
Rohan Nair & Jiyang Zhang, The University of Texas at Austin

FALL 2020 CS 395T

Translating Natural
Language into Actions in
Language Games
CS 395T: Topics in Natural Language Processing

Overview

• “Language derives meaning from use.”
– Wittgenstein, 1953

• Wittgenstein’s language games
– Human wishes to accomplish task
– Human can communicate with computer
– Computer performs tasks as instructed by Human

Problem Definition
• High level formulation:

– Define Computer set of actions A
– Define Game states S

• Current state si∈S viewed by both Human and Computer
• Human has a goal state sg∈S

– Human issues utterance L
– Computer translates L into at∈A, game transitions

from si to si+1 using a transition function on (si, at).

Related Work

• Learning Language Games through Interaction
– Block Stacking Game
– Use semantic parsing model to translate
– Wang et al. 2016

2 Case Studies:

• Executing Instructions in Situated Collaborative
Interactions (Suhr et al. 2020)

• ChartDialogs: Plotting from Natural Language
Instructions (Shao and Nakashole 2020)

Jiyang Zhang, The University of Texas at Austin

FALL 2020 CS 395T

Executing Instructions in
Situated Collaborative
Interactions
Alane Suhr, Claudia Yan, Jacob Schluger, Stanley Yu, Hadi Khader, Marwa Mouallem, Iris Zhang, Yoav Artzi (EMNLP 2019)

CS 395T: Topics in Natural Language Processing

Problem

• A collaborative scenario where a user not only
instructs a system to complete tasks, but also acts
alongside it.

• Learn to map user instructions to system actions.

CerealBar
A situated collaborative game with sequential natural language
instruction.

http://lil.nlp.cornell.edu/slides/20
19_12_control_colab.pdf

Collaboration (turn-based)
• The players select valid sets together
• The leader instructs follower using natural language
• Follower can not respond to the leader but execute

instructions. They should not plan themselves.
• Incentivize collaboration:

– Observability: leader sees complete board, follower only
sees ahead

– Ability: follower has more steps per trun

Task

• Context is history of interaction and structured
observation from follower perspective

• Output discrete actions

The CerealBar Scenario

Model Overview

● Build on Visitation Prediction Model which casts planning as
mapping instructions to the probability of visiting positions in
the environment.

● Two extensions:
○ Plan distributions reason about obstacles and multiple

goals
○ Recurrent action generation for more complex trajectories

Model: first stage

Prediction distribution
• : the probability of visiting while executing

the instruction
• : the binary probability that is a

goal
• : the probability that agent must not

pass in
• : the probability that agent cannot

pass in

Model: stage 2

Training Data

• Recorded 1,202 successful human-human recorded
games

• Each instruction is aligned with the sequence of
actions the human follower performed

How to train

• Initialize both stages separately with supervised
learning

• Train both stages of the model together
• Train to recover from error propagation between

instructions

Learning: Plan Generation

Gold standard visitation distributions
• label is proportion to number of states

where the follower is in the position
• set the label to 1 for all that

contain a card that the follower changed its selection
status during the interaction and 0 for all other.

• label is 1 for all that have cards
that the follower does not change during interactions.

• label is 1 for all positions the agent
cannot move onto.

Learning: Action Generation

Learning with error propagation

● Problems: there is no opportunity in the data to learn
to recover from errors

Augment the data with error recovery examples

• Run inference for each example using the current policy
• Compare the state s at the end of execution to the gold
• If the position or rotation of the agent are different, generate

the shortest-path sequence of actions and add it to the
recovery examples.

Optimize with Implicit action prediction

• The generated recovery examples may include sequences of
state-action pairs that do not align with the original instruction.

• Identify such examples and treat them as requiring implicit
actions (reasoning).

• All other examples are considered as not requiring implicit
reasoning

• Train a classifier to determine whether the example requires
implicit reasoning or not.

Cascaded Evaluation

• Instruction-level metrics ignore error propagation
• Instructions <1, 2, 3> -> <1, 2, 3> , < 2, 3> and <3>
• Proportion of the remaining instruction followed

successfully
• Proportion of potential points scored

Systems

● Full Model
● SEQ2SEQ+ATTN

○ translates natural language instructions to action
sequences based upon a representation of the
observable world state.

