
Autonomous Model Management via Reinforcement
Learning - Extended Abstract

Elad Liebman
The Univ. of Texas at Austin

CS Department
eladlieb@cs.utexas.edu

Eric Zavesky
AT&T Research

ezavesky@research.att.com

Peter Stone
The Univ. of Texas at Austin

CS Department
pstone@cs.utexas.edu

ABSTRACT
Concept drift - a change, either sudden or gradual, in the underlying
properties of data - is one of the most prevalent challenges to main-
taining high-performing learned models over time in autonomous
systems. In the face of concept drift, one can hope that the old
model is sufficiently representative despite concept drift. Alterna-
tively, one can discard the old data and retrain a new model with
(often limited) new data, or use transfer learning to combine the
old data with the new to create an updated model. Which of these
three options is chosen affects not only near-term decisions, but
also future modeling actions. In this abstract, we model response
to concept drift as a sequential decision making problem and for-
mally frame it as a Markov Decision Process. Our reinforcement
learning approach to the problem shows promising results balanc-
ing cost with performance in maintaining model accuracy.

1. INTRODUCTION
As automation grows, more and more industry control systems

around us make decisions autonomously, ranging from image un-
derstanding [9] to movie recommendation systems [4] and network
and service virtualization [1]. Underneath their hoods, many of
these systems rely on models, which can be descriptive (capturing
the properties of data) or predictive (using known data to predict
other, latent properties). Such systems are often susceptible to the
nonstationary, ever-changing dynamics of data in the real world.
These changes, either gradual or abrupt, are commonly referred
to as concept drift. Such shifts in the feature distribution and un-
derlying label correspondence constitute a significant challenge to
learning systems. In the face of concept drift, we consider the prob-
lem of how to generically and adaptively adjust models to mitigate
the risks of drift. We refer to this challenge as model retraining,
or model management. In this abstract we propose a novel rein-
forcement learning (RL) approach, framing the model retraining
problem as a sequential decision making task, and harnessing RL
concepts to learn a robust policy for model update.

2. RELATED WORK
The issue of concept drift has been studied by multiple researchers

in the past 20 years [15, 14, 16, 3]. These works are also connected
to the large subfield of online learning [5]. The model retraining
problem is also related to the notion of continual, or lifelong learn-

Appears in: Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017), S.
Das, E. Durfee, K. Larson, M. Winikoff (eds.), May 8–12, 2017,
São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ing, both in the context of general machine learning [8], and in RL
[10, 7]. However, lifelong learning is not the same as drift adapta-
tion, since in the case of learning under drift, the learner is engaged
in the same ongoing task, whereas in lifelong learning, the learner is
expected to adapt to new tasks presented sequentially. Both lifelong
learning and autonomous model management can also be perceived
as part of the transfer learning literature, a rich problem domain
studied extensively both in the context of RL [12], and machine
learning in general [13, 6]. A key difference between these meth-
ods and this abstract is that we do not focus on the specifics of the
underlying models or even the data itself. Instead, we propose an
RL meta-learner that decides when and how an independent model
should be updated.

3. MODEL RETRAINING AS A MARKOV
DECISION PROCESS

Updating the current model of a given system affects not only the
ability to act upon the data currently observed, but data observed in
the future as well. Update a model too quickly and you may keep
getting sidetracked by outlier occurrences, or waste valuable re-
sources. Wait too long to update, and the performance of your sys-
tem might deteriorate drastically. It therefore makes sense to frame
autonomous model management as a sequential decision-making
task. As such, this problem is suitably formulated as a Markov De-
cision Process (MDP) [11]. In this formulation, the system is an
agent, which, given the current model, observations of new data,
and knowledge of past data, needs to routinely decide whether to
update its model, and in what fashion. In our formulation, incoming
data modeled by the system can be divided into batches of varying
size. For each batch, the system needs to decide how to best process
the data. In the process, the agent needs to balance performance and
cost (as they are determined for a given domain). We assume that it
is unrealistic for an agent to observe the entire batch before making
a decision. For this reason, the agent relies on subsampling the data
before making a decision. We assume this subsample is unbiased.
After observing the subsample, the agent then decides how to best
update the model prior to handling the entire set of samples in the
batch. This process is repeated in the next timestep indefinitely.

4. LEARNING A POLICY THROUGH AP-
PROXIMATE VALUE ITERATION

Once the model retraining problem is formally defined as an
MDP, a suitable policy needs to be learned for this MDP. In cer-
tain cases the MDP can be explicitly “solved”, resulting in the opti-
mal policy. If the state and action spaces are finite and sufficiently
small, this can be done through a dynamic programming procedure
called value iteration [11]. However, in the case of continuous state

spaces this option is no longer feasible. A variety of approxima-
tion strategies exist to mitigate this problem. Consider for instance
the simplest approach of partitioning a continuous state space via
a grid, then applying value iteration on the discretized state space
(now rendered discrete and finite). Furthermore, if the state space is
Lipschitz-continuous [2], the error induced by this approximation
can be bounded, and converges to 0 the tighter the grid becomes.

Let us assume our model can be parameterized asM = 〈m1, . . . ,mk〉.
Given a reasonable model for observation distribution, it too can
be parameterized, either by its sufficient statistics or using a non-
parametric representation obst = 〈d1, . . . , d〉 (examples for such a
representation include the weights of an artificial neural net or the
coefficients of a regressor). This parameterization lends itself to
a straightforward value iteration procedure based on a discretized
representation of the parameter space.

