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Lecture 10: More Heavy Hitters: Count-Min and Count-Sketch
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NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture, we discussed how to estimate the mean of a random variableX using an estimator
that does not depend on the choice of ε when X is symmetric. The main insight was that, although
the median does not in general work, the median of pairwise means does. To analyze this estimator,
we used Fourier analysis.

In this lecture, we will continue analyzing Heavy Hitter algorithms. We will provide an improved
analysis of the Count-Min sketch, and discuss how to improve these guarantees further using the
Count-Sketch.

2 Improved analysis for Count-Min

Goal: given a stream u1, . . . , uN ∈ [n], construct a estimate x̂ of the histogram of the stream
x ∈ Rn, where xu = |{ui : ui = u, i ∈ [N ]}|.

2.1 Count-Min algorithm

Note: The Count-Min algorithm assumes a strict turnstile model, since the analysis assumes the
final histogram x ≥ 0.

In order to obtain an estimate for x, pick independently R pairwise independent hash functions
h : [n]→ [B], for parameters R and B to be chosen. The algorithm will then store R linear sketches
y ∈ RB of x, where the jth entry in the ith sketch is given by:

y
(i)
j =

∑
u:hi(u)=j

xu (1)

Storing these sketches will require O(RB) space. To obtain our final estimator x̂, we compute, for
each u ∈ [n],

x̂u = min
i∈[R]

y
(i)
hi(u)

2.2 Sketch of analysis from last time

Last lecture, we proved the following guarantee for Count-Min:
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Lemma 1. Take x̂ ∈ Rn to be the estimate of x output by Count-Min, using R sketches each of
length B. If we choose R = 2 log n, then with probability 1− 1

n ,

‖x̂− x‖∞ ≤
2‖x‖1
B

(2)

Proof sketch. Observe that, in a strict turnstile model, y
(i)
hi(u)

is an estimate of xu plus some addi-

tional terms xu′ . In particular, denoting x̂
(i)
u = y

(i)
hi(u)

, we have that:

xu ≤ x̂(i)u = xu +
∑
v 6=u

hi(v)=hi(u)

xv (3)

Therefore, by pairwise independence of the hash functions,

E[x̂(i)u − xu] =
∑
v

E[xv1{v 6= u, hi(v) = hi(u)}]

≤
∑
v

xv P(hi(v) = hi(u))

=
‖x‖1
B

. (4)

As a consequence, by Markov’s inequality, x̂
(i)
u ≤ xu + 2‖x‖1B with probability at least 1

2 . Therefore,
the by taking the minimum of all of our estimators, we may boost the success probability to 1− 1

2R
.

So, if we take R = 2 log n, then ‖x̂− x‖∞ ≤ 2‖x‖1
B with probability 1− 1

n .

2.3 Sparsity-aware bounds

Suppose that the histogram x ∈ Rn only has a few non-zero coordinates. As an example, suppose
that we wish to estimate the number of votes in an election, where the vast majority of voters select
only one of two candidates. Is it possible to obtain error bounds that are independent of the large
coordinates?

In this lecture, we will show the following:

1. ‖x̂ − x‖∞ ≤ O
(
‖x−Hk(x)‖1

k

)
with O(k log n) space (where Hk(x) denotes the largest k coor-

dinates of x). Recall that we saw how to do this previously in the insertion-only model using
the FrequentElements algorithm.

2. ‖x̂− x‖∞ ≤ O
(
‖x−Hk(x)‖2√

k

)
. We will discuss in class and in the homework why this `2 norm

bound is much better than the `1 norm bound.

3. Fast recovery, but O(k log2 n) space.
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2.3.1 `1-error guarantee

Lemma 2. Let x̂ ∈ Rn be the estimate of x output by Count-Min, and let Hk(x) denote the largest
k entries of x. If we choose R = O(log n) and B = O(k), then with probability 1− 1

n ,

‖x̂− x‖∞ ≤
‖x−Hk(x)‖1

k

Proof. In order to obtain an error bound that scales with ‖x−Hk(x)‖1, there must be zero error
when there are less that k nonzero values. Now, recalling the decomposition from our previous
analysis in Equation 3, and denoting H ⊂ [n] as the indices of the top k values of x, we may write:

x̂[i]u − xu =
∑
v 6=u

hi(v)=hi(u)

xv

=
∑
v 6=u

hi(v)=hi(u)
v∈H

xv

︸ ︷︷ ︸
EH

+
∑
v 6=u

hi(v)=hi(u)
v 6∈H

xv

︸ ︷︷ ︸
ET

Now, EH is the HeavyHitter contribution, and ET is the tail contribution. If there are ≤ k nonzero
entries in x, then ET = 0. Thus, we want to show that the HeavyHitter contribution, EH , is
zero with constant probability. This follows by observing that, by a union bound and pairwise-
independence of the hash functions,

