
Kaj Bostrom and Quang Duong, The University of Texas at Austin

FALL 2020 CS 395T

Neural Decoding
CS 395T: Topics in Natural Language Processing
9/8/2020

Conditional Text Generation

• Given an input sequence w1, w2, …, wi-1, generate the
next word wi

• Neural models output a probability distribution over all
words w in the vocabulary
– P(w | w1, w2, …, wi-1)

• How do we pick wi?

Option 1: Maximization-Based Decoding

• Find the sequence wi, wi+1, …, wi+n such that it
maximizes the probability over the entire sequence

• Needs to explore every possible sequence
• Large vocabulary sizes make this intractable

Option 2: Greedy Decoding

• Choose the word ŵ with the highest probability given
the current sequence to be the next word wi

• Unsurprisingly, produces low quality text generations

Option 3: Beam Search

• Parameterized by beam width B
• Keep B sequences of length i - 1
• Generate token probabilities for the next word wi

conditioned on each of these sequences
• Of these, keep the B sequences of length i with the

highest probability
• Degrades to greedy search when B = 1

Some Observations

• Classic decoding strategies involve dependencies on
words chosen on prior time steps and require sequential
inference, which can’t be parallelized on GPUs

• All of them aim to find the highest probability sequence
to ensure coherent text is generated
– How can we produce novel sequences while

ensuring the resultant text is still coherent?

Non-Autoregressive Neural Machine
Translation [ICLR 2018]
By Jiatao Gu, James Bradbury, Caiming Xiong, Viktor

O.K. Li, and Richard Socher

Autoregressive NMT with RNNs

Decoder cell
(LSTM/GRU)

Decoder cell
(LSTM/GRU)

Decoder cell
(LSTM/GRU)

Decoder cell
(LSTM/GRU)

Source
encoding
(attention)

<BOS> The dog barked

Output softmax

. loudly at

Time complexity linear in sequence length

Autoregressive NMT with Transformers

Transformer Transformer Transformer Transformer

<BOS> The dog barked

Output softmax

. loudly at

Source text

No hidden state dependency between steps,
but the next token is still conditioned on
previous generation outputs

Applying the entire network at each timestep!

Transformer

Naïve non-autoregressive (parallel) generation

Output softmax

.

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Output softmax

dog

Output softmax

The

Output softmax

barked

.HundDer bellte

Dank

Transformer

Problems with the naïve solution

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Output softmax

schön

Output softmax

Danke

youThank

Vielen Good:
- “Danke schön”
- “Vielen Dank”

Gibberish:
- “Danke Dank”
- “Vielen schön”

How can we avoid this kind of
disagreement without introducing
conditioning between generation
steps?

Also: how to deal with alignments
that aren’t 1 to 1?

Transformer
(decoder)

Transformer
(encoder)

Proposed method

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

Transformer
cell

?Wassup

The authors’ proposed solution:
Introduce a latent “plan” to hopefully
constrain the generation to agree
with itself better.

Their proposed latent variable is a
sequence of “fertility” values that
represent how many target tokens a
given source token is aligned with.

The sum of predicted fertility values
can also be used to compute the
target-side length.

Transformer
cell

Predicted fertility

Transformer
cell

Transformer
cell

Transformer
cell

?Was geht

2 1

Reasons to use fertility values to guide generation

- Different fertility values can be sampled to explore alternate
translations

Wassup

Wassup
Was geht
Was ist los

f = 1

f = 2

f = 3

- Fertility values can be supervised at train time using a separate
alignment model

- Fertility values are easy to predict and provide a simple, principled
way to determine the target sequence length

- Fertility values avoid entirely specifying the source → target
alignment, which the authors say would place too much modeling
burden on the encoder

Problems with fertility values as “generation plans”

Training data Non-autoregressive
modelAutoregressive model

Training with fertility values
Prob. of target sequence given

fertilities f , inputs x and params 𝜃
Prob. of fertilities f given

inputs x and params 𝜃
Marginal over

fertilities

Since we can’t really marginalize over all fertility sequences, we minimize this variational lower bound
on the log-likelihood instead.
We minimize the expected log-likelihood over fertility sequences provided by a separate proposal
distribution q. In practice, this proposal distribution is actually a single fertility sequence computed
using either an alignment model or the attention weights of the autoregressive teacher model.

