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Similarity:

Obtain a conditional generative model — key structures are similar
Consider unsupervised method

Dissimilarity:

The key idea to unsupervised training is different:

1. Reconstruction error + latent space alignment
2. Assign new task for training (masked key words refill)
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Unsupervised Machine Translation Using Monolingual
Corpora Only. (Lample et al, 2018)

MT is improving thanks to large-scale parallel corpora but it’s hard to get
thousands of parallel sentences for low-resource language pairs

- Can we learn to translate without parallel sentence data?
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System Overview

- Build encode and decode system such that the latent spaces common for
both source and target language.
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System Overview
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MT from L1 to L2
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System Overview

| el sr0 Zsrc d(-,src) L Use seq2seq model with attention.
encoder l decoder
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System Overview

C is a random sampled noise version of sentence.

e Drop a word in a sentence in a certain probability

e Slightly shuffle the input sentence

Why? Better quality supported by ablation study (regularization
technique)
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System Overview

Y.
M Translation model at previous iteration.

model at
previous iter

-

For iteration = 0, use naive word-by-word translation

For iteration > O: T

L1 A ‘ Decoder | =

L2 —+ | Encoder

MT from L1 to L2
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System Overview
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System Overview
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System Overview

N

[: Use adversarial training to ensure the latent space are common for both
adv language.

Maintain a network that tries to classify the encoded sentence comes from
which language.

£ad'v (Oenm Z|0D) = _E(mi,ei)[long (€J|e(x'&7e’b))]

- Discriminator Architecture: Multilayer perceptron
with 3 hidden layers of size 1024, Leaky-RelLU and

output logistic unit.
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System Overview

Final Objective function The final objective function at one iteration of our learning algorithm is
thus:

E(Genm Odec, Z) =)\auto[£auto (eenm Odec; Z, S’I‘C) + Lauto (eenCs Odec; Z, tgt)]+
Acd [['cd(eenc, Odec, Z, sTC, tgt) + ﬁcd(eenc, Odec, Z, tgt, STC)]+ 4)
)‘ad'u ['a,dv (0enc; ZleD)
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Training

Algorithm 1 Unsupervised Training for Machine Translation

1: procedure TRAINING(Dgp¢, Digt, T)
% Infer bilingual dictionary using monolingual data (Conneau et al., 2017)
M « unsupervised word-by-word translation model using the inferred dictionary
fort=1,7Tdo
using M () translate each monolingual dataset
// discriminator training & model training as in eq.
Ogiser < argminLp, Oenc, Odec, Z + argmin L
M) « e®) o d(®) /7 update MT model
9: end for
10:  return M(T+1)
11: end procedure

PR, SAISh B e
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Parameter/Model Selection

1
MS(C, d, Ds'rc, Dtgt) - EIE:Z:NDSTC [BLEU(CU, Msrc—)tgt o Mtgt—)s'rc(w))] 5 2

1
§]E$N'Dtgt [BLEU(m, Mtgt—)src o Msrc—)tgt (m))]
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Parameter/Model Selection

Figure 3: Unsupervised model selection.
BLEU score of the source to target and tar-
get to source models on the Multi30k-Task1
English-French dataset as a function of the
number of passes through the dataset at it-
eration (¢) = 1 of the algorithm (training
M (2) given M (1)). BLEU correlates very
well with the proposed model selection crite-

—— Source -> Target BLEU rion, see Equation 5.
— .- Target -> Source BLEU

- == Unsupervised Criterion

0 5 10 15 20 25 30
number of epochs
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Datasets

- WMT’14 English-French: 36m pairs, reduced to 30m and split for EN/FR
sentences. Validation on 3,000 sentences. Test on newstest2074.

- WMT’16 English-German: Same as above, 1.8m training sentences each.
Testing on newstest2016.

- Multi30k-Task1: 30k image annotations (EN, FR, DE), 29/1/1 split. Split for
monolingual corpora (14.5/0.5/0.5k).

