
CS 395T: Sublinear Algorithms Fall 2016

Lecture 7 — Sept. 15, 2016

Prof. Eric Price Scribe: Zhao Liu, Changyong Hu

1 Overview

In today’s lecture, we will discuss the following problems:

1. Count-Min Review [CM05]

2. Count-Sketch [CCF02]

3. Fourier analysis of Count-Sketch [MP14]

2 Count-Min Review

Sketch:

Consider the problem for finding heavy hitters of a histogram x of a data stream, i.e. the k most
frequent items (xk is large). Assume the items are turnstile in [n]. Last time, we use R different
hashes y(r) (r = 1, ..., R) with each y(r) served as a counter of size B = O(k). This is equivalent
to think about storing a “table” with R rows and B columns. Each row of the table stands for a

counter y(r), and a counter y
(r)
i for each cell (r, i) of the table. The following is a summary:

1. Choose R pair-wise independent hash functions h1, h2, · · · , hR : [n]→ [B].

2. For each hash function hr, the counters y
(r)
i =

∑
u,hr(u)=i

xu, where r ∈ [R], i ∈ [B].

This is a linear function of x, so it can be expressed as a matrix. Given y, because it’s an overesti-
mate, in order to let failure probability decay exponentially, our recovered estimate x̂ of x is taken
as the minimum of each hash.

Recovery Algorithm

1. In each row, estimate x̂
(r)
u = y

(r)
hr(u).

2. Overall, estimate x̂u = minr x̂
(r)
u .

The error and space for count-min is

‖x̂− x‖∞ ≤
‖x− xk‖1

k
with probability 1− 1

n
, spaceof O(k log(n)).

1

The intuition of this algorithm is trying to separate large terms from small terms and making use
of sparsity. We briefly review the analysis of error here:

Analysis:

Let H = {1, · · · , k} be the indices of k most frequent elements and T = {k+ 1, · · · , n} be the rest.
For a particular hash function hr and element i:

|x̂(r)
i − xi| =

∑
j∈H,hr(i)=hr(j)

xj +
∑

j∈T,hr(i)=hr(j)

xj

≤ 0︸︷︷︸
with probability 1− k

B

+ ‖xT ‖1/B︸ ︷︷ ︸
in expectation

≤ 0︸︷︷︸
with probability 9

10

+
‖xT ‖1
k︸ ︷︷ ︸

with probability 9
10

if we set B = 10k. Thus for each r and i, by a union bound we have

x̂
(r)
i − xi = |x̂(r)

i − xi| ≤
‖xT ‖1
k

with probability
8

10
.

This implies that

x̂i = min
r

x̂
(r)
i ≤ xi +

‖xT ‖1
k

with probability 1− (
1

5
)R

Choose R = O(log n), then

BR = O(k log n), 1− (
1

5
)R = 1− n−c, where c is a constant value.

What if some coordinates are negative? For some error σ = O(‖xT ‖1/k), we still have Pr[|x̂(r)
i −

xi| ≤ σ] ≥ 4
5 . Then after R samples, with 1− e−O(R) probability we will have that at least n

2 of the

x̂
(r)
i will land in xi ± σ. Their median then lands in that region. So ”count-median” will work in

this case.

3 Count-Sketch

3.1 Problem

Suppose x has one large element (O(n)) and n−1 small elements (O(1)). With count-min algorithm:

• x̂u ≈ n
B if xu is not the big element.

• x̂u ≈ C + n
B if xu is the big element.

Then the error will approximately be ‖x̂− x‖∞ ≈ n
B . We want to get a more precise estimation of

error like, for example,
√

n
B .

2

3.2 Setup

The idea of count-sketch is to introduce random signs in the summation, so that the errors tend to
cancel each other out. For example, think about the case when the O(1) elements are ±1 in the
count-min algorithm. Then x̂u has mean 0 (or c) and standard deviation of O(

√
n
B) (because x̂u is

sum of about n
B xi’s.)

Sketch:

1. Choose R pair-wise independent hash functions h1, h2, · · · , hR : [n] → [B] and s1, . . . , sR :
[n]→ {±1}. For each hash function hr, we need B counters.

2. ∀r ∈ [R], ∀i ∈ [B], y
(r)
i =

∑
u,s.t.hr(u)=i

sr(u)xu.

It is a linear function of x, which can be expressed as a matrix (with random entries in {±1}).
Given y, we recover our estimate x̂ of x by:

Recovery Algorithm

1. In each row, estimate x̂
(r)
u = sr(u)y

(r)
hr(u).

2. Overall, estimate x̂u = median
r∈[R]

x̂
(r)
u .

The only difference from Count-Min is the introduction of random signs sr, and the use of the
median for estimation. As follows, we estimate its error.