True log likelihood

Variational lower
bound

The performance tradeoff summarized

(Figures from Gu et al., pages 8 & 12)

Both measured on ISWLT ‘16 dev set (En→De)

Quality (higher BLEU is better) Speed (lower latency is better)

Subsequent work on non-autoregressive generation
Latent variable methods:

Ma et al., 2019: FlowSeq: Non-Autoregressive Conditional Sequence Generation
with Generative Flow

Flow-based variational model, uses a series of invertible transformations to
produce a complex distribution over a continuous latent variable from a
simple distribution (a Gaussian)

Shu et al., 2019: Latent-Variable Non-Autoregressive Neural Machine Translation
with Deterministic Inference Using a Delta Posterior

Iteratively refine a continuous latent variable (via EM) to maximize a lower
bound on the translation log-likelihood at inference time

Subsequent work on non-autoregressive generation
Iterative refinement methods:

Lee et al., 2018: Iterative denoising

Repeatedly apply a model trained to reconstruct corrupted text

Ghazvininejad et al., 2019: Mask-Predict

Mask out & re-predict the least confident output tokens

Stern et al., 2019 (Insertion Transformer), Chan et al., 2019 (KERMIT), and Shen et
al., 2020 (Blank LM)

Predict a partial sequence, then fill the remaining gaps in parallel

Mansimov et al., 2020: Gibbs sampling for generation from undirected models

Choose which tokens to predict/re-predict using conditional
entropy/confidence; anneal number of predicted tokens per step from L → 1

Subsequent work on non-autoregressive generation
Other methods:

Deng et al., 2020: Cascaded Text Generation with Markov Transformers

Decode a transformer with a Markov context restriction in parallel by
iteratively estimating max marginal likelihood + filtering out N-grams at each
position (for N=1, then 2, etc…)

Zhou et al., 2020: Understanding Knowledge Distillation in Non-autoregressive
Machine Translation

Authors examine why training on AT output is helpful, discovering that
repeatedly re-training the AT model on its own output helps even more. They
use this to match En→De AT performance with a NAT model.

The Curious Case of Neural Text
DeGeneration [ICLR 2020]
By Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and

Yejin Choi

Directed Text Generation

• Learn the transformation between a given input /
output pair of text

• Includes
– Machine translation
– Data-to-text generation
– Summarization

Open-Ended Text Generation

• Learn how to generate text, conditioned on a piece of
contextual input

• Includes
– Conditional Story Generation
– Contextual Text Continuation

Motivation

• Maximization-based decoding strategies lead to
degeneration
– Incoherent, low-quality text
– Text loops endlessly

• Especially the case with beam search

Endless Looping

Context:

Beam Search Produces:

Endless Looping

Positive Feedback Loop

“Beam Search Text is Less Surprising”

Beam Search

Pure Sampling

• Sample directly from the model’s outputted
probabilities

• Produces low-quality, incoherent text due to
“unreliable tail” of distribution

Pure Sampling

Sampling with Temperature

• Temperatures between 0 and 1 skew the probability
distribution towards higher probability words

• Lower temperatures reduce diversity

Top-K Sampling

• Sample from the K highest probability words at each
time step

• Difficult to pick a good K because of different
probability distribution shapes

• [Fan 2018]

Top-K Sampling (Larger K Better)

Top-K Sampling (Smaller K Better)

Nucleus Sampling

• For a given probability p, the top-p vocabulary is the
smallest set such that

• Size of vocabulary adjusts with shape of the language
model’s probability distribution

