $Y = X^2$, and let us assume X has zero mean. According to tail bound, $Pr[|X| \ge t] \le 2e^{-\frac{t^2}{2}}$, Or we can rewrite it as $Pr[Y \ge t] \le 2e^{-\frac{t}{2}}$, with centralize with mean of Y which we can consider as a constant, we have $Pr[|Y - E(Y)| \ge t] \le 2e^{-\frac{t-O(1)}{2}} \le 2e^{-\Omega(t)}$

So far we can conclude that $Y = X^2 \in subexponential(O(\sigma^2))$

Now we will see JL-lemma.

Lemma 5. (Johnson-Linderstrauss, 1984) Let $X_1, X_2, ..., X_n \in \mathbb{R}^d$, there exist $Y_1, Y_2, ..., Y_n \in \mathbb{R}^m$ such that

$$\forall i, j \in [n], \|Y_i - Y_j\|_2 \in (1 \pm \epsilon) \|X_i - X_j\|_2$$

With $m = O(\frac{\log n}{\epsilon^2})$, not dependent on d!

To prove JL-lemma, we need first to show a similar lemma:

Lemma 6. ((linear) Distributional JL-lemma) There exist a distribution on $A \in \mathbb{R}^{m \times d}$ with $m = O(\frac{1}{\epsilon} \log \frac{1}{\delta})$ such that:

$$\forall x \in R^d, \|Ax\|_2 \in (1 \pm \epsilon) \|x\|_2$$

with $1 - \delta$ probability over A.

We first show if we have Distributional JL, how we can prove JL-lemma.

Proof. (DJL \Rightarrow JL) Let construct $Y_i = AX_i$. We will have for some i,j

$$||Y_i - Y_j|| = ||A(X_i - X_j)|| \in (1 \pm \epsilon) ||X_i - X_j|| \ w.p. \ 1 - \delta$$

 So

$$||Y_i - Y_j|| \in (1 \pm \epsilon) ||X_i - X_j||, \forall i, j, w.p. \ge 1 - n^2 \delta$$

Just set $\delta = \frac{1}{2n^2}$ we will get valid Y_i .

Now we would like to see how to prove for DJL-lemma.

Proof. (DJL-lemma): Let A have i.i.d subgaussian(O(1)) entries with variance 1 and zero mean. For any $X \in \mathbb{R}^d$,

$$Y_i = (AX)_i = \sum_j A_{ij} X_j$$

Then we have

$$E[Y_i^2] = E[\sum_j A_{ij}^2 X_j^2 + \sum_{j \neq k} A_{ij} A_{ik} X_j X_k] = E[\sum_j X_j^2] = ||X||^2$$

Thus

$$E[\|AX\|_2^2] = m\|X\|^2$$

Since $A_{ij} \in subgaussian(O(1))$, we can see $A_{ij}X_j \in subgaussian(O(X_j^2)), Y_i = \sum_j A_{ij}X_j \in subgaussian(O(||X||_2^2))$

We care about $||AX||_2^2$, which can be rewrite as

$$|AX||_2^2 = ||Y||_2^2 = \sum_i Y_i^2$$

And $Y_i \in subgamma(||X||_2^4, ||X||_2^2)$ as the section begins we have showed. So $||Y||_2^2 \in subgamma(m||X||_2^4, ||X||_2^2)$. Finally we have:

$$Pr[|||Y||_{2}^{2} - E[||Y||_{2}^{2}]| > \epsilon m ||X||_{2}^{2}] < 2e^{-\frac{1}{2}min(\epsilon^{2}m,\epsilon m)}$$
$$= 2e^{-\frac{1}{2}\epsilon^{2}m}$$
$$< \delta, \ if \ m > O(\frac{1}{\epsilon^{2}}\log\frac{1}{\delta})$$

Just this week, Larsen and Nelson showed that $O(\frac{1}{\epsilon^2}\log n)$ is optimal!