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Overview

• “Language derives meaning from use.”
– Wittgenstein, 1953

• Wittgenstein’s language games
– Human wishes to accomplish task
– Human can communicate with computer
– Computer performs tasks as instructed by Human



Problem Definition
• High level formulation:

– Define Computer set of actions A
– Define Game states S

• Current state si∈S viewed by both Human and Computer
• Human has a goal state sg∈S

– Human issues utterance L
– Computer translates L into at∈A, game transitions 

from si to si+1 using a transition function on (si, at). 



Related Work

• Learning Language Games through Interaction
– Block Stacking Game
– Use semantic parsing model to translate
– Wang et al. 2016



2 Case Studies:

• Executing Instructions in Situated Collaborative 
Interactions (Suhr et al. 2020)

• ChartDialogs: Plotting from Natural Language 
Instructions (Shao and Nakashole 2020)
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Problem

• A collaborative scenario where a user not only 
instructs a system to complete tasks, but also acts 
alongside it.

• Learn to map user instructions to system actions.



CerealBar 
A situated collaborative game with sequential natural language 
instruction.

http://lil.nlp.cornell.edu/slides/20
19_12_control_colab.pdf





Collaboration (turn-based)
• The players select valid sets together 
• The leader instructs follower using natural language 
• Follower can not respond to the leader but execute 

instructions. They should not plan themselves.
• Incentivize collaboration: 

– Observability: leader sees complete board, follower only 
sees ahead

– Ability: follower has more steps per trun





Task

• Context is history of interaction and structured 
observation from follower perspective

•  Output discrete actions



The CerealBar Scenario



Model Overview

● Build on Visitation Prediction Model which casts planning as 
mapping instructions to the probability of visiting positions in 
the environment.

● Two extensions:
○ Plan distributions reason about obstacles and multiple 

goals
○ Recurrent action generation for more complex trajectories



Model: first stage



Prediction distribution
•                : the probability of visiting    while executing 

the instruction    
•                            : the binary probability that     is a 

goal 
•                             : the probability that agent must not 

pass in     
•                             : the probability that agent cannot 

pass in 



Model: stage 2



Training Data

• Recorded 1,202 successful human-human recorded 
games

• Each instruction is aligned with the sequence of 
actions the human follower performed



How to train

• Initialize both stages separately with supervised 
learning 

• Train both stages of the model together 
• Train to recover from error propagation between 

instructions



Learning: Plan Generation



Gold standard visitation distributions
•                 label is proportion to number of states 

where the follower is in the position
•                            set the label to 1 for all     that 

contain a card that the follower changed its selection 
status during the interaction and 0 for all other.

•                              label is 1 for all    that have cards 
that the follower does not change during interactions.

•                               label is 1 for all positions the agent 
cannot move onto.



Learning: Action Generation



Learning with error propagation

● Problems: there is no opportunity in the data to learn 
to recover from errors



Augment the data with error recovery examples

• Run inference for each example using the current policy
• Compare the state s at the end of execution to the gold 
• If the position or rotation of the agent are different, generate 

the shortest-path sequence of actions and add it to the 
recovery examples.



Optimize with Implicit action prediction

• The generated recovery examples may include sequences of 
state-action pairs that do not align with the original instruction.

• Identify such examples and treat them as requiring implicit 
actions (reasoning).

• All other examples are considered as not requiring implicit 
reasoning

• Train a classifier to determine whether the example requires 
implicit reasoning or not.





Cascaded Evaluation

• Instruction-level metrics ignore error propagation
• Instructions <1, 2, 3> -> <1, 2, 3> , < 2, 3> and <3>
• Proportion of the remaining instruction followed 

successfully
• Proportion of potential points scored



Systems

● Full Model
● SEQ2SEQ+ATTN

○ translates natural language instructions to action 
sequences based upon a representation of the 
observable world state.

