CS378: Natural Language Processing Lecture 5: Hidden Markov Model

Eunsol Choi

Today

- Simple feedforward neural network as a classifier
- Sequence Modeling Task
- Hidden Markov Model

Neural Networks in NLP

Expects fixeddimensional input representation

Convolutional NNs

Recurrent NNs

Always coupled with word embeddings...

Word Embeddings

So far, we think of words as "one-hot" vectors

the =
$$[1, 0, 0, 0, 0, 0, ...]$$

$$good = [0, 0, 0, 1, 0, 0, ...]$$

$$great = [0, 0, 0, 0, 0, 1, ...]$$

Word Embeddings

- good and great seem as dissimilar as good and the
- Neural networks are built to learn sophisticated nonlinear functions of continuous inputs; our inputs is sparse and discrete
- Size of vocabulary grows quickly
 - 500K for broad-coverage domains
 - ► 13M for Google corpora

Word Embeddings

Want a vector space where similar words have similar embeddings

$$great \approx good$$

- In few weeks: come up with a way to produce these word embeddings
- For each word, want
 "medium" dimensional vector
 (50-300 dims) representing it

Using Word Embeddings as feature

- Assume we would like to do sentiment classification again...
- Feature-based models: Bag of words
- How should we use word embeddings?

Deep Averaging Networks

 Deep Averaging Networks: feedforward neural network on average of word embeddings from input for sentiment classification

Limitation?

lyyer et al. (2015)

Recursive Neural Network

 Widely-held view: need to model syntactic structure to represent language

Deep Averaging Networks

Sentence	DAN	DRecNN	Ground Truth
who knows what exactly godard is on about in this film, but	positive	positive	positive
his words and images do n't have to add up to mesmerize			
you.			
it's so good that its relentless, polished wit can withstand	negative	positive	positive
not only inept school productions, but even oliver parker's			
movie adaptation			
too bad, but thanks to some lovely comedic moments and	negative	negative	positive
several fine performances, it's not a total loss			
this movie was not good	negative	negative	negative
this movie was good	positive	positive	positive
this movie was bad	negative	negative	negative
the movie was not bad	negative	negative	positive

Will return to compositionality with syntax and LSTMs

lyyer et al. (2015)

Feedforward Neural Language Models

Given previous n words, predict the next word

P(mat|the cat sat on the)

Input layer (context size n = 5):

$$\mathbf{x} = [\mathbf{e}_{\mathrm{the}}; \mathbf{e}_{\mathrm{cat}}; \mathbf{e}_{\mathrm{sat}}; \mathbf{e}_{\mathrm{on}}; \mathbf{e}_{\mathrm{the}}] \in \mathbb{R}^{dn}$$

concatenation

Hidden layer

$$\mathbf{h} = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b}) \in \mathbb{R}^h$$

Output layer (softmax)

$$\mathbf{z} = \mathbf{Uh} \in \mathbb{R}^{|V|}$$

$$P(w = i \mid \text{context}) = softmax_i(\mathbf{z})$$

Bengio et al. (2003)

Logistics

- One extra slip day for everyone.
- HW1 due today, HW2 will be released today

Assignment 2

- I anticipate it will take a bit longer than assignment 1
- Two programming components
 - Implementing deep averaging network for sentiment classification (with PyTorch).
 - Implementing inference of generative sequence model for part-ofspeech tagging task (which we will learn today / Thursday)

Sequence Models

Topics for next three lectures and HW2

We will be back to neural sequence models again in a few weeks

Overview

- Sequence Modeling Problems in NLP
- Generative Model: Hidden Markov Models (HMM)

Discriminative Model:
 Maximum Entropy Markov Models (MEMM)

Unsupervised Learning: Expectation Maximization

Reading

- ► Collins: HMMs —> Generative sequence tagging model
- ► Collins: MEMMs —> Discriminative sequence tagging models
- Collins: EMs —> Expectation Maximization
- J&M: Chapter 8 (optional)
 - Covers both HMM, MEMM

The Structure of Language

Language is tree-structured

But labelled sequence can provide shallow analysis

```
PRP VBZ DT NN IN NNS PRP VBZ DT NN IN NNS I ate the spaghetti with chopsticks I ate the spaghetti with meatballs
```


Sequence Modeling Problems in NLP

Parts of Speech Tagging (POS)

PRP VBZ DT NN IN NNS PRP VBZ DT NN IN NNS I ate the spaghetti with meatballs

- Named Entity Recognition (NER):
 - Segment text into spans with certain properties (person, organization,)

[Germany]_{LOC} 's representative to the [European Union]_{ORG} 's veterinary committee [Werner Zwingman]_{PER} said on Wednesday consumers should…

Germany/BL 's/NA representative/NA to/NA the/NA European/BO Union/CO 's/NA veterinary/NA committee/NA Werner/BP Zwingman/CP said/NA on/NA Wednesday/NA consumers/NA should/NA...