5. PROOF OF CONCEPT - DISTRIBUTION
MODEL RETRAINING

One type of model maintenance problem that has multiple uses
and serves as a good illustration for a framework is that of distri-
bution tracking. Given a constant stream of multidimensional data,
we need to generate a model that tracks the properties of the ob-
served data. In this setting, we are interested in modeling the ob-
served data as a multivariate Gaussian, with (µ,Σ) as the sufficient
statistics. We consider observations in the current batch o ∈ obst as
modeling success cases, or “hits”, if they are within a certain factor
of our estimated µ. Similarly, we consider it a modeling failure, or a
“miss”, if an observation is outside that confidence range. At each
timestep, the agent is presented with a set of observations obst,
drawn from some unknown distribution. The agent is then allowed
to sample some subset ôbst of the observations, and decide whether
it needs to update the model, and how. In this abstract we consider
three options at each timestep - keep the model unchanged, retrain
a new model from scratch based on the new observations, or use
transfer learning to update the old model with the new model.

As a first step, we concretely illustrate our approach using a syn-
thetic domain. This step is useful since controlling the process
which generates the data gives us the freedom to both test the valid-
ity of our approach and test its limitations. Our synthetic domain is
as follows - data is drawn from a 2-dimensional Gaussian distribu-
tion with unknown 〈µ,Σ〉 parameters. At each timestep, a number
of observations drawn from a Poisson distribution |obst| ∼ Poi(λ).
Additionally, the distribution shifts in a random walk process at
each timestep - µ and Σ drift by factors drawn from a different
unknown distribution is added. To make the distribution meaning-
ful, an upper bound is placed on the value of the true underlying
variance. We compare our value iteration approach to five baseline
policies: (1) a “do nothing” policy which always stays with its cur-
rent model; (2) a “retrain always” policy, which retrains a model,
paying the cost associated with this action, at each timestep; (3) an
“adapt always” policy, which always updates the existing model us-
ing new data; (4) a random policy, which chooses actions uniformly
irrespective of the current state at each timestep; (5) a fixed policy,
which adapts the model if the observed data has deviated by more
than 25% of the current estimate, and retrains if it has deviated by
more than 50%.

We analyze the performance of each model reuse strategy over
30 timesteps with randomly drawn batches in this synthetic domain.
The experiment is repeated over 10 iterations at each step to pro-
vide a measure of statistical significance to the reported results.
The results are provided in Figure 1. As can be observed, using
sampled data judiciously, our system significantly outperforms the

other baselines. Figure 1(a) shows the overall average reward per
step, whereas (b) and (c) show the accuracy and the costs, respec-
tively, illustrating how the AVI approach carefully balances these
two considerations in model retraining, reaching equal or better
performance while also managing the least cost.

Figure 1: Reward per step over 30 time steps for our approximate value iter-
ation (AVI) system compared to the other model retraining policies. Results
are averaged over 30 simulations per step to obtain statistical significance.
Results are over the synthetic domain. (a) avg. reward (b) average success
rate (c) avg. cost

6. SUMMARY & DISCUSSION
The risk of concept drift has a potentially devastating effect on

many real world systems that involve modeling. In this abstract
we present a reinforcement learning approach for continual model
updating. Rather than building concept drift resistance into the
learned model, we frame the model update problem as a sequen-
tial decision making task, and learn a policy for when to update the
model, and how. This framework is generic and can be easily ap-
plied to many different real world systems. We empirically evaluate
our approach, and show it outperforms other baseline update poli-
cies. Our approach is just the first step toward more robust systems
that can adapt to changing environments.

Acknowledgments
This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by
NSF (CNS-1330072, CNS-1305287, IIS-1637736, IIS-1651089),
ONR (21C184-01), and AFOSR (FA9550-14-1-0087). Peter Stone
serves on the Board of Directors of, Cogitai, Inc. The terms of this
arrangement have been reviewed and approved by the University
of Texas at Austin in accordance with its policy on objectivity in
research.

REFERENCES
[1] M. Chiosi and B. Freeman. AT&T’s sdn controller

implementation based on opendaylight. Open Daylight
Summit, 7 2015.

[2] C.-S. Chow, J. N. Tsitsiklis, et al. An optimal multigrid
algorithm for discrete-time stochastic control. 1989.

[3] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia. A survey on concept drift adaptation. ACM
Computing Surveys (CSUR), 46(4):44, 2014.

[4] C. A. Gomez-Uribe and N. Hunt. The netflix recommender
system: Algorithms, business value, and innovation. ACM
Trans. Manage. Inf. Syst., 6(4), Dec. 2015.

[5] J. Kivinen, A. J. Smola, and R. C. Williamson. Online
learning with kernels. IEEE transactions on signal
processing, 52(8):2165–2176, 2004.

[6] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering,
22(10):1345–1359, 2010.

[7] M. B. Ring. Continual Learning in Reinforcement
Environments. PhD thesis, University of Texas at Austin,
1994.

[8] P. Ruvolo and E. Eaton. Ella: An efficient lifelong learning
algorithm. ICML (1), 28:507–515, 2013.

[9] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 815–823, 2015.

[10] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg. Intrinsically
motivated reinforcement learning: An evolutionary
perspective. IEEE Transactions on Autonomous Mental
Development, 2(2):70–82, 2010.

[11] R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition,
1998.

[12] M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10(Jul):1633–1685, 2009.

[13] L. Torrey and J. Shavlik. Transfer learning. Handbook of
Research on Machine Learning Applications and Trends:
Algorithms, Methods, and Techniques, 1:242, 2009.

[14] A. Tsymbal. The problem of concept drift: definitions and
related work. Computer Science Department, Trinity College
Dublin, 106, 2004.

[15] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine learning,
23(1):69–101, 1996.

[16] I. Žliobaitė. Learning under concept drift: an overview. arXiv
preprint arXiv:1010.4784, 2010.