● Static oracle that executes the gold actions

Metrics
• Mean card state accuracy: comparing the state of the

cards after inference with the correct card state
• Environment state accuracy: comparing both cards and the

agent’s final position
• Action sequence accuracy: comparing the generated

action sequence with the correct action sequence.
• Full game points
• Mean proportion of instruction correctly executed
• Proportion of potential points scored

Results

Ablation results

Human Evaluation

● Use simplified language, shorter instructions
● Smaller vocab

Things I do not like

• Too many notations in the paper make their approach
hard to understand

• Lack description on the model they built on (Visitation
Prediction Network , LINGUNET)

Future work and discussion

• Remove full observability assumption
• Incorporating the interaction history to generate plan

and implicitly reason
• Enable bidirectional communication to allow efficient

collaboration between human and agent
• More complicated environment

Rohan Nair, The University of Texas at Austin

FALL 2020 CS 395T

ChartDialogs: Plotting
from Natural Language
Instructions
Yutong Shao and Ndapa Nakashole

CS 395T: Topics in Natural Language Processing

Background
• Plotting is time consuming for novices
• 3 stages of plotting pipelines:

– Describing the data
• Functions: Pull Data, Simple Data Analysis

– Describing the function
• Functions: Specify function mathematically

– Describing the plot
• Functions: Manipulate the image output

Related Work
• Natural Language Interfaces (NLIs) studied in other

parts of the pipeline
– NLI + HCI works in describing the data

• (Gao et al., 2015; Setlur et al., 2016; Srinivasan and Stasko, 2017; Yu and Silva, 2019; Sun et al., 2010).

– NLI in describing the function
• (wolframalpha)

• Plot manipulation is more structured than
Conversational Image Editing, less complex than PL
synthesis

Problem Statement

• Conversational plot
updating agent
– Describing a plot claimed as

an iterative problem

• Slot filling goal-oriented
dialog
– Slots specific to plot type

Text Plot Specification

• Model plot spec as a key-value list (TP Spec)
• Definition (TP Spec):

– Let St be the set of all relevant slots for a given plot
type, t

– For each slot si ∈ St, let the set of values it can
take be Vt

i
– TPt = {(s1 : v1, s2 : v2, . . .) : si ∈ St; vi ∈ Vt

i}

Data Collection-Plot Generation

• One to One mapping from TP Spec to Plot image

• Randomly sample valid TP Specs to generate a
corresponding plot image

Data Collection-Dialog Collection

• Wizard-of-Oz (WOZ) Collection Scheme over MTurk
– One operator, one describer, shared working state

• Plot state initialized blank, describer given goal state

– Describer role:
• issues command in natural language

– Operator role:
• Executes on natural language commands using operation panel
• Can ask clarifying questions

Dataset Analysis – Size Statistics

• 3,284 Dialogs
• 15,754 Dialog Turns
• 141,876 tokens

Dataset Analysis – GPT-2 Statistics

• Lower half of GPT-2 Perplexity Scores
– Distribution has long tail
– Average Perplexity: 77,188.58 (whole), 399.78 (lower half)

Dataset Analysis – Turn Analysis

Baseline Methods

• Utilize seq2seq with Encoder/Decoder Stack + attention
• Input/Output Formulation

– Input
• 3 sources: current TP Spec, current plot as image, dialog history

– Output
• ΔTPSpec, either sequence or predicted using sequence of classifiers

• Decoder Output Probability
–

Baseline Methods – Sequence Output

• S2S-Plot + TXT
• S2S-TXT
• S2S-NoState
• S2S-NoUtterance

Baseline Methods – Sequential MLP

• MaxEnt
• RNN+MLP
• Transformer+MLP

Results: Token Granularity

• PAIR:
– Concat slot name + value (“slot name:slot value”)

• SINGLE:
– Split slot name + value (2 predictions)

• SPLIT:
– Slot names and values split into words
– “x_axis_scale:log” –> “x” + “axis” + “scale” + “:” + “log”

Results-Quantitative Analysis

• Training: 2,628, Validation: 328, Test: 329 dialogs
• Training: 11,903 Validation:1,562, Test: 1,481 datapoints

Results – Plot Breakdown

Results-Qualitative Analysis

• Validate performance of original MTurk
Operator over 444 Partial Dialogs

• 3 MTurk operators given partial dialog, asked
to produce operation

• Cohen’s Kappa: .889
– Between Original MTurk worker and

Majority of 3 partial dialog MTurk
Operators

Error Analysis
• Human performance: 76.8% EM

– Subset of 180 Examples
– Top model: 61.3% EM

• 2 Ambiguity Error Classes:
– Unspecified new Plot
– Ambiguous Value

• Human Errors
– Operator overlooks Describer

Error Analysis – Model Errors

Discussion Points

• The authors introduce examples of StackOverflow
questions tagged with matplotlib. Is there a way to
assess performance on this real world use case?

• Models built on this dataset will struggle with things
like new features and patching. Do systematic ways
to collect new training data seem reasonable?

Questions?