MMT1 en-fr MMTI1 de-en WMT en-fr WMT de-en

Monolingual sentences 14.5k 14.5k I5M 1.8M
Vocabulary size 10k / 11k 19k / 10k 67k / 78k 80k / 46k

Table 1: Multi30k-Task1l and WMT datasets statistics. To limit the vocabulary size in the WMT

en-fr and WMT de-en datasets, we only considered words with more than 100 and 25 occurrences,
respectively.
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Baselines

- Word-by-word translation (WBW): Using an inferred bilingual dictionary

- Word reordering (WR): After WBW, use LSTM-based LM trained on the
target side

- Oracle Word Reordering (OWR): Using reference, best possible
generation using only the words given by WBW

- Supervised Learning: Same model trained using the standard
cross-entropy loss on the original parallel sentences
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Multi30k-Task1 WMT
en-fr frren de-en en-de | en-fr fr-en de-en en-de
apervised 56.83 50.77 38.38 35.16 | 2797 26.13 2561 21.33
word-by-word 8.54 16.77 15.72 5.39 6.28 10.09 10.77 7.06
word reordering 6.68 11.69 10.84 6.70

oracle word reordering 11.62 | 2488 18.27 6.79 [|10.12 | 20.64 1942 11.57
Our model: 1st iteration 127.48 28.07 23.69 1932 | 12.10 111.79 11.10 8.86

Our model: 2nd iteration | 31.72 3049 24.73 21.16 | 1442 | 13.49 13.25 9.75
Our model: 3rd iteration ¢|32.76 | 32.07 26.26 22.74 [|15.05|¢ 14.31 13.33 9.64

Table 2: BLEU score on the Multi30k-Taskl and WMT datasets using greedy decoding.
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Results

0 1 2 3
number of iterations

WHAT STARTS HERE CHANGES THE WORLD

En->Fr
- Fr->En
De->En
En->De

10% 10° 10° 107
number of parallel training sentences
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Sample Output

Source un homme est debout pres d’ une série de jeux vidéo dans un bar .
Iteration 0  a man is seated near a series of games video in a bar .

Iteration 1  a man is standing near a closeup of other games in a bar .
Iteration 2  a man is standing near a bunch of video video game in a bar .
Iteration 3 ~ a man is standing near a bunch of video games in a bar .
Reference a man is standing by a group of video games in a bar .

Source une femme aux cheveux roses habillée en noir parle a un homme .
Iteration 0  a woman at hair roses dressed in black speaks to a man .

Iteration 1  a woman at glasses dressed in black talking to a man .

Iteration 2  a woman at pink hair dressed in black speaks to a man .

Iteration 3 ~ a woman with pink hair dressed in black is talking to a man .
Reference a woman with pink hair dressed in black talks to a man .
Source une photo d’ une rue bondée en ville .

Iteration 0  a photo a street crowded in city .

Iteration 1  a picture of a street crowded in a city .

Iteration 2  a picture of a crowded city street .

Iteration 3  a picture of a crowded street in a city .

Reference a view of a crowded city street .
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Ablation Study

en-fr fr-en de-en en-de
Ned =0 2544 27.14 20.56 14.42
Without pretraining 2529 26.10 2144 17.23
Without pretraining, A.g =0 8.78 9.15 7.52 6.24
Without noise, C'(z) = x 16.76 16.85 16.85 14.61
Aaguto = 0 2432 20.02 19.10 14.74
Aadv = 0 24.12 2274 19.87 15.13
Full 2748 28.07 23.69 19.32

Table 4: Ablation study on the Multi30k-Task1 dataset.
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Conclusion

- Approach: Model is learned using monolingual datasets only, with no
word/sentence level alignment

- Principle:
- Start from unsupervised W2W MT model
- Iteratively improve using reconstruction loss
- Use discriminator to align latent distributions of src/tgt languages

- Results: Can effectively learn translation models without any supervision!
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Conclusion

Some future extensions:

1. Phrase-Based & Neural Unsupervised Machine Translation: use shared
parameter to align laten space; use phrase table to better mapping words

in two languages.
2. A Multilingual View of Unsupervised Machine Translation: Multilingual

setting

1. Translation
arg max, pe(zro Zen)

i 2. Likelihood
Po(Yex|2ro)