P(EH 6= 0) ≤ P(∃v ∈ H \ {u} : hi(v) = hi(u))

≤ k

B

Thus, by taking B = 4k, P(EH = 0) ≥ 3
4 . We may bound the tail error ET in the same way as the

original analysis of Equation 4, we may bound the expectation of the tail error as:

E[ET ] ≤
∑
v 6∈H

xv P(hi(v) = hi(u))

=
‖x−Hk(x)‖1

B

Thus, by Markov’s inequality:

P
(
ET ≥

4‖x−Hk(x)

B

)
≤ 1

4

Combining our results, we have that, since B = 4k,

P
(
x(i)u − xu ≥

4‖x−Hk(x)‖1
B

)
= P

(
x(i)u − xu ≥

‖x−Hk(x)‖1
k

)
= P

(
EH + ET ≥

‖x−Hk(x)‖1
k

)
≤ P(EH 6= 0) + P

(
ET ≥

‖x−Hk(x)

k

)
≤ 1

2

3



Thus, taking the minimum over our R estimators as before, we have that

P
(
x̂u − x ≥

‖x−Hk(x)‖1
k

)
≤ 1

2R

with RB = 4Rk words. In particular, ‖x̂−x‖∞ ≤ ‖x−Hk(x)‖1k with probability 1− 1
n using O(k log n)

words.

2.3.2 Comparing `1 and `2-error guarantees

There is a problem, however, with the `1-error guarantee that we’ve just obtained. In many real-
world data streams, the coefficients decay at a rate of i−α, for α ∈ (0.5, 1). Several examples are
shown in Figure 1. This rate of decay is problematic because, while ‖x−Hk(x)‖1 is not summable

Figure 1: Coefficient decay in three example signals of different domains. In each example, the
largest coordinate has magnitude decaying as i−α for α ∈ (0.5, 1). This plot is taken from the
following book chapter.

in this regime, ‖x−Hk(x)‖2 is. In particular, if xi = x1i
−α for α < 1, then

‖x−Hk(x)‖1 =

n∑
i=k+1

xi

=

n∑
i=k+1

x1i
−α

≈ x1
∫ n

k
i−αdi

=
x1

1− α
(
n1−α − k1−α

)
= Θ(x1n

1−α)

Therefore, our error bounds on ‖x̂− x‖∞ are only ‖x−Hk(x)‖1k ≈ n1−αx1
k . So we need k = n1−αcα to

have error less than x(c). However, if instead, we could achieve an error bound scaling with the `2
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norm as ‖x−Hk(x)‖2√
k

, then on this range of α ∈ (0.5, 1), we have that

‖x−Hk(x)‖22 =
n∑

i=k+1

x2i

= x21

n∑
i=k+1

i−2α

≈ x21
2α− 1

(
1

k2α−1
− 1

n2α−1

)
= Θ

(
x21

k2α−1

)
Therefore,

‖x̂− x‖2∞ ≤ O
(
x21
k2α

)
= O

(
x2k
)

so we need only that k = c in order to estimate x(c) within constant factors.

Several additional notes:

� Cannot obtain better results that aren’t implied by 2-norm bounds using logarithmic space

� `1 bound is attainable deterministically (for example, the FrequentElements), whereas the `2
bound requires randomization.

3 Count-Sketch: from `1 to `2 bounds

In this section, our goal remains the same: estimate the histogram x ∈ Rn of a data stream. The
algorithm will be quite similar to the Count-Sketch. We hope to improve the dependence on the
`1 norm to a dependence on `2 norm.

3.1 Count-Sketch algorithm

Note: Unlike in the Count-Min sketch, this algorithm works in the non-strict turnstile model,
where the final histogram may have positive or negative entries.

As before, we choose independently h1, . . . , hR : [n] → [B] pairwise independent hash functions,
and additionally choose independently s1, . . . , sR : [n]→ {±1} pairwise independent random signs.
The algorithm will then store R linear sketches y ∈ RB of x, where the jth entry of the ith sketch
is now given by

y
(i)
j =

∑
u:hi(u)=j

xusi(u).
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The algorithm will then output the estimate

x̂u = mediani∈[R]y
(i)
hi(u)

si(u)

Compared with Equation 1, the only difference in the stored values is the random signs that are now
being used. As before, the algorithm will need O(RB) space. Observe that, because each estimate

x̂
(i)
u = y

(i)
hi(u)

is no longer an upper estimate of xu, we cannot choose the minimum estimate as our
final estimator.

