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Lecture 19: Sparse Matrices & RIP
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NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Sparse Matrices & RIP

We have seen in the homework that no sparse matrices have RIP-2, i.e. V k-sparse z,

[Az]l2 = (1 % e) |2

But we can have sparse matrices have RIP-1: V k-sparse x

[Az]1 = (1 % )|zl

Constructions Consider random A € {0, 1}"*™ subject to d = O(logn) entries of 1 per column
has (normalized) RIP-1: Vx k-sparse,

(1= edllzfy < [[Az|[y < d]jz[ly

Lemma 1. A € {0,1}™*" 4s RIP-1 with sparsity d if and only if A is adjacency matriz of a
d-regular bipartite expander (with n nodes on left and m nodes on right).

Bipartite expander: ¥S C [n] on left, |S| < k, |[N(S)| > (1 — €)d|S]|.

Claim 2. With random graph: d 2, %log%, m 2 6%llog% = %kd suffices. We also have explicit
graph with d = log n(@)”é, m = k'T%d? that satisfies RIP-1.

Lemma 3. Random Graph with d 2 élog%, m 2 e%llog% = %kd is an expander with high
probability.

Proof.

P[random graph is not expander]
=P[35,[5] =k, [N(5)] < (1 —€)d|S]]

< <Z>IP’[HS, S| = & has [N(S)| < (1 — €)kd]

Consider the following balls and bins problem: kd balls placed randomly among k?d bins.

€ \ kd
P[bin 7 is empty] = (1 - @) ~ exp(—e¢)



So
. kd
E[# of non-empty bins] = —(1 — exp(—¢)) = kd(1 — O(¢)),
€
which is good. But we need high probability bounds.
Define X; the indicator of the event that the j-th ball collides with previous balls. We have
PX;=1]|bals1,---,j—1] <e.
We can then apply Chernoff bound as
Elexp (A Y X; || = ] Elexp(AX;) | balls 1,--,j — 1] < (eexp(A) + 1 — €)*,
j€lkd] j€lkd]

With multiplicative Chernoff bound, we have

kd
P Z X; > 2¢ekd] < exp (—63) ,

J€lkd]

and thus

PIN(S)| < (1 = 2ekd)] < oxp (~ 5 ) = exp (-6 (k1og | )

By choosing proper constant and union bound, we have the desired result with high probability. [

2 Sequential Sparse Matching Pursuit

Given y = Ax, x is k-sparse. We want to do the /1 sparse recovery, by picking («,i), s.t. & + «e;
is a bit closer to x than 0. A natural way is picking («, ) minimizes

Iy — A2) — Alae)lly = Iy — A2) — aaili (A= (ar, a2, ,an))
Can we repeat the {1 minimization to do the sparse recovery?

Lemma 4. Let Z =3, Z;, s.t. Y. || Zill1 < 12 |1z]h, then 3i, s.t. ||z — z]l1 < (1 — 152)|12h.

As y=> mja; and |lyl[1 > d(1 —e)||z|l2 = (1 —€) > ||zia;il]|1. We have

| =<1 ! [yl
—aa; - — .
Yy il > 2% Yl

Define y?) = y — aq; the residual after first round. And we have

1
L e ) L



Algorithm 1 Sequential Sparse Matching Pursuit (SSMP)
INPUT: y = Az + u € R™, A random sparse RIP-1 binary matrix.
Initialize z() = 0.
fori=1,---,L =0(log %Hi) do
fort=1,---,16k do
Pick (v, ) via minimizing ||y — Az(") — aal);.
(Mt e 4 aa;.

end for
2+ = Hy ({0,
end for

After r repetitions with RIP-1 of order (k + r), we have

VE+1)(2k+2r—1) 1
2k + 2r e

ly ™) <

if » = ck. But we can do hard thresholding;:

lz = He(z™) 1 < llz = 2@l + [la” = Hi(@)|h < 2z — 20|y
With the discussion above, we know that each of the inner loop have that
1
o =2l < Sl ="l
and after the hard thresholding, we have

1
Iz =2V < 5l = 2.

Theorem 5. If A has (O(k), %)-RIP, for Sequential Sparse Matching Pursuit, we have

~L —-L
127 =2l <277 |[z[ly + O([lull1)

For time complexity, we first focus on the inner loop of the algorithm. A naive implementation
would require O(nlogn) time for solving the minimization in the inner loop (i.e. the n part comes
from searching through basis e; and logn part comes from determining proper «). The overall
complexity would be O(knlog?n).

However, notice that from the random graph construction, each time we add a new ae;, it would
affect d elements of y, which in turn will affect the estimation of O(%d) basis e;. Therefore the
complexity of the minimization in the inner product is around O(% log? n), which leads to an overall
complexity of O(n log@™) n) which is nearly linear in n.