(b) Cross-translation
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The Summary Loop: Learning to Write Abstractive
Summaries Without Examples. (Laban et al, ACL 2020)

Task: Given a source document and length constraint, generate a
summary of the source document that satisfies the length
constraint. (Unsupervised method)
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The Summary Loop: Learning to Write Abstractive
Summaries Without Examples. (Laban et al, ACL 2020)

Requirement:

e Coverage of the key words
e Fluency of the generated language
e Brevity of generated summaries
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Previous work

1. Extractive method: deleting uninformative words
2. Seg2seq model: usually supervised and thus requires paired

examples

3. Miao and Blunsom (2016) train seperate en/decoder for
supervised and unsupervised examples (still requires a lot paired
examples)
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Main Contribution

e Using coverage model to ensure a informative summary

e Unsupervised training procedure

e Specialized training technique for preventing pathological behavior
during generating
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The proposed Summary Loop
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The architectures for each components
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Summarizer

Architecture:

Generative Transformer (Radford et al., 2019) as the
model architecture of the summarizer.

e Produce one word at a time

e Feed the produced word into the model for the next
one

e Repeat until length constraint.
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Masking Procedure

Select the top k words with highest tf-idf score and mask
them.

t: text

d: document

D: all documents
tf-idf (t,d) = tf(t,d) * idf(t,D)
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Masking Procedure

tf(t,d) measures whether text t is ‘special’ to document d

Variants of term frequency (tf) weight

weighting scheme tf weight
binary 0,1
raw count fra
term frequency ft.d Z ft',d
t'ed

log normalization log(1+ fiq)

S frd
double normalization 0.5 | 0.5 + 0.5 -

maxiyed} fed

- fta

double normalization K | K + (1 — K)

maxX(¢eqy fer d
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Coverage Model

idf(t,d) measures whether text t is a ‘general common’
word

N
{deD:ted}

idf (¢, D) = log
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Coverage Model

Receives a computationally generated summary and the
masked document and attempts to fill in each blank word.

Different from masked language modeling (MLM): summary is
given while MLM only use other unmasked info to fill the mask

Use same BERT-like architecture for MLM in (Devlin et
al., 2019) .
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Coverage Model

Raw Coverage Score: 0.33

XV -
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v,/,/ ] g .o % \
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Finetuned-BERT
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Summary Masked Document

Figure 3: The Coverage model uses a finetuned
BERT model. The summary is concatenated to the
masked document as the input, and the model predicts
the identity of each blank from the original document.
The accuracy obtained is the raw coverage score.
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Fluency Model

Fluency Model is to judge the writing quality of the
summary, independent of its coverage

Prevent the summary of just being a list of keywords.

Modify language model’s probability into a Fluency
Score.
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Fluency Model

Use generative Transformer (Radford et al., 2019)
architecture.

As it can be trained into a powerful language model.
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Objective functions
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Coverage Score

D: document

M = f(D), the masked document

S: summary

F = g(S,M) the filled document produced by coverage model

RawCov(D, S) = [ € I if D = K| ),
1 Za|




TEXAS
The University of Texas at Austin

Coverage Score

Disadvantage:
The model can use information in the unmasked (visible)

words of M to predict the masked words.

Calibration:

NormCov(D, S) =

2
RawCov (D, S) — RawCov(D, “”) 2
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Fluency Score

To produce a uniform Fluency Score, we linearly
scale the language model’s log-probability of a
given summary (LM (S)) between an ideal value
L Pyoy, and a maximum value L Pp;gp:

LPhigh ol Lf)low

Fluency(S) =1 — 3)
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Summary Score

The final Summary Score i1s a weighed sum of the
Coverage and Fluency Scores:

SummaryScore(D, S) =

4
a - NormCov(D, S) + - Fluency(S) @
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Training procedure
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Training Procedure

Train the coverage and fluency model once and them
froze their weights during the training of summarizer

Use RL for training summarizer
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Training the Coverage Model

Use the first 50 words of unmasked document as a proxy
for document summaries (keep the procedure
unsupervised)

Because BERT is already trained on the similar MLM
task, the Coverage model is able to leverage knowledge
accrued by BERT.
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Training the Fluency Model