● Static oracle that executes the gold actions



Metrics
• Mean card state accuracy: comparing the state of the 

cards after inference with the correct card state
• Environment state accuracy: comparing both cards and the 

agent’s final position
• Action sequence accuracy: comparing the generated 

action sequence with the correct action sequence.
• Full game points
• Mean proportion of instruction correctly executed
• Proportion of potential points scored



Results



Ablation results



Human Evaluation

● Use simplified language, shorter instructions
● Smaller vocab



Things I do not like

• Too many notations in the paper make their approach 
hard to understand

• Lack description on the model they built on (Visitation 
Prediction Network , LINGUNET)



Future work and discussion

• Remove full observability assumption
• Incorporating the interaction history to generate plan 

and implicitly reason
• Enable bidirectional communication to allow efficient 

collaboration between human and agent
• More complicated environment 
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Background
• Plotting is time consuming for novices
• 3 stages of plotting pipelines:

– Describing the data
• Functions: Pull Data, Simple Data Analysis

– Describing the function
• Functions: Specify function mathematically

– Describing the plot
• Functions: Manipulate the image output



Related Work
• Natural Language Interfaces (NLIs) studied in other 

parts of the pipeline
– NLI + HCI works in describing the data 

• (Gao et al., 2015; Setlur et al., 2016; Srinivasan and Stasko, 2017; Yu and Silva, 2019; Sun et al., 2010).

– NLI in describing the function 
• (wolframalpha)

• Plot manipulation is more structured than 
Conversational Image Editing, less complex than PL 
synthesis



Problem Statement

• Conversational plot 
updating agent
– Describing a plot claimed as 

an iterative problem

• Slot filling goal-oriented 
dialog
– Slots specific to plot type



Text Plot Specification

• Model plot spec as a key-value list (TP Spec)
• Definition (TP Spec): 

– Let St be the set of all relevant slots for a given plot 
type, t 

– For each slot si ∈ St, let the set of values it can 
take be Vt

i
– TPt = {(s1 : v1, s2 : v2, . . .) : si ∈ St; vi ∈ Vt

i}



Data Collection-Plot Generation

• One to One mapping from TP Spec to Plot image

• Randomly sample valid TP Specs to generate a 
corresponding plot image



Data Collection-Dialog Collection

• Wizard-of-Oz (WOZ) Collection Scheme over MTurk
– One operator, one describer, shared working state

• Plot state initialized blank, describer given goal state

– Describer role:
• issues command in natural language

– Operator role: 
• Executes on natural language commands using operation panel
• Can ask clarifying questions



Dataset Analysis – Size Statistics

• 3,284 Dialogs
• 15,754 Dialog Turns
• 141,876 tokens



Dataset Analysis – GPT-2 Statistics

• Lower half of GPT-2 Perplexity Scores
– Distribution has long tail
– Average Perplexity: 77,188.58 (whole), 399.78 (lower half)



Dataset Analysis – Turn Analysis



Baseline Methods

• Utilize seq2seq with Encoder/Decoder Stack + attention
• Input/Output Formulation

– Input
• 3 sources: current TP Spec, current plot as image, dialog history

– Output
• ΔTPSpec, either sequence or predicted using sequence of classifiers

• Decoder Output Probability
–



Baseline Methods – Sequence Output

• S2S-Plot + TXT
• S2S-TXT
• S2S-NoState
• S2S-NoUtterance



Baseline Methods – Sequential MLP

• MaxEnt
• RNN+MLP
• Transformer+MLP



Results: Token Granularity

• PAIR:
– Concat slot name + value (“slot name:slot value”)

• SINGLE:
– Split slot name + value (2 predictions)

• SPLIT:
– Slot names and values split into words
– “x_axis_scale:log” –> “x” + “axis” + “scale” + “:” + “log”



Results-Quantitative Analysis

• Training: 2,628, Validation: 328, Test: 329 dialogs
• Training: 11,903 Validation:1,562, Test: 1,481 datapoints



Results – Plot Breakdown



Results-Qualitative Analysis

• Validate performance of original MTurk 
Operator over 444 Partial Dialogs

• 3 MTurk operators given partial dialog, asked 
to produce operation

• Cohen’s Kappa: .889
– Between Original MTurk worker and 

Majority of 3 partial dialog MTurk 
Operators



Error Analysis
• Human performance: 76.8% EM

– Subset of 180 Examples
– Top model: 61.3% EM

• 2 Ambiguity Error Classes:
– Unspecified new Plot
– Ambiguous Value

• Human Errors
– Operator overlooks Describer



Error Analysis – Model Errors



Discussion Points

• The authors introduce examples of StackOverflow 
questions tagged with matplotlib. Is there a way to 
assess performance on this real world use case?

• Models built on this dataset will struggle with things 
like new features and patching. Do systematic ways 
to collect new training data seem reasonable?



Questions?