Parts of Speech

Categorization of words into types

Slide credit: Dan Klein

CC	conjunction, coordinating	and both but either or	
CD	numeral, cardinal	mid-1890 nine-thirty 0.5 one Main lags	
DT	determiner	a all an every no that the	
EX	existential there	there	
FW	foreign word	gemeinschaft hund ich jeux	
IN	preposition or conjunction, subordinating	among whether out on by if	
JJ	adjective or numeral, ordinal	third ill-mannered regrettable	
JJR	adjective, comparative	braver cheaper taller	
JJS	adjective, superlative	bravest cheapest tallest	
MD	modal auxiliary	can may might will would	
NN	noun, common, singular or mass	cabbage thermostat investment subhumanity	
NNP	noun, proper, singular	Motown Cougar Yvette Liverpool	
NNPS	noun, proper, plural	Americans Materials States	
NNS	noun, common, plural	undergraduates bric-a-brac averages	
POS	genitive marker	' 'S	
PRP	pronoun, personal	hers himself it we them	
PRP\$	pronoun, possessive	her his mine my our ours their thy your	
RB	adverb	occasionally maddeningly adventurously	
RBR	adverb, comparative	further gloomier heavier less-perfectly	
RBS	adverb, superlative	best biggest nearest worst	
RP	particle	aboard away back by on open through	
ТО	"to" as preposition or infinitive marker	to	
UH	interjection	huh howdy uh whammo shucks heck	
VB	verb, base form	ask bring fire see take	
VBD	verb, past tense	pleaded swiped registered saw	
VBG	verb, present participle or gerund	stirring focusing approaching erasing	
VBN	verb, past participle	dilapidated imitated reunifed unsettled	
VBP	verb, present tense, not 3rd person singular	twist appear comprise mold postpone	
VBZ	verb, present tense, 3rd person singular	bases reconstructs marks uses	
WDT	WH-determiner	that what whatever which whichever	
WP	WH-pronoun	that what whatever which who whom	
WP\$	WH-pronoun, possessive	whose	

POS Tagging

Many words have more than one POS, depending on its context

```
The <u>back</u> door = JJ (Adjective)

On my <u>back</u> = NN (Noun)

Win the voters <u>back</u> = RB (Adverb)
```

Promised to *back* the bill = VB (Verb)

The POS tagging problem is to determine the POS tag for a particular instance of a word.

Sources of Information

Knowledge of neighboring words

Time flies like an arrow; Fruit flies like a banana

- Knowledge of word probabilities
 - the, a, an is almost always article
 - man is frequently noun, rarely used as a verb
 - If we choose the most frequent tag, over 90% accuracy
 - About 40% of word tokens are ambiguous

What is this good for?

- Preprocessing step for syntactic parsers
- Domain-independent disambiguation for other tasks
- (Very) shallow information extraction:
 - write regular expressions like (Det) Adj*N + over the output for phrases

POS tag sets in different languages

Language	Source	# Tags
Arabic	PADT/CoNLL07 (Hajič et al., 2004)	21
Basque	Basque3LB/CoNLL07 (Aduriz et al., 2003)	64
Bulgarian	BTB/CoNLL06 (Simov et al., 2002)	54
Catalan	CESS-ECE/CoNLL07 (Martí et al., 2007)	54
Chinese	Penn ChineseTreebank 6.0 (Palmer et al., 2007)	34
Chinese	Sinica/CoNLL07 (Chen et al., 2003)	294
Czech	PDT/CoNLL07 (Böhmová et al., 2003)	63
Danish	DDT/CoNLL06 (Kromann et al., 2003)	25
Dutch	Alpino/CoNLL06 (Van der Beek et al., 2002)	12
English	PennTreebank (Marcus et al., 1993)	45
French	FrenchTreebank (Abeillé et al., 2003)	30
German	Tiger/CoNLL06 (Brants et al., 2002)	54
German	Negra (Skut et al., 1997)	54
Greek	GDT/CoNLL07 (Prokopidis et al., 2005)	38
Hungarian	Szeged/CoNLL07 (Csendes et al., 2005)	43
Italian	ISST/CoNLL07 (Montemagni et al., 2003)	28
Japanese	Verbmobil/CoNLL06 (Kawata and Bartels, 2000)	80
Japanese	Kyoto4.0 (Kurohashi and Nagao, 1997)	42
Korean	Sejong (http://www.sejong.or.kr)	187
Portuguese	Floresta Sintá(c)tica/CoNLL06 (Afonso et al., 2002)	22
Russian	SynTagRus-RNC (Boguslavsky et al., 2002)	11
Slovene	SDT/CoNLL06 (Džeroski et al., 2006)	29
Spanish	Ancora-Cast3LB/CoNLL06 (Civit and Martí, 2004)	47
Swedish	Talbanken05/CoNLL06 (Nivre et al., 2006)	41
Turkish	METU-Sabanci/CoNLL07 (Oflazer et al., 2003)	31

Universal POS Tag Set

Language	CRF+	CRF
Bulgarian	97.97	97.00
Czech	98.38	98.00
Danish	95.93	95.06
German	93.08	91.99
Greek	97.72	97.21
English	95.11	94.51
Spanish	96.08	95.03
Farsi	96.59	96.25
Finnish	94.34	92.82
French	96.00	95.93
Indonesian	92.84	92.71
Italian	97.70	97.61
Swedish	96.81	96.15
AVERAGE	96.04	95.41

Universal POS tagset (~12 tags), cross-lingual model works well!