Standard with the proposed fluency score
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Training the Summarizer

Use Self-critical sequence training (SCST) method

In SCST, the Summarizer is used to produce two
summaries of document D: a greedy summary S,
using a decoding strategy that always picks the
most likely next word, and a sampled summary S*,
picking the next word in the summary by sampling

from the word distribution. R = SummaryScore(D, §)
R® = SummaryScore(D, S°%)

Then we minimize the following loss:

Summaries are scored using the Summary Loop:

N
L=(R-R°)) logp(wi|w,...,wi, D)
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Training Guard Rails

Prevent summarizer model learns pathological summarization
strategies.

If a pathology is detected in a summary, its Summary Score is reduced
by a penalty amount

e No-repetition
e Finish-your-sentence
e No-frame-filling
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Training Guard Rails
No-repetition:

Raises a penalty on a summary when it contains any repeated 3-gram.
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Training Guard Rails

Finish-your-sentence:

Given the length constraint of the generated summary, if the model
doesn’t produce the END token, it is likely the last sentence is not
completed.

Raise penalty for this case.
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Training Guard Rails

No-frame-filling:

During training, the model sometimes learns to overly rely on sentence
patterns that achieves high reward as a one size fits all summary.

l.e., X talks with Y about the Z

During training, we keep track of the last 100 summaries produced by
the model. We then aggregate the frequency of words for each word
position in the 100 summaries. If any word appears more than 50% of
the time at a specific word position, we raise the penalty.
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Experiment Result
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Metric

Summarizer:

ROUGE, or Recall-Oriented Understudy for Gisting Evaluation

» ROUGE-N: Overlap of N—grams[2] between the system and reference summaries.

o ROUGE-1 refers to the overlap of unigram (each word) between the system and reference summaries.
e ROUGE-2 refers to the overlap of bigrams between the system and reference summaries.

ROUGE-L: Longest Common Subsequence (LCS)[3] based statistics.
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Metric

Coverage:

Use the coverage score defined before

Fluency:

Use the fluency score defined before

Brevity:

Ave # words
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Coverage Fluency Brevity

arsued Bae e b Score Score (avg words)
Baselines
Human-written Summaries 100 100 100 0.392 0.612 58.5
X Lead-3 baseline 403 17.7 36.6 0.421 0.656 84.0
Supervised Methods
Pointer Generator (See et al., 2017) 36.4 15.7 334 0.342 0.547 55.6
PG + Coverage (See et al., 2017) 395 173 364 0.377 0.508 61.7
Bottom-Up (Gehrmann et al., 2018) 412 18.7 38.3 0.378 0.538 73.9

PEGASUSBasg (Zhang et al., 2019a) 41.8 18.8 38.9 - - -
PEGASUSLArce (Zhang et al., 2019a) 44.1 21.3 40.9 - - -

Unsupervised Methods
X TextRank (Mihalcea and Tarau, 2004) 352 129 28.7 0.370 0.612 49.62
GPT2 Zero-Shot (Radford et al., 2019) 293 83 266 - - -
Summary Loop 45 37.7 148 34.7 0.404 0.627 47.0

Table 2: ROUGE Results (F-1) on the non-anonymized CNN/DM test-set for supervised and unsupervised methods.
Extractive methods indicated with X. Our ROUGE scores have a 95% confidence interval of at most 3-0.30.
Coverage, Fluency and Brevity (average number of words) included for systems where summaries are available,
using Coverage and Fluency models from our work.
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Supervision is not the enemy

Initialization Method R-1 R-2 R-L Test Loss
28k samples from CNN/DM (10%)
Random Initialization 7.0 09 88 6.05

GPT2 37.1 159 319 221

Summary Loop S10  38.7 16.2 35.1 2.07
All of CNN/DN (100%)

Random Weights 204 41 191 4.22

GPT2 384 172 350 202

Summary Loop S100 41.0 18.1 373 1.89

Table 5: ROUGE Results on the CNN/DM test-set for
supervised generative Transformers. Initializing with

the unsupervised Summary Loop outperforms random
and GPT?2 initializations.
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Questions?




