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Conditional Text Generation

• Given an input sequence w1, w2, …, wi-1, generate the 
next word wi

• Neural models output a probability distribution over all 
words w in the vocabulary
– P( w | w1, w2, …, wi-1 )

• How do we pick wi?



Option 1: Maximization-Based Decoding

• Find the sequence wi, wi+1, …, wi+n such that it 
maximizes the probability over the entire sequence

• Needs to explore every possible sequence
• Large vocabulary sizes make this intractable



Option 2: Greedy Decoding

• Choose the word ŵ with the highest probability given 
the current sequence to be the next word wi

• Unsurprisingly, produces low quality text generations



Option 3: Beam Search

• Parameterized by beam width B
• Keep B sequences of length i - 1
• Generate token probabilities for the next word wi 

conditioned on each of these sequences
• Of these, keep the B sequences of length i with the 

highest probability
• Degrades to greedy search when B = 1



Some Observations

• Classic decoding strategies involve dependencies on 
words chosen on prior time steps and require sequential 
inference, which can’t be parallelized on GPUs

• All of them aim to find the highest probability sequence 
to ensure coherent text is generated
– How can we produce novel sequences while 

ensuring the resultant text is still coherent?



Non-Autoregressive Neural Machine 
Translation [ICLR 2018]
By Jiatao Gu, James Bradbury, Caiming Xiong, Viktor 

O.K. Li, and Richard Socher



Autoregressive NMT with RNNs
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Time complexity linear in sequence length



Autoregressive NMT with Transformers
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Source text

No hidden state dependency between steps, 
but the next token is still conditioned on 
previous generation outputs

Applying the entire network at each timestep!



Transformer

Naïve non-autoregressive (parallel) generation
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Dank

Transformer

Problems with the naïve solution
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Vielen Good:
- “Danke schön”
- “Vielen Dank”

Gibberish:
- “Danke Dank”
- “Vielen schön”

How can we avoid this kind of 
disagreement without introducing 
conditioning between generation 
steps?

Also: how to deal with alignments 
that aren’t 1 to 1?
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Proposed method
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The authors’ proposed solution:
Introduce a latent “plan” to hopefully 
constrain the generation to agree 
with itself better.

Their proposed latent variable is a 
sequence of “fertility” values that 
represent how many target tokens a 
given source token is aligned with.

The sum of predicted fertility values 
can also be used to compute the 
target-side length.
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Reasons to use fertility values to guide generation

- Different fertility values can be sampled to explore alternate 
translations

Wassup

Wassup
Was geht
Was ist los

f = 1

f = 2

f = 3

- Fertility values can be supervised at train time using a separate 
alignment model

- Fertility values are easy to predict and provide a simple, principled 
way to determine the target sequence length

- Fertility values avoid entirely specifying the source → target 
alignment, which the authors say would place too much modeling 
burden on the encoder



Problems with fertility values as “generation plans”

Training data Non-autoregressive 
modelAutoregressive model



Training with fertility values
Prob. of target sequence given 

fertilities f , inputs x and params 𝜃
Prob. of fertilities f  given 

inputs x and params 𝜃
Marginal over 

fertilities

Since we can’t really marginalize over all fertility sequences, we minimize this variational lower bound 
on the log-likelihood instead.
We minimize the expected log-likelihood over fertility sequences provided by a separate proposal 
distribution q. In practice, this proposal distribution is actually a single fertility sequence computed 
using either an alignment model or the attention weights of the autoregressive teacher model. 

True log likelihood

Variational lower 
bound



The performance tradeoff summarized

(Figures from Gu et al., pages 8 & 12)

Both measured on ISWLT ‘16 dev set (En→De)

Quality (higher BLEU is better) Speed (lower latency is better)



Subsequent work on non-autoregressive generation 
Latent variable methods:

Ma et al., 2019: FlowSeq: Non-Autoregressive Conditional Sequence Generation 
with Generative Flow

Flow-based variational model, uses a series of invertible transformations to 
produce a complex distribution over a continuous latent variable from a 
simple distribution (a Gaussian)

Shu et al., 2019: Latent-Variable Non-Autoregressive Neural Machine Translation 
with Deterministic Inference Using a Delta Posterior

Iteratively refine a continuous latent variable (via EM) to maximize a lower 
bound on the translation log-likelihood at inference time



Subsequent work on non-autoregressive generation
Iterative refinement methods:

Lee et al., 2018: Iterative denoising

Repeatedly apply a model trained to reconstruct corrupted text

Ghazvininejad et al., 2019: Mask-Predict

Mask out & re-predict the least confident output tokens

Stern et al., 2019 (Insertion Transformer), Chan et al., 2019 (KERMIT), and Shen et 
al., 2020 (Blank LM)

Predict a partial sequence, then fill the remaining gaps in parallel

Mansimov et al., 2020: Gibbs sampling for generation from undirected models

Choose which tokens to predict/re-predict using conditional 
entropy/confidence; anneal number of predicted tokens per step from L → 1



Subsequent work on non-autoregressive generation 
Other methods:

Deng et al., 2020: Cascaded Text Generation with Markov Transformers

Decode a transformer with a Markov context restriction in parallel by 
iteratively estimating max marginal likelihood + filtering out N-grams at each 
position (for N=1, then 2, etc…)

Zhou et al., 2020: Understanding Knowledge Distillation in Non-autoregressive 
Machine Translation

Authors examine why training on AT output is helpful, discovering that 
repeatedly re-training the AT model on its own output helps even more. They 
use this to match En→De AT performance with a NAT model.