Classic Solution: Hidden Markov Models

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

$$p(x_1 \dots x_n, y_1 \dots y_n) =$$

Two simplifying assumptions

 Markov Assumption (future is conditionally independent of the past given the present)

$$P(y_i | y_1, y_2, \dots, y_{i-1}) = P(y_i | y_{i-1})$$

Independent Assumption:

$$P(x_i \mid \mathbf{x}, \mathbf{y}) = P(x_i \mid y_i)$$

HMM for POS

The Georgia branch had taken on loan commitments ...

DT NNP NN VBD VBN RP NN NNS

- ightharpoonup States $Y = \{DT, NNP, NN, ... \}$ are the POS tags
- ightharpoonup Observations X = V are words
- Transition distribution $q(y_i | y_{i-1})$ models the tag sequences
- Emission distribution $e(x_i \mid y_i)$ models words given their POS

HMM Learning and Inference

- Learning:
 - Maximum likelihood: transition q and emission e

$$p(x_1 \dots x_n, y_1 \dots y_n) = q(STOP|y_n) \prod_{i=1}^n q(y_i|y_{i-1})e(x_i|y_i)$$

- Inference:
 - Viterbi: $y^* = \arg\max_{y_1...y_n} p(x_1...x_n, y_1...y_n)$

Learning: Maximum Likelihood

Supervised Learning for estimating transitions and emissions

$$q_{ML}(y_i|y_{i-1}) =$$

$$e_{ML}(x|y) =$$

Any concerns for the quality of any of these estimates?

Sparsity again!

Learning: Low frequency Words

Used the following word classes for infrequent words [Bickel et. al, 1999]

Word class	Example	Intuition
twoDigitNum	90	Two digit year
fourDigitNum	1990	Four digit year
containsDigitAndAlpha	A8956-67	Product code
containsDigitAndDash	09-96	Date
containsDigitAndSlash	11/9/89	Date
containsDigitAndComma	23,000.00	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
othernum	456789	Other number
allCaps	BBN	Organization
capPeriod	M.	Person name initial
firstWord	first word of sentence	no useful capitalization information
initCap	Sally	Capitalized word
lowercase	can	Uncapitalized word
other	,	Punctuation marks, all other words

Inference (Decoding)

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

- Inference problem: $\underset{\text{argmax}_{\mathbf{y}}}{\operatorname{argmax}_{\mathbf{y}}}P(\mathbf{y}|\mathbf{x}) = \underset{\mathbf{y}}{\operatorname{argmax}_{\mathbf{y}}} \frac{P(\mathbf{y},\mathbf{x})}{P(\mathbf{x})}$
- We can list all possible y and then pick the best one!
 - Any problems?

Inference (Decoding)

- First solution: Beam Search
 - A beam is a set of partial hypotheses
 - Start with a single empty trajectory
 - At each step, consider all continuation, discard most, keep top K

But this does not guarantee the optimal answer...

The Viterbi Algorithm

• Dynamic program for computing the max score of a sequence of length i ending in tag y_i

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

$$= \max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1}) \max_{y_1 \dots y_{i-2}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-1})$$

$$= \max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1}) \pi(i-1, y_{i-1})$$

Now this is an efficient algorithm!

The Viterbi Algorithm

Dynamic program for computing (for all i)

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

Iterative Computation:

$$\pi(0, y_0) = \begin{cases} 1 \text{ if } y_0 == START \\ 0 \text{ otherwise} \end{cases}$$

- ► For I = 1... n:
 - Store score

$$\pi(i, y_i) = \max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\pi(i-1, y_{i-1})$$

Store back-pointer

$$bp(i, y_i) = \arg\max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\pi(i-1, y_{i-1})$$

Time flies like an arrow; Fruit flies like a banana

$$\pi(1, N)$$

$$\pi(2, N)$$

$$\pi(3, N)$$

$$\pi(4, N)$$

START

$$\pi(1, V)$$

$$\pi(2, V)$$

$$\pi(3, V)$$

$$\pi(4, V)$$

STOP

$$\pi(1, IN)$$

$$\pi(2, IN)$$

$$\pi(3, IN)$$

$$\pi(4, IN)$$

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} p(x_1 \dots x_i, y_1 \dots y_i)$$

$$= \max_{y_1 \dots y_{i-2}} p(x_1 \dots x_{i-1}, y_1 \dots y_{i-1})$$

$$= \max_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1}) \ \pi(i-1, y_{i-1})$$

Why does this find the max p(.)? What is the runtime?