In contrast to the Count-Min sketch, the Count-Sketch does not require the strict turnstile model.

3.2 Count-Sketch analysis

Lemma 3. Let x̂ ∈ Rn be the estimate of x output by Count-Sketch, with R = O(log n) and
B = O(k). Then, with probability 1− 1

n ,

‖x̂− x‖∞ ≤
‖x−Hk(x)‖2√

k

Observation 1. As we show in Homework 4 problem 2, the guarantee in Lemma 3 is a strictly
better guarantee than Lemma 2.

Proof of Lemma 3. Let us denote x̂
(i)
u = y

(i)
hi(u)

si(u). Unlike in our estimate for Count-Min, our esti-

mate of xu is an unbiased estimate (recall that the estimate used in Count-Min was an overestimate
of xu). In particular, we have that

x̂(i)u = xu +
∑
v 6=u

hi(v)=hi(u)

xvsi(v)si(u)

Hence, by pairwise independence, and by an application of the tower rule of expectation,

E[x̂(i)u ] = xu

As before, we will split the error into two terms: error due to the heavy hitters, and the error due
to the tail. Indeed, letting H ⊂ [n] be the set of k heavy hitters, we may write

x̂(i)u − xu =
∑
v 6=u

hi(v)=hi(u)
v∈H

xv

︸ ︷︷ ︸
=EH

+
∑
v 6=u

hi(v)=hi(u)
v 6∈H

xv

︸ ︷︷ ︸
=ET

Now, as before,

P(EH 6= 0) ≤ P(∃v ∈ H \ u : hi(v) = hi(u)) ≤ k

B
=

1

20

if B = 20k. Thus, it suffices to bound ET . We have that

P(|ET | > τ) = P(E2
T > τ2)

≤ E[T 2]

τ2
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Now,

E[E2
T ] = E

h,s




∑
v 6=u

hi(v)=hi(u)
v 6∈H

xvsi(v)si(u)


2

= E
h,s


∑
v 6=u

hi(v)=hi(u)
v 6∈H

x2v +
∑

v 6=v′ 6=u
hi(v)=hi(u)=hi(v

′)
v,v′ 6∈H

xvxv′ si(v)si(v
′)︸ ︷︷ ︸

pairwise independent
=⇒ E[·]=0

si(u)2︸ ︷︷ ︸
=1


≤ ‖x−Hk(x)‖22

B

Therefore,

P
(
|ET | >

‖x−Hk(x)‖2√
k

)
≤ k

B
=

1

20

Combining these two results establishes that

P
(
|x̂(i)u − xu| ≥

‖x−Hk(x)‖2√
k

)
≤ 1
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We may now apply a Chernoff bound to obtain

P
(
|x̂u − xu| ≥

‖x−Hk(x)‖2√
k

)
≤ P

∑
i∈[R]

1

{
|x̂(i)u − xu| ≥

‖x−Hk(x)‖2√
k

}
≥ R

2


≤ exp(−Ω(R))

Hence, setting R = O(log n), ‖x̂− x‖∞ ≤ ‖x−Hk(x)‖2√
k

with probability 1− 1
n .

Question: Suppose that we do not care about the worst case error ‖x̂− x‖∞, but only the error

for some fixed u. Can we give a better bound than |x̂u − xu| ≤ ‖x−Hk(x)‖2√
k

? How big is it usually?

Idea: Exploit symmetry of x̂
(i)
u , as discussed in the last lecture.

Indeed, if h, s are fully independent, then x̂
(i)
u is symmetric about xu, and additionally, the Fourier

transform F(x̂
(i)
u −xu) is nonnegative. Thus, we can show that the median value x̂u = mediani∈[R]x̂

(i)
u

converges to xu as R→∞.

In particular, this implies that

P

(
|x̂u − xu| ≥

‖x−Hk(x)‖2√
k

√
t

R

)
≤ exp(−Ω(t))

When t = R, then this is the same bound as before, but gives better concentration with lower
probabilities. Hence, if we don’t care about the worst-case error ‖x̂− x‖∞, but only the error in a
few fixed coordinates of x, then the error will usually be a factor of

√
log n smaller than the worst-

case error. The downside of this argument, however, is that the proof requires full independence.
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