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Lecture 9: On Estimation of Symmetric Random Variables
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1 Overview

In the last lecture we analyzed the FrequentElements and Count-Min Sketch algorithms.

In this lecture we will analyze symmetric random variables, and their concentrations, which will
give us bounds for the CountSketch algorithm.

2 Estimate mean of symmetric random variables

Let = be a random variable over R that is symmetric about some unknown g, with variance 2.

Given samples x1,x2," -+ , X, of x, how do we estimate u?

e The empirical mean requires O (%) samples to generate [ satisfying |1 — p| < g0 with
probability > 1 — 6.
e The median-of-means algorithm requires O (6% log %) samples to guarantee [ satisfying |z —

u| < eo with probability > 1 — ¢.
However, the median-of-means algorithm requires us to decide on € and § in advance. Can we give

an algorithm that works simultaneously for all €7

The guarantee we want is:

fi such that P[|i — u| > eo] < exp (=9 (e*m)) Ve simultaneously.

In general, this cannot be done. However, when the variables are symmetric, then we can create
an estimator that works simultaneously for all .

2.1 Warmup

As a warmup, let’s consider a univariate Gaussian. For ¢ sufficiently small, we have

3

Pllzi — pl > o] =1 =P[|X; — p| < eo] = T

< Q(e).

™

Define the indicator random variable z; = 1|z; — pu| > eo.



From the previous inequality, we have

This gives

P[|median; xz; — p| > eo| = ]P’[Z Zi 2> g],

S 6—9(627’1).
This shows that the median of a univariate Gaussian is a good estimator of the mean, for all ¢.

2.2 For general symmetric random variables

In the previous analysis, we only required
Pllz — pu| < eo] 2 eVe < 1.
This is not true in general for all symmetric random variables.
This raises the following question: given z1,--- ,x,, can we construct =’ such that

Plla’ — | < 0] 2 <.

Using the following claim and the previous analysis, we can conclude that

L2141 + X242

medianie [n/2] B) s

will give a good estimate of the mean.

Note that is a simpler version of the Hodges-Lehmann estimator [?].

Claim 1. If x1,x2 are i.i.d. and symmetric, then

;1 X2
T=—
satisfies
Plla’ — p| < eo] 2 e.

We now prove the claim.

Proof. Let .
Fm (t) — E[eﬂwzt]

T

denote the Fourier Transform of the random variable .

Since z is symmetric, we have

F,(t) = E[cos(2mzt)],

T



which is a real valued function.

By the definition of 2/ = 1122 we have

.|
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)
~
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Fu(t) =2 >0,

which is non-negative everywhere because F, is real-valued.
The following Lemma completes the proof:

2

Lemma 2 ([?]). For anyy such that F,(t) > 0 symmetric about 0, var(y) = o*, we have

Ve < 1,P[ly| < eo] > Q(e).

Proof of Lemma ?7. Since y is symmetric about 0, we have

Fy(t) = Efeos(2myt)] > E[1 - (2”23”)2] =1 27%%2

Define the rectangular function
rect(y) = 1{ly| < eo},

and the corresponding triangular function

tri(y) = 1{ly| <eco}.

Note that the triangular function has a Fourier transform of

o t=0,

2 rot

sin
(wot)?

G(t) = eosinc®(wot) := {

o otherwise.

We have

Plly| < eo] =

where the last bound follows since F), is a parabola that is greater than constant for a width of
©(1) and the Fourier transform of the triangle function has a value greater than (0’ over a width
of O(1).
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