3.3 Analysis of error

First, let’s bound the term |x̂(r)
u − xu| for any r ∈ [R] by upper bounding its variance:

E[(x̂(r)
u − xu)2] = E[(

∑
u′ 6=u,h(u′)=h(u)

xu′ · sr(u′) · sr(u))2]

= E[
∑

u′ 6=u,h(u′)=h(u)

xu′
2 · 1h(u′)=h(u) +

∑
u′ 6=u′′ 6=u,h(u′)=h(u′′)=h(u)

xu′xu′′sr(u
′)sr(u

′′)]

=
1

B
·

∑
u′ 6=u,h(u′)=h(u)

x2
u′

≤ ‖x‖
2
2

B

where the third equality follows from pairwise independence of sr. Applying Chebyshev Inequality,

Pr
[
|x̂(r)
u − xu| ≤

2‖x‖2√
B

]
≥ 3

4

3

But the above upper bound is not optimal. It is reasonable to think that after applying median,
as R→∞, the error will converge to 0.

We claim that usually, we have

|x̂(r)
u − xu| �

‖x‖2√
B

To show this claim and estimate the error, we start with considering a simplified example: sampling
from independent normal distribution. Let z1, z2, · · · , zR ∼ N(0, 1), z∗ = median

r∈[R]
zr. How will the

median z∗ decay with R? Let Vr := 1{event zr≥ε}. Because zr’s are symmetric,

Pr[|z∗| > ε] ≤ 2Pr[z∗ > ε] ≤ 2Pr[at least
R

2
of zr are ≥ ε]

E[Vr] =Pr[zr ≥ ε]

=
1

2
· Pr[0 ≤ zr ≤ ε]

=
1

2
− Ω(ε)

where the last equality follows from Pr[0 ≤ zr ≤ ε] =
∫ ε

0
1√
2π
e−

t2

2 dt ≈ O(ε√
2π

). Therefore,

E[
∑

Vr] ≤ R(
1

2
−Θ(ε))

From Chernoff bound,

Pr
[∑

Vr − E[
∑

Vr] ≥ Θ(εR)
]
≤ e−

ε2R2

2R

Thus we have

Pr[|z∗| ≥ ε] ≤ Pr
[∑

Vr ≥
R

2

]
≤ 2e−Θ(ε2R)

We can set ε = 1√
R

for constant probability.

If the random variables zr are not Gaussian, with some appropriate conditions (symmetric and
concentration of probability around 0), following similar arguments as above, we have

Theorem 3.1. Let zi be independent variables symmetric around 0, with E[zi
2] = 1 and Pr[|zi| ≤

ε] & ε for any ε less than some constant, then their median

|z∗| . 1√
R
with

3

4
probability.

Back to our case, let z(r) = x̂
(r)
u −xu =

∑
u′=u,h(u′)=h(u)

xu′ ·sr(u′) ·sr(u). These are symmetric random

variables. To satisfy the conditions of above theorem, one can resort to Fourier Analysis described
below.

4

4 Fourier Analysis of Count-Sketch[MP14]

You can actually give a tighter analysis of Count-Sketch, which shows that most coordinates are
estimated to higher precision, if your hash functions are fully independent. As we described in
an earlier class, the assumption of fully independent hash functions is unfortunate, but it can
be justified using cryptographic hash functions and computational assumptions on the adversarial
input, or assuming the input has high entropy.

Note that the details of this analysis also can be found in Eric Price’s presentation slide of
SODA’2015. Here is the link : http://www.cs.utexas.edu/ ecprice/slides/concentration-slides.pdf.

Theorem 4.1. Let z be symmetric random variable and E[z2] = 1, if Fz(t) ≥ 0,∀t, then

Pr[|z| ≤ ε] & ε

Theorem 4.2. Assume that h and s are fully independent hash functions, and consider the output
x̂ of Count-Sketch. Then ∀t ≤ R, we have

|x̂i − xi| ≤
√

t

R
· ‖xT ‖2√

k

with probability 1− e−Ω(t).

This implies that E[x̂i − xi] ≤ 1√
R
· ‖xT ‖2√

k
after excluding e−Ω(R) events.

Theorem 4.3. For any set S of size K,

Pr
[
‖x̂s − xs‖2 ≥ O(c) ·

√
K

R
· σ
]
≤ 1

Kc
for any c > 0.

References

[CCF02] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding Frequent Items in Data
Streams. ICALP, 2002.

[CM05] Graham Cormode and S. Muthukrishnan. Summarizing and Mining Skewed Data Streams.
SDM, 2005.

[MP14] Gregory T. Minton and Eric Price. Improved Concentration Bounds for Count-Sketch
SODA(best student paper) 2014.

5