Experimental Setup

• GPT2 Large (762M Params) [Radford 2019]
• Trained on WebText (40GB of web scraped text)
• Generate 5000 text passages until end-of-document

token generated or 200 tokens
• Conditioned on 1-40 token long paragraph held-out of

WebText

Perplexity

• Measures how surprising or unexpected a piece of
text is relative to a language model

• Lower perplexity has generally been seen as a good
thing, but maximization-based decoding leads to
lower perplexities than seen in human text

Perplexity

Perplexity

• Beam search has perplexities far below human text
• Top-K, temperature, and nucleus sampling can reach

human levels
– Frequently used parameter settings for Top-K and

temperature sampling would place it below human
perplexity

Zipf’s Law and Zipfian Distribution

• Exponential relationship between rank of a word and
frequency in text

• ŝzipf is the Zipfian coefficient and can be compared to
a perfect exponential relationship where ŝzipf = 1

Zipf’s Law and Zipfian Distribution

• Pure sampling and nucleus sampling are closest to
the target human distribution

• Pure sampling overestimates the prevalence of rarer
(larger rank) words

Self-BLEU

• Compute BLEU score with other generations from the
same decoding strategy as references

• Lower score indicates higher diversity as they have
fewer n-grams in common

• Sampled 1000 from the 5000 total generations and
compared against the remaining 4999

• [Zhu et al. 2018]

Self-BLEU

• Commonly used values of temperature and k have
higher Self-BLEU scores, and therefore lower diversity

• High values of temperature and k have higher
diversity, but perplexity soars unnaturally high

• Reasonable values of p for nucleus sampling are near
human levels of Self-BLEU scores

Human Unified with Statistical Evaluation

• HUSE scores combine human judgement of quality
with statistical evaluation of diversity

• 200 generations for each of the decoding technique
(20 annotations each from 20 different annotators)

• Truncated probability distributions received a 0, so
they were interpolated to produce a smoother
distribution

• [Hashimoto 2019]

Metrics in Review

• Perplexity: Measures how surprising the text is and
its general coherence

• Self-BLEU: Measures generated diversity
• Zipf Coefficient: Measures closeness to exponential

relationship for word rank to frequency
• Repetition %: Measures amount of repeated text
• HUSE: Measures quality and diversity of text

Results

Results

• Nucleus Sampling is closest to human generated text
for most of the metrics

• Common parameter settings for Beam Search and
Top-K / Temperature Sampling results in significant
amounts of repetition, low diversity, and
lower-than-human perplexity

Related Work

• GAN generated text [Yu 2018; Xu 2019]
– Generations worse than those from LMs [Caccia 2018;

Tevet 2019; Semenuita 2020]
• Constraining beam search via a diversity scoring function

or by requiring diversity in beam hypotheses [Li 2016a;
Vijayakumar 2018; Kulikov 2019; Pal 2006]

• “Unlikelihood Loss” reduces loss and therefore the
gradient signal for repeated tokens [Welleck 2020]

What this paper did well
• Deep dive into where current decoding strategies fail and

proposed an intuitive and simple alternative backed by strong
empirical evidence

• Both Top-K and Nucleus sampling has been used in recent
work, but mostly in language modeling and (conditioned)
language generation:

– CTRL: A Conditional Transformer Model for Controllable Generation [Keskar
2019]

– Defending Against Neural Fake News [Zellers 2019]
– Language Models are Unsupervised Multitask Learners [Radford 2019]

Where it could do better
• Proposed technique is effectively a re-imagining of Top-K

Sampling which can perform about the same
• Does not compare with other techniques used to combat

degeneration like the diverse/constrained beam search and
the “unlikelihood loss”

• Both Top-K and Nucleus Sampling criticized in [Welleck
2020] for not resolving the underlying problem of poor quality
token-level probabilities

Questions?