The Curious Case of Neural Text 
DeGeneration [ICLR 2020]
By Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 

Yejin Choi



Directed Text Generation

• Learn the transformation between a given input / 
output pair of text

• Includes
– Machine translation
– Data-to-text generation
– Summarization



Open-Ended Text Generation

• Learn how to generate text, conditioned on a piece of 
contextual input

• Includes
– Conditional Story Generation
– Contextual Text Continuation



Motivation

• Maximization-based decoding strategies lead to 
degeneration
– Incoherent, low-quality text
– Text loops endlessly

• Especially the case with beam search



Endless Looping

Context:

Beam Search Produces:



Endless Looping



Positive Feedback Loop





“Beam Search Text is Less Surprising”



Beam Search



Pure Sampling

• Sample directly from the model’s outputted 
probabilities

• Produces low-quality, incoherent text due to 
“unreliable tail” of distribution



Pure Sampling



Sampling with Temperature

• Temperatures between 0 and 1 skew the probability 
distribution towards higher probability words

• Lower temperatures reduce diversity



Top-K Sampling

• Sample from the K highest probability words at each 
time step

• Difficult to pick a good K because of different 
probability distribution shapes

• [Fan 2018]



Top-K Sampling (Larger K Better)



Top-K Sampling (Smaller K Better)



Nucleus Sampling

• For a given probability p, the top-p vocabulary is the 
smallest set such that

• Size of vocabulary adjusts with shape of the language 
model’s probability distribution



Experimental Setup

• GPT2 Large (762M Params) [Radford 2019]
• Trained on WebText (40GB of web scraped text)
• Generate 5000 text passages until end-of-document 

token generated or 200 tokens
• Conditioned on 1-40 token long paragraph held-out of 

WebText



Perplexity

• Measures how surprising or unexpected a piece of 
text is relative to a language model

• Lower perplexity has generally been seen as a good 
thing, but maximization-based decoding leads to 
lower perplexities than seen in human text



Perplexity



Perplexity

• Beam search has perplexities far below human text
• Top-K, temperature, and nucleus sampling can reach 

human levels
– Frequently used parameter settings for Top-K and 

temperature sampling would place it below human 
perplexity



Zipf’s Law and Zipfian Distribution

• Exponential relationship between rank of a word and 
frequency in text

• ŝzipf is the Zipfian coefficient and can be compared to 
a perfect exponential relationship where ŝzipf = 1





Zipf’s Law and Zipfian Distribution

• Pure sampling and nucleus sampling are closest to 
the target human distribution

• Pure sampling overestimates the prevalence of rarer 
(larger rank) words



Self-BLEU

• Compute BLEU score with other generations from the 
same decoding strategy as references

• Lower score indicates higher diversity as they have 
fewer n-grams in common

• Sampled 1000 from the 5000 total generations and 
compared against the remaining 4999

• [Zhu et al. 2018]





Self-BLEU

• Commonly used values of temperature and k have 
higher Self-BLEU scores, and therefore lower diversity

• High values of temperature and k have higher 
diversity, but perplexity soars unnaturally high

• Reasonable values of p for nucleus sampling are near 
human levels of Self-BLEU scores





Human Unified with Statistical Evaluation

• HUSE scores combine human judgement of quality 
with statistical evaluation of diversity

• 200 generations for each of the decoding technique 
(20 annotations each from 20 different annotators)

• Truncated probability distributions received a 0, so 
they were interpolated to produce a smoother 
distribution

• [Hashimoto 2019]



Metrics in Review

• Perplexity: Measures how surprising the text is and 
its general coherence

• Self-BLEU: Measures generated diversity
• Zipf Coefficient: Measures closeness to exponential 

relationship for word rank to frequency
• Repetition %: Measures amount of repeated text
• HUSE: Measures quality and diversity of text



Results



Results

• Nucleus Sampling is closest to human generated text 
for most of the metrics

• Common parameter settings for Beam Search and 
Top-K / Temperature Sampling results in significant 
amounts of repetition, low diversity, and 
lower-than-human perplexity



Related Work

• GAN generated text [Yu 2018; Xu 2019]
– Generations worse than those from LMs [Caccia 2018; 

Tevet 2019; Semenuita 2020]
• Constraining beam search via a diversity scoring function 

or by requiring diversity in beam hypotheses [Li 2016a; 
Vijayakumar 2018; Kulikov 2019; Pal 2006]

• “Unlikelihood Loss” reduces loss and therefore the 
gradient signal for repeated tokens [Welleck 2020]



What this paper did well
• Deep dive into where current decoding strategies fail and 

proposed an intuitive and simple alternative backed by strong 
empirical evidence

• Both Top-K and Nucleus sampling has been used in recent 
work, but mostly in language modeling and (conditioned) 
language generation:

– CTRL: A Conditional Transformer Model for Controllable Generation [Keskar 
2019]

– Defending Against Neural Fake News [Zellers 2019]
– Language Models are Unsupervised Multitask Learners [Radford 2019]



Where it could do better
• Proposed technique is effectively a re-imagining of Top-K 

Sampling which can perform about the same
• Does not compare with other techniques used to combat 

degeneration like the diverse/constrained beam search and 
the “unlikelihood loss”

• Both Top-K and Nucleus Sampling criticized in [Welleck 
2020] for not resolving the underlying problem of poor quality 
token-level probabilities



Questions?